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Abstract 

Projection is a helpful description for treating bipartite networks as (monopartite) net-
works with pairwise interactions. Projections induce correlation spontaneously, avoid-
ing negative degree correlation, even if bipartite networks are entirely random. In this 
study, we examined the structure of projections of random bipartite networks char-
acterized by the degree distribution of individual and group nodes through the gen-
erating function method. We decomposed a projection into two subgraphs, the giant 
component, and finite components and analyzed their degree correlation. We dem-
onstrate that positive degree correlations in projections originating from the clique 
size fluctuation remain after the decomposition at the set of finite components, 
although the values of their clustering coefficient are still finite. The giant component 
can exhibit either positive or negative degree correlations based on the structure 
of the projection. However, they are positively correlated in most cases. In addition, we 
found that a projection removed the giant component coincides with one in the sub-
critical phase, i.e., the discrete duality relation, when the degree distributions for group 
and individual are of Poisson.

Keywords:  Projections, Bipartite networks, Degree correlation, Clique clustering

Introduction
The structural complexity of networks consisting of nodes and edges emerges from the 
pairwise relations between two nodes and the higher-order structure induced by group 
relations among more than two nodes. Several researchers have collaborated to produce 
scientific results. Many molecules are involved in intravitreal chemical reactions. Some 
species compete or coexist in the same ecosystems. Such group relationships are widely 
observed in empirical networks ranging from nature to society, including in neural, 
biological, ecological, social, and technological networks (Newman et al 2002; Milo et al 
2002; Ugander et al 2012; Petri et al 2014; Benson et al 2016; Levine et al 2017; Grilli et al 
2017; Benson et al 2018; Sizemore et al 2018). Several studies focused on higher-order 
structures using the language of pairwise networks. The first treatment was based on 
bipartite networks and their projections. Bipartite networks consist of two disjoint sets 
of nodes and a set of edges between the nodes of different sets, which are translated into 
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projections by replacing a node set with cliques (Fig. 1). One seminal study corresponds 
to the generating function approach for bipartite networks (Newman et  al 2001). 
Specifically, a random bipartite network characterized by two-degree distributions of 
two node sets was utilized as the null model of a network with a group structure. The 
generating function method analytically provides clustering and assortativity coefficients 
for projections, and conjectures high levels of clustering and assortative mixing in social 
networks (Newman et  al 2001, 2002; Newman and Park 2003). Detailed structural 
properties have been investigated for projections of random bipartite networks and 
empirical ones (Fisher et al 2017; Vasques Filho and O’Neale 2018, 2020).

Another important property is the emergence of a giant (bipartite) component, 
that is, the percolation transition. A natural extension of the Molly–Reed criterion 
for a configuration model provides the transition condition (Newman et  al 2001). 
With respect to a random (monopartite) network generated from Erdős–Rényi and 
configuration models, various structural properties of the giant component (GC) and 
finite components have been clarified. Hereafter, we denote a subgraph composed 
of all finite components, which is the set difference between the entire network and 
GC, as the FC. A broad class of random networks satisfies a discrete duality relation: 
the FC in the supercritical phase possessing GC behaves like a random network in 
the subcritical phase possessing no GC (Bollobás et al 2007; Durrett 2007; Janson and 
Riordan 2011). In FC, the degree distribution is characterized by that of the entire 
network with an exponential cutoff. In addition, similar to the entire network, the 
degree correlation of the FC is absent (Tishby et al 2018). The structural properties of 
the GC are different from those of the entire network and FC. Specifically, the degree 
distribution of GC coincides with the neighbor degree distribution of the entire network 
at the percolation threshold (Dorogovtsev et  al 2008). In terms of degree correlation, 
GC is negatively correlated irrespective of the degree distribution of the entire network 
(Engel et  al 2004; Bialas and Oleś 2008; Tishby et  al 2018; Mizutaka and Hasegawa 
2018), and the negative degree correlation extends within the percolation correlation 
length (Mizutaka and Hasegawa 2020). Several studies have examined the properties of 
connected components in networks with group structures in the context of clustered 
network models. The random clustered network model generates random networks 
in which independent distributions of single edges and triangles specify the degree of 
the nodes (Newman 2009; Miller 2009). The GC of a random clustered network can 
exhibit a positive or negative degree–degree correlation based on the clustering details 
(Hasegawa and Mizutaka 2020). The generalized configuration model is a generalization 
of a random clustered network model, in which the generated networks are specified as 
arbitrary distributions of subgraphs (Karrer and Newman 2010). Mann et al. used the 

Fig. 1  A schematic view of a bipartite network consisting of seven individual nodes (solid spheres) and two 
group nodes (open squares) (a), and its projection (b). In the projection, two individual nodes sharing at least 
one adjacent group node in the bipartite networks are connected by an edge to each other
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generating function method for the generalized configuration model when examining 
the structure of GC in a random network with arbitrary clique clustering (Mann et al 
2022). They observed that GC possesses negative degree correlations for a single-size 
clique network. They also investigated networks comprising single edges and m-cliques 
and noted that the average degree of adjacent nodes increased with the node degree 
with an oscillation, implying a positive degree correlation. Component statistics in the 
random (monopartite) networks were collected to a certain extent. However, there 
is a paucity of understanding regarding networks with group structures. In particular, 
what determines the degree correlation of components and how the structures in the 
subcritical and supercritical phases are related is not yet completely understood.

In this study, we consider networks with clique clustering, which are projections of 
random bipartite networks (Newman et  al 2001). In the projection procedure, each 
group node with degree m is replaced with a clique structure of size m (Fig.  1). The 
generating function method is used to analyze the statistical properties of GC and 
FC of the projections of random bipartite networks, and to evaluate the assortativity 
(Newman 2002) and global clustering coefficient (Newman 2001; Barrat and Weigt 
2000). Our findings reveal that when all groups in a bipartite network have the same size, 
the projection and FC are degree uncorrelated, whereas the GC consistently exhibits 
a negative degree correlation, irrespective of the individual node degree distribution. 
Conversely, when employing the Poisson distribution for both the degree distributions of 
individual and group nodes, the GCs are positively correlated, except when the average 
degree of the group nodes is sufficiently small. For two examples of projections of 
random bipartite networks, we find that a projection that removes the GC corresponds 
to one in the subcritical phase, that is, the discrete duality relation. We also investigate 
the relationship between the fluctuation of clique size and degree correlation in a 
network with tunable clique size fluctuation and show that a small amount of clique size 
fluctuation results in the degree correlations of GC being positive. Finally, we discuss the 
real-world implications of our findings.

The remainder of this paper is organized as follows: We formulate the structural prop-
erties of the projections and their subgraphs using the generating function methods 
shown in Section Formulation. We consider two examples to determine some properties 
of the projections of bipartite networks in Section Examples. Section Summary & dis-
cussion presents a summary and discussion.

Formulation
We treat the projections of random bipartite networks consisting of individual and 
group nodes. In random bipartite networks, the individual and group nodes are 
connected randomly. The random bipartite networks used in this study are locally tree-
like and sparse. In the next subsection, we briefly review the structural properties of an 
entire network of random bipartite network projections (Newman et al 2001; Newman 
and Park 2003). In Sec. Properties of finite components and the giant component, we 
develop generating functions for certain structural properties of the GC and FC in the 
projections.
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Properties of the projections

We consider a random bipartite network of N  individual and M group nodes. Let 
p(k) and p̃(m) be the degree distributions of individual and group nodes in the bipar-
tite network, respectively. We define the two functions that generate p(k) and p̃(m) 
as f0(x) =

∑

k p(k)x
k and g0(x) =

∑

m p̃(m)xm , respectively. Let q (k) ( ̃q(m) ) be the 
excess degree distribution that an individual (group) node reached by following the 
edge outgoing from a group node (individual node) has k (m) edges apart from the 
one we followed. Using the derivative of f0(x) ( g0(x) ), the generating function f1(x) 
( g1(x) ) of q (k) ( ̃q(m) ) are given as

Here, q(k) = (k + 1)p(k + 1)/z1 ( ̃q(m) = (m+ 1)p̃(m+ 1)/z̃1 ) and f ′0(1) ( g ′0(1) ) is a 
normalizing constant. A bipartite network holds the relation z1N = z̃1M.

Next, we consider the projection of a random bipartite network. The number of 
cliques and the distribution of the size m cliques in the projection correspond to the 
number M of group nodes and the group-node degree distribution p̃(m) in the bipar-
tite network, respectively. The degree distribution P(n) of the projection is equal to 
the distribution of the number of second-nearest neighbors of individual nodes in 
the bipartite network (see Fig. 1). As in the case of random networks (Newman et al 
2001), a composition of the generating functions f0(x) and g1(x) provides a generating 
function for the distribution of such numbers. Thus, the generating function G0(x) of 
the degree distribution P(n) is given as

From the derivative of G0(x) , the generating function for the excess degree distribution 
Q(n) in the projection is

where G′
0(1) is a normalizing constant and g2(x) = g ′1(x)/g

′
1(1).

The global clustering coefficient is defined as C = 3N�/Ntriplet , where Ntriplet and N△ 
denote the numbers of connected triplets and triangles, respectively. Ntriplet and N△ 
are given by
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and

respectively, where zn =
∑

k k(k − 1) · · · (k − n+ 1)p(k) and z̃n =
∑

m m(m− 1) · · ·

(m− n+ 1)p̃(m) . We use the relation Nz1 = Mz̃1 to obtain the global clustering coef-
ficient C of the projection as (Newman et al 2001)

Similar to G0(x) , we obtain the generating function E(x, y) of the joint probability 
P(n, n′) , such that the two ends of a randomly chosen edge in the projection have excess 
degrees n and n′ , as follows (Newman and Park 2003):

Notably, Eq.  4 is obtained from Eq.  8 with y = 1 . The inequality E(x, y)  = G1(x)G1(y) 
indicates that projections can possess degree correlations even though individual and 
group nodes are generally randomly connected in bipartite networks. Using E(x, y) and 
G1(x) , we can calculate the assortativity r as

Inserting Eqs. 4 and 8 into Eq. 9, we obtain (Newman and Park 2003)

The assortativity is a non-negative value r ≥ 0 (see Appendix A). We assume that all 
moments appearing on the right-hand side of Eq. 10 are finite. That is, all derivatives at 
x = 1 and y = 1 are finite on the right-hand side of Eq. 9. When we employ a power law 
type for the individual and group node degree distributions, the high-order moments 
diverge in the thermodynamic limit. Note that careful treatment is required to determine 
whether the assortativity converges to a value or does not make sense, as in (Litvak and 
van der Hofstad 2013).

Properties of finite components and the giant component

We introduce the probability u ( ̃u ) of reaching a finite component through an edge 
outgoing from a group node (an individual node). To obtain the probability u , let us 
consider a situation in which an edge outgoing from a group node leads to an individual 
node with k edges other than the one we followed (excess degree k ). By definition of the 
probability ũ , the probability that all k edges lead to finite components is ũk . Because 
we find an individual node with an excess degree k by following an edge outgoing from 
a group node with probability q(k) = (k + 1)p(k + 1)/z1 , the probability u is the sum 
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of q(k)ũk over k (see Fig.  2). Therefore, using Eqs.  1 and 2, we have self-consistent 
equations for u and ũ

and

respectively. Note that the equation for ũ is obtained in a manner similar to that of u . 
Expanding the above equations near ǫ = 1− u and ǫ̃ = 1− ũ , where ǫ (ǫ̃) ≪ 1 , we 
obtain the percolation threshold above which GC exists (Newman et al 2001)

From the probability P(n, FC) = P(n)un that a node chosen randomly from the 
projection has degree n and resides in a finite component, we obtain the generating 
function G0(x, FC) , which generates P(n, FC).

This leads to the generating function G0(x|FC) of the degree distribution of the FC, as 
follows:

where

(11)u = f1(ũ),

(12)ũ = g1(u),

(13)
z2

z1

z̃2

z̃1
= 1.

(14)G0(x, FC) = f0
(

g1(ux)
)

.

(15)G0(x|FC) =
f0
(
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)

1− S
,

(16)S = 1− f0
(

g1(u)
)

Fig. 2  Schematic representation of the sum rule in Eqs. 11 and 12. Open spheres (squares) denote individual 
(group) nodes. The left-hand side represents that an edge outgoing from a group (individual) node leads to 
a finite component with probability u ( ̃u ). The right-hand side represents the summation for probabilities that 
an individual (group) node reached by following an edge outgoing from a group (individual) node has excess 
degree k (m) and the k (m) edges lead to finite components
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is the fraction of the GC size. The relation G0(x) = G0(x, FC)+ G0(x, GC) gives the 
related generating functions for the GC, as follows:

and

Here, G0(x, GC) is the generating function of the probability that a randomly chosen 
node has degree n and resides in GC. G0(x|GC) is the generating function for the degree 
distribution of GC. Similar to the derivation of Eq. 4, we obtain the generating functions 
for the excess degree distributions of FC and GC from Eqs. 15 and 18, as follows:

and

respectively.
From the probability p̃(m, FC) = p̃(m)um that a randomly chosen group node has degree 

m and resides in a finite component, we obtain its generating function g0(x, FC) , as follows:

We replace G0(x) and g0(x) in Eqs. 5 and 6 with G0(x, FC) and g0(x, FC) and obtain the 
number of triplets and triangles in the FC as

and

respectively. GC is the set difference between the entire network and the FC. Thus, the 
numbers for the GC are given by

and

The clustering coefficients of FC and GC are
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and

respectively.
Next, we obtain the generating function E(x, y, FC) ( E(x, y, GC) ) for the joint 

probability P(n, n′, FC) ( P(n, n′, GC) ) that two ends of a randomly chosen edge have 
excess degrees n and n′ and that the edge resides in a finite component (the GC). 
E(x, y, FC) and E(x, y, GC) are expressed as follows:

and

respectively. We have generating functions E(x, y|FC) and E(x, y|GC) for the joint 
probabilities of FC and GC as follows:

and

respectively. We insert Eqs. 19, 20, 30, and 31 into Eq. 9 to evaluate the assortativity of 
FC and GC. Equation 8 is not equivalent to Eqs. 30 and 31. This implies that the degree 
correlation of the projections differs from their GC and FC.

Examples
Projections of z‑uniform bipartite networks

We consider a random bipartite network in which the degree distribution of the 
group nodes is p̃(m) = δmz . Here, δmz = 1 for m = z and δmz = 0 otherwise. Random 
bipartite networks with p̃(m) = δmz are referred to as z-uniform bipartite networks. The 
projections of z-uniform bipartite networks consist of cliques of single size z . Notably, 
they are reduced to ordinary random networks with the degree distribution p(k) when 
2 uniform bipartite networks are chosen. The generating functions for the joint degree 
distributions of the projections of z-uniform bipartite networks, their FC, and their GC 
are given as:

(26)CFC =
ug ′′1 (u)

ug ′′1 (u)+
(

g ′1(u)
)2
f ′1
(

g1(u)
)

,

(27)CGC =

z̃3
z̃1

− u3g
′′

1 (u)

z̃3
z̃1

+
z2 z̃

2
2

z1 z̃
2
1
− u2(ug

′′

1 (u)+ (g ′1(u))
2f ′1(g1(u)))

,

(28)E(x, y, FC) = g2(uxy)f1
(

g1(ux)
)

f1
(

g1(uy)
)

(29)E(x, y, GC) = g2(xy)f1
(

g1(x)
)

f1
(

g1(y)
)

− g2(uxy)f1
(

g1(ux)
)

f1
(

g1(uy)
)

,

(30)E(x, y|FC) =
g2(uxy)f1

(

g1(ux)
)

f1
(

g1(uy)
)

g2(u)u2

(31)E(x, y|GC) =
g2(xy)f1

(

g1(x)
)

f1
(

g1(y)
)

− g2(uxy)f1
(

g1(ux)
)

f1
(

g1(uy)
)

1− g2(u)u2
,

(32)E
(

x, y
)

=
(

xy
)z−2

f1

(

xz−1
)

f1

(

yz−1
)

,



Page 9 of 19Fujiki and Mizutaka ﻿Applied Network Science            (2024) 9:60 	

and

respectively. We insert y = 1 into the above expressions to obtain the generating 
functions for the excess degree distributions as follows:

The equations for z = 2 coincide with the known results for random networks 
(Bialas and Oleś 2008; Tishby et  al 2018; Mizutaka and Hasegawa 2018). We find 
E(x, y) = G1(x)G1(y) and E(x, y|FC) = G1(x|FC)G1(y|FC) from Eqs.  32, 33, 35, and 
36, without depending on z , which implies that the projections of z-uniform bipartite 
networks and their FC are degree-uncorrelated. By contrast, GC is degree-correlated 
( E(x, y|GC) �= G1(x|GC)G1(y|GC) ). The numerator of Eq. 9, using Eqs. 34 and 37 is as 
follows:

The equality in the inequality above holds if, and only if u = 0 . The denominator of Eq. 9 
has a non-negative value; thus, the assortativity of the GC is always negative, irrespective 
of z and p(k) . This implies that when we consider a network with cliques of a single size, 
the GC is negatively correlated with an arbitrary individual node degree distribution 
p(k).

We assume that the individual node degree distribution is Poisson, p(k) = e−�
�
k/k! 

with an average � . In this case, the assortativity, global clustering coefficient, and 
percolation threshold for the projections are given by

and
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respectively. From the probabilities (11) and (12), we obtain a self-consistent equation:

We evaluate the root u in Eq. 42 and calculate Eq. 9, using Eqs. 33 and 36 to obtain the 
assortativity of the FC. Similarly, the assortativity of GC is derived from Eqs.  34 and 
37. In addition, we obtain the global clustering coefficients of FC and GC using Eqs. 26 
and 27, respectively. If we focus only on the networks at the percolation threshold, the 
assortativity and global clustering coefficient of GC can be analyzed. To calculate the 
assortativity at the percolation threshold (41), we determine the generating function 
(31) for the joint probability of the GC near/at the percolation threshold ( u = 1− ǫ and 
ǫ → 0 ). To this end, we expand components of Eq. 31 as Eqs. B5–B7, in the appendix 
B. From Eqs. B5–B7, we obtain the generating functions E(x, y|GC) and G1(x|GC) near 
the percolation threshold as Eqs. B8 and B9, respectively. For projections of z-uniform 
bipartite networks with p(k) = e−�

�
k/k! , we obtain

Similarly, inserting u = 1− ǫ to Eq. 27 and taking ǫ → 0 , we obtain

Fig. 3a and b show the assortativity and global clustering coefficient of GC as a function 
of � for z = 2 , 3, 4, and 5. The lines correspond to the results of Eq. 9, which are evaluated 
using generating function methods. The vertical thin lines represent the positions of the 
percolation thresholds, and the symbols (stars) represent rGCc  obtained from Eq. 43. The 
solid symbols denote the numerical results of the Monte Carlo simulations. To generate 
a bipartite network with p(k) = e−�

�
k/k! and p̃(m) = δmz , we predetermine the number 

(42)u = exp
(

�

(

uz−1 − 1
))

.

(43)rGCc = −
z − 1

1+ 2z(z − 1)
.

(44)CGC
c =

z(z − 2)

z2 − 1
.

Fig. 3  Structural properties of the GCs decomposed from the projections of z-uniform bipartite networks. 
The vertical axis indicates a assortativity and b global clustering coefficients. The horizontal axis denotes 
the average of individual-node degrees distributed in a Poisson p(k) = e−�

�
k/k! . Each vertical line is the 

percolation threshold above which the GC exists and a star on the line represents the corresponding a rGCc  
and b CGC

c  given by Eqs. 43 and 44, respectively. The solid symbols denote numerical results from Monte Carlo 
simulations averaged over  1, 000 configurations. We set the number of edges between two types of nodes as 
W = 12, 000 . The error bars for standard errors on the numerical results are smaller than the data points
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W  of edges between two types of nodes. Next we prepare N (= ⌊W /�⌋) isolated 
individual nodes and M (= ⌊W /z⌋) isolated group nodes with z stubs. We connect each 
stub of group nodes with a randomly chosen individual node and form an edge until all 
stubs are consumed. Because all individual nodes are selected uniformly with probability 
1/N  , the probability that an individual node has k edges is 

p(k) =

(

W

k

)

(1/N )k (1− 1/N )W−k . The distribution p(k) =
(

W
k

)

(1/N )k(1− 1/N )W−k 

coincides with the Poisson distribution p(k) = e−�
�
k/k! in the thermodynamic limit 

( W → ∞ ) under a fixed � = W /N  . We have validated the correspondence of two 
distributions in our simulations with W = 12, 000 (not shown). As shown in Fig. 3, the 
analytical treatments agree with the corresponding simulations. Figure 3a shows that the 
GC is negatively correlated, as expected from Eq. 38. Notably, the result of Erdős–Rényi 
random networks (Tishby et al 2018; Mizutaka and Hasegawa 2018) was recovered for 
z = 2 . In Fig. 3a, the assortativity rGC(≤ 0) increases with z . In general, the correlation 
coefficient is invariant if two variables are multiplied by a constant. A k-degree individual 
node in a bipartite network becomes a node with degree (z − 1)k in the projection. 
Therefore, it is essentially identical for degree correlations in the projections of z
-uniform bipartite networks (z > 2) and for ordinary random graphs without clustering 
( z = 2 ). However, the assortativity for different values of z is discrepant because the 
degrees of the nodes involved in GC depend on k and z . Conversely, the clustering 
coefficient CGC increases with decreases in � , as shown in Fig. 3b. The average � required 
for forming the GC decreases as the clique size increases, thus reducing the number of 
triplets NGC

triplet in the GC.

Projections of double Poisson bipartite networks

Another simple case is the projection from a random bipartite network with 
p(k) = e−�

�
k/k! and p̃(m) = e−�̃

�̃
m/m! . We refer to such bipartite networks as 

double Poisson bipartite networks. The assortativity and clustering coefficients of the 
projections of the double Poisson bipartite networks are given by

and

respectively (Newman and Park 2003). From Eq. 13, the percolation threshold is given by

Equations 11 and 12 can be rewritten as

and

(45)r =
1

1+ ��̃+ �

(46)C =
1

�+ 1
,

(47)��̃ = 1.

(48)u = exp (−�(1− ũ))
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respectively.
Using Eqs.  48 and 49, we determine the following relations between the generating 

functions:

and

where �∗ = ũ� and �̃∗ = u�̃ . The relations indicate that the distributions P(n|FC) , 
Q(n|FC) , and P(n, n′|FC) for projections with � and �̃ are identical to the distributions 
P(n) , Q(n) , and P(n, n′) for them with �∗ and �̃∗ , respectively. Hence, the FC in the super-
critical phase ( ��̃ > 1 ) can be mapped onto the entire network using the different param-
eter sets �∗ and �̃∗ . The mapped network is in the subcritical phase ( �∗�̃∗ < 1 ), because 
it does not possess a GC. This is referred to as a discrete duality relation in studies on 
random graphs (Bollobás et al 2007; Durrett 2007). We can also observe the same rela-
tion in the projections of z-uniform bipartite networks with a Poisson individual degree 
distribution, for example, E(x, y|FC) = E(x, y; ũ�, z) . When the projections of random 
bipartite networks satisfy the discrete duality relation, the FC of the projections is posi-
tively correlated because Eq. 9 is positive.

We determine the roots u and ũ in Eqs. 48 and 49 for the given parameters � and �̃ 
and Eq. 9 for the FC and GC to obtain the assortativity of the FC and GC. Similar to the 
derivation of Eq. 43, we obtain the assortativity rGCc  of GC at the percolation threshold 
( ��̃ = 1 ) as

where the numerator denotes an increasing function of �̃ . Specifically, rGCc  becomes 
negative when �̃ � 0.393 . We also calculate the global clustering coefficients for FC and 
GC using Eqs. 26 and 27, respectively. At the percolation threshold, the global clustering 
coefficient of the GC is

Figure  4 shows the � dependence of the assortativity (a) and the global clustering 
coefficient (b) for the entire network (dashed lines) and GC (solid lines) of the 
projections of double Poisson bipartite networks. The lines represent the results 
obtained from the generating functions. The symbols represent the results of Monte 
Carlo simulations. In our Monte Carlo simulations, to generate double Poisson bipartite 

(49)ũ = exp
(

−�̃(1− u)
)

,

(50)G0(x|FC ) = G0

(

x; �∗, �̃∗
)

,

(51)G1(x|FC ) = G1

(

x; �∗, �̃∗
)

,

(52)E
(

x, y|FC
)

= E
(

x, y; �∗, �̃∗
)

,

(53)rGCc =
�̃
3 + �̃

2 + 2�̃− 1

3�̃3 + 11�̃2 + 17�̃+ 5
,

(54)CGC
c (�, �̃) =

�̃
2 + 3�̃

�̃2 + 5�̃+ 3
.
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networks with � and �̃ , first, we predetermine the number of edges W  between the two 
types of nodes. Second, we prepare N (= ⌊W /�⌋) isolated individual nodes and 
M (= ⌊W /�̃⌋) isolated group nodes. Next, we form an edge between a randomly chosen 
individual node and a randomly chosen group node repeatedly until the number of 
edges reaches the predetermined W  . All individual and group nodes are selected 
uniformly with probabilities 1/N  and 1/M per a process forming an edge, respectively. 
Thus, the individual and group degree node distributions p(k) and p̃(m) are given  

as p(k) =

(

W
k

)

(1/N )k(1− 1/N )W−k and p̃(m) =

(

W
k

)

(1/M)k(1− 1/M)W−k , 

respectively. In our simulations, we have confirmed that two binomial distributions, p(k) 
and p̃(m) , approximate Poisson distributions with � = W /N  and �̃ = W /M , respectively 
(not shown). As shown in Fig. 4, the analytical treatments agree with the corresponding 
simulations. The assortativity rGC and the clustering coefficient CGC decrease with �̃ near 
the percolation threshold. As �̃ decreases, the size and number of cliques in the network 
decrease, implying that the network structure of the projections approaches a local tree-
like structure. Therefore, GC tends to lose its positive correlation near the percolation 
threshold.

Next, we plot the color maps of assortativity analytically computed for the entire net-
work, FC, and GC in (�, �̃) plane in Fig. 5. The dashed line in panel (a) represents the per-
colation threshold, given by Eq. 47. The black region in panels (b) and (c) is subcritical, 
in which GC does not exist. We confirm from panel (a) that the assortativity of the entire 
network is a decreasing function of � and �̃ , as expected from Eq.  45. A strong posi-
tive correlation induced by isolated cliques is observed in the subcritical phase (region 
below the dashed line). Similarly, a strong positive correlation is also observed in panel 
(b), which is consistent with the discrete duality relation (Eqs. 50–52). Indeed, the value 
of assortativity at a point in panel (b) is the same as at a point determined by the discrete 
duality relation in panel (a). For instance, the assortativity value of 0.821 is observed at 
the point ( �, �̃ ) = (2.00, 3.10) in panel (b) and at the point (0.147, 0.485) in panel (a). A 

Fig. 4  Structural properties of projections of double Poisson bipartite networks. The lines represent a 
assortativity and b the global clustering coefficient calculated by the generating function method for the 
whole network (dashed lines) and GC (solid lines). Each vertical line is the percolation threshold and a star on 
the line represents the corresponding rGCc  and CGC

c  given by Eqs. 53 and 54, respectively. The solid symbols 
represent the numerical results of Monte Carlo simulations averaged over 1, 000 configurations of the GC, 
which is decomposed from the whole network with W = 12, 000 . The error bars for standard errors on the 
numerical results are smaller than the data points
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negative correlation can be only seen in panel (b). The inset in (c) shows that rGC near 
the percolation threshold can be negative with a small �̃ (for example, rGC ≈ −0.003 at 
the point (5.00, 0.30), and see also Eq. 53).

Model connecting the two examples

The two examples in the previous sections exhibit different characteristics from the 
perspective of assortativity. Because we consider the same p(k) (Poisson distribution) 
for both examples in Figs.  3 and 5, the difference in degree correlations arises from 
p̃(m) , which corresponds to the clique size distribution in the projections. To confirm 
the effect of the fluctuation in clique sizes, we consider the following bipartite network 
model, which connects z-uniform bipartite networks and double Poisson bipartite ones 
continuously. First, we prepare a bipartite network with W  edges, whose degree distribu-
tions obey p(k) = e−�

�
k/k! and p̃(m) = δmz . Next, a randomly selected edge is removed 

from the group-node side and connected to a randomly selected group node. This rand-
omization is repeated W ′ times. The generated bipartite networks are identical to z-uni-
form bipartite networks (double Poisson bipartite networks) if the fraction p = W ′/W  
of the replaced edges is zero (one). The variance of p̃(m) is given as σ 2

m = pz(2− p) when 
the number of group nodes is sufficiently large (see Appendix C). Thus, the fraction p 
tunes the clique size fluctuation. Figure 6 shows the assortativity for z = 5 as a function 
of the average � of p(k) for projections with different values of p . The solid and dashed 
lines represent the results for the GC and entire network, respectively. For p ≤ 0.05 , 
we observe that the assortativity of GC decreases as � decreases and becomes nega-
tive, whereas for p ≥ 0.1 , the assortativity of GC never becomes negative even though � 
approaches the percolation threshold. The inset of Fig. 6 presents the results for z = 2 . 
For p = 0 , the projections coincide with ordinary random graphs that must exhibit the 
strongest negative degree correlation in the present setting. Even in this case, GC does 
not show a negative correlation for p � 0.1 . Thus, a small fluctuation (small p ) makes 
the degree correlation of GC positive, which implies that the projections of most bipar-
tite networks display a positive degree correlation, including their GCs.

Fig. 5  Assortativities of the whole network (a), FC (b), and GC (c) of projection of double Poisson bipartite 
networks. The black dashed line in (a) represents the percolation threshold above which there exists the GCs. 
The area filled with black in (b) and (c) denotes subcritical. The hatched area in the inset of (c) is the region in 
which the assortativity of the GC is negative
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Summary & discussion
In this study, we have examined the statistical properties of the projections of random 
bipartite networks characterized by the individual node degree distribution p(k) and 
the group node degree distribution p̃(m) . The projections can be decomposed into two 
subgraphs: a giant component (GC) and a subgraph composed of all finite components 
(FC). We have presented a method of using generating functions for evaluating the 
structural properties of both subgraphs and derived a general expression for the assorta-
tivity and global clustering coefficient of GC and FC. We have treated two examples of z
-uniform bipartite networks, and double Poisson bipartite networks. We have validated 
the derived equations using numerical computations and examined the structural prop-
erties of the subgraphs.

Our results demonstrate that assortativity varies based on the subgraph and degree 
distributions, whereas nonzero clustering coefficients appear in both GC and FC of the 
two examples, with the exception of the 2-uniform bipartite network. The assortativity 
values of the networks are summarized in Table 1. For a z-uniform bipartite network, 
we have analytically demonstrated that projection and FC have no degree correlation. 
Simultaneously, the GC is negatively correlated irrespective of the value of z and the dis-
tribution p(k) unless the entire network corresponds to the GC (Eq. 38) for a general 
case and Fig. 3a for a concrete example). For the double Poisson bipartite network, the 

Fig. 6  Comparison of assortativity of the GC (solid lines) and whole network (dashed lines) for z = 5 . The 
inset is for the GC of the projection for z = 2

Table 1  Assortativity of projections in the thermodynamic limit

Bipartite network p(k)     p̃(m)     Whole FC GC

z-uniform Arbitrary δmz 0 0 ≤ 0

Double Poisson Poisson Poisson > 0 > 0 � 0
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projection and FC display strong positive correlations (Fig. 5a and b). The GC shows a 
weak positive correlation over a wide range of average degrees � and �̃ , and a weak nega-
tive correlation in a narrow region (Fig. 5c). In the region in which a negative correlation 
is observed, �̃ is small and most of the cliques involved in the GC are small, including 
a simple edge, resulting in a tree-like structure. In Section  Model connecting the two 
examples, we have investigated the relation between the sign of assortativity in the GC 
and the fluctuation in the degrees of the group nodes. We have found that a small fluc-
tuation results in the degree correlation of GC being positive.

In this study, we have found the discrete duality relation (Eqs. 50–52) claiming that the FC 
in the supercritical phase can be mapped onto the projection in the subcritical phase, that 
is they have the same structure. Thus, given that the assortativity r for the entire network 
is nonnegative (Eq. 10), the assortativity rFC is also nonnegative. Whether this holds true 
for the general case is left for future studies. Clarifying this is essential for understanding 
bipartite networks and their projections.

Finally, we discuss the implications of our findings. The projections of random bipartite 
networks can explain the high assortativity of empirical social networks (Newman and 
Park 2003), whereas assortativity in the projections of empirical bipartite networks can 
be positive or negative (Fisher et al 2017). In the present study, we have demonstrated 
that the GCs of projections often show positive degree correlations but can also be 
negative when the fluctuation of the degrees of group nodes is slight. It would be helpful 
to analyze the degree distribution of group nodes of empirical data that show negative 
degree correlations, considering that empirical data are components, including a kind 
of GC obtained by sampling from the subject of interest. A random bipartite network 
can model data if the group-node degrees are not widely distributed. If a negative degree 
correlation is observed, although the degrees of the group nodes are widely distributed, 
this suggests a strong correlation in the bipartite structure. In the future, it will be 
necessary to characterize nontrivial structures that the random bipartite network model 
cannot capture if such data are observed.

Appendix A Assortativity for projections
Equation 10 can be rewritten as:

where βn = znzn+1 − z2n+1 + znzn+2 , and similarly β̃n = z̃nz̃n+1 − z̃2n+1 + z̃nz̃n+2 . The 
sum of the terms in βn is

(A1)
r =

β̃2

β̃2 +
z2 z̃

2
2

z1 z̃
2
1

(

β̃1 +
z̃22
z1z2

β1

) ,

(A2)zn1zn2 =
∑

k

k(k − 1) · · · (k − n1 + 1)p(k)
∑

k

k(k − 1) · · · (k − n2 + 1)p(k)

(A3)=
∑

k1,k2

p(k1)p(k2)k1!k2!

(k1 − n1)!(k2 − n2)!
,
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and thus,

Here, we utilize 
∑

k1,k2
f (k1)f (k2)(k1 − k2) = 0 and 

∑

k1,k2
f (k1)f (k2)k

2

1
=

∑

k1,k2

f (k1)f (k2)k
2

2
 for an arbitrary function f (x) . We also verified that β̃n ≥ 0 . Because all 

terms in the numerator and denominator in Eq. A1 are non-negative, the assortativity 
of the projection of a random bipartite network is always non-negative. If a clique-size 
fluctuation exists, the value of Eq. 10 is always positive, r > 0.

Appendix B Derivation of rGCc

To derive the assortativity rGCc  of the GC at the percolation threshold, first we explore 
the generating function E(x, y|GC) (Eq. 31) of the joint probability near the percolation 
threshold ( u = 1− ǫ and ũ = 1− ǫ̃ ). In the situation, the function g1(ux) , which is a 
component of Eq. 31, is expanded by the order O(ǫ) as

Similarly, we have

Using Eq. B5, we expand f1(g1(ux)) as

With noting that the leading order is O(ǫ) in the numerator and the denominator 
of Eq.  31 inserted above results (B5)–(B7), we obtain E(x, y|GC) near the percolation 
threshold as

(A4)

βn =
∑

k1,k2

p(k1)p(k2)k1!k2!

(k1 − n)!(k2 − n)!
[(k2 − n)− (k1 − n)(k2 − n)+ (k2 − n)(k2 − n− 1)]

=
∑

k1,k2

p(k1)p(k2)k1!k2!

(k1 − n)!(k2 − n)!
(k2 − k1)(k2 − n)

=
1

2

∑

k1,k2

p(k1)p(k2)k1!k2!

(k1 − n)!(k2 − n)!
(k2 − k1)

2 ≥ 0.

(B5)
g1(ux) =

1

z̃1

∑

m

mp̃(m)xm−1(1− ǫ)m−1

≈ g1(x)− ǫxg ′1(x).

(B6)
g2(uxy) =

1

z̃2

∑

m

mp̃(m)(xy)m−2(1− ǫ)m−2

≈ g2(xy)− ǫxyg ′2(xy).

(B7)

f1(g1(ux)) ≈ f1
(

g1(x)− ǫxg ′1(x)
)

=
1

z1

∑

k

kp(k)g1(x)
k−1

(

1− ǫx
g ′1(x)

g1(x)

)k−1

≈ f1(g1(x))− ǫxf ′1(g1(x))g
′
1(x).

(B8)
E(x, y|GC) =

(

xyg ′2(xy)f1(g1(x))f1(g1(y))+ xg2(xy)f
′
1(g1(x))g

′
1(x)f1(g1(y))

+yg2(xy)f1(g1(x))f
′
1(g1(y))g

′
1(y)

)

/
(

z̃3/z̃2 + 2
)

+ O(ǫ).
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Inserting y = 1 into Eq. B8, we have G1(x|GC) near the percolation threshold as

Taking ǫ → 0 , we can obtain the generating functions E(x, y|GC) and G1(x|GC) at the 
percolation threshold. Choosing the individual and group node degree distributions, 
which determine the functional forms of corresponding generating functions, we 
can obtain the assortativity rGCc  of the GC at the percolation threshold from Eq. 9 for 
a concrete model such as Eqs.  43 and 53. Similarly, we can calculate the clustering 
coefficient CGC

c  of the GC at the percolation threshold.

Appendix C Variance of clique size fluctuation
We derived the variance of the group node degrees using the generating function 
method. The probability that m edges are connected to a group node after random 
trimming of W ′ edges is

The probability that m edges will be added to a group node is

where q = 1/M . The generating functions of the probabilities are

The degree distribution of group nodes p̃(m) after trimming and adding W ′ edges can be 
represented as a convolution of Ptrim(m) and Padd(m):

The generating function of a convolution is the product of the generating functions of 
the indices of the convolution, and thus, the generating function of p̃(m) is:

The variance of the group-node degrees is

This value is an increasing function of the edge randomization probability p.

(B9)
G1(x|GC) =

(

xg ′2(x)f1(g1(x))+ xg2(x)f
′
1(g1(x))g

′
1(x)

+z2z̃2g2(x)f1(g1(x))/z1z̃1
)

/
(

z̃3/z̃2 + 2
)

+ O(ǫ).

(C10)Ptrim(m) =
( z

m

)

pz−m(1− p)m.

(C11)Padd(m) =

(

W ′

m

)

qm(1− q)W
′−m,

(C12)Gtrim(x) = (p+ (1− p)x)z ,

(C13)Gadd(x) = (qx + 1− q)W
′

.

(C14)p̃(m) =
∑

m′

Ptrim(m
′)Padd(m−m′).

(C15)g0(x) = (p+ (1− p)x)z(qx + 1− q)W
′

.

(C16)σ 2
m = pz(2− p− q).
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