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Abstract 

Human mobility describes physical patterns of movement of people within a spatial 
system. Many of these patterns, including daily commuting, are cyclic and quantifiable. 
These patterns capture physical phenomena tied to processes studied in urban plan-
ning, epidemiology, and other social, behavioral, and economic sciences. This paper 
advances human mobility research by proposing a statistical method for identifying 
locations that individual move to and through at a rate proportionally higher than other 
locations, using commuting data for the country of New Zealand as a case study. We 
term these locations mobility loci and they capture a global property of communities 
in which people commute. The method makes use of a directed-graph representa-
tion where vertices correspond to locations, and traffic between locations correspond 
to edge weights. Following a normalization, the graph can be regarded as a Markov 
chain whose stationary distribution can be calculated. The proposed permutation 
procedure is then applied to determine which stationary distribution values are larger 
than what would be expected, given the structure of the directed graph and traffic 
between locations. The results of this method are evaluated, including a comparison 
to what is already known about commuting patterns in the area as well as a compari-
son with similar features.

Keywords: Mobility loci, Directed Graph Clustering, Markov transition matrix

Introduction and background
Patterns of human mobility describe the movement of individuals or the aggregate 
movement of groups of individuals over time. One class of aggregate movement is com-
muting patterns. That is, the movement of individuals from their home locations to 
work (assumed to be most often in the morning), as well as their movement from work 
back home (assumed to be most often in the evening). For a given area and for regular 
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working days (weekdays, not holidays) these patterns are periodic, they can be quanti-
fied, and analyses can be used to understand them.

There is a rich history of research on understanding human mobility patterns from 
various disciplines including geography, sociology, anthropology, physics, and demog-
raphy. Barbosa et al. (2018) provide an overview of some earlier approaches as well as 
recent advances. Research in this domain was reinvigorated in the early 21st century 
with the increased availability of geo-referenced data at the same time when “big data” 
was emerging as it’s own area of study. A popular source of data for human mobility 
modeling was based on cell phone telemetry data. Gonzalez et al. (2008) were among the 
first to make use of individual-level cellular phone data to show that individuals move 
in regular spatio-temporal cycles that can be modeled. Song et al. (2010) provided both 
models for human mobility using a Lévy process as well as a characterization for the 
model, showing a high degree of predictability in the daily patterns of individuals. This 
development continued with Alessandretti et al. (2020) showing regional, spatial areas 
in which movement is contained as well as Yuan and Raubal (2016) who explore the dis-
tribution of “human activity spaces” and demographic differences in these distributions. 
More recent work leverages social media data to capture collective movement and pre-
dict aggregate movement Abbasi and Alesheikh (2018).

While development of methods for understanding human mobility is interesting on 
its own, it is also fundamental to areas of research including social science, epidemiol-
ogy, and infrastructure planning. Epidemiology in particular has recently made use of 
mobility methods with Gilani et al. (2020) using mobility to both validate existing pollu-
tion exposure models as well as identify demographics for which exposure estimates are 
heavily biased – a question previously posed in Park and Kwan (2017). Other examples, 
like Alessandretti (2022), Bonaccorsi et al. (2020), Kane and Gilani (2021), Kraemer et al. 
(2020), highlight the need to incorporate mobility methods into those of existing out-
break models to better evaluate the effect of interventions in the COVID-19 pandemic.

One of the biggest barriers to mobility research has traditionally been acquiring high-
quality data. Most mobility data are derived from cell-phone or cell-phone-application 
data collected by telecommunications companies or large technology companies. Tel-
ecommunication data are often proprietary and difficult to obtain. Technology company 
location data are often purchasable, but are generally biased toward users of the applica-
tion or owners of devices making the generality of analyses based on these data to the 
larger public difficult to assess.

Human mobility has been studied using various quantitative approaches including the 
use of graphs or networks where vertices correspond to spatial regions and edges cap-
ture some aspect of movement between those regions (e.g. Hossmann et al. 2011; Ruan 
et al. 2019; Chen et al. 2022). These graphs can be referred to as mobility networks and 
are distinguished from other types of networks (transportation networks, infrastructure 
networks, etc.) in that they capture human movement regardless of physical infrastruc-
ture facilitating transportation, including roads (Barthélemy 2011). Mobility networks 
are slightly more general and, because the method presented will work for either, we will 
prefer the more general term.

Methods for analyzing mobility networks focusing on properties of vertices allows 
us to determine various characteristics of the corresponding spatial locations. 
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Vertex properties can be “local” meaning that they can be derived from a vertex and 
its neighborhood (a subgraph including the vertex). These properties include in-degree, 
out-degree, whether or not a vertex is a sink, whether or not it is a source, etc. Ver-
tex properties can also be “global” meaning the property is not local. These properties 
include eigenvector centrality, graph radius, graph diameter, whether or not a vertex is a 
central point, etc.

In this paper, we propose a new global vertex characteristic of a directed graph iden-
tifying “mobility loci” or simply loci, which are vertices that act as “hubs” of movement. 
Roughly, vertices designated as loci are those that attract movement to and through them 
in greater proportion compared to other vertices. A more precise definition is provided 
in Section “A permutation test for loci”. These loci are identified by accounting for the 
global properties of the graph in which they reside. This is a statistical property found 
by estimating a Markov transition matrix from the graph, calculating the stationary dis-
tribution of the resulting Markov chain, and then testing to see which vertices have sta-
tionary distribution values greater than expected under a null distribution sampled from 
a permutation procedure.

To showcase this procedure, we consider an application to aggregate commuting pat-
terns for the country of New Zealand based on census data. These data have the advan-
tage that they are relatively unbiased with respect to the populations being sampled 
(commuters). Spatial groups are defined by Statistical Area 2 (SA2), which partitions the 
country into areas that are comparable in terms of population and other factors. These 
data are publicly available making them accessible both through the supplemental mate-
rials provided in this paper as well as through the Stats NZ Tatauranga Aotearoa, New 
Zealand’s official government data agency. The process for curating these data and build-
ing the mobility graphs could be repeated for other countries providing similar census 
data.

This paper proceeds by providing a more complete description of the New Zea-
land commuting data, including a description of how routing data were derived, and 
a brief visual exploration. Subsequent sections interleave statistical and mathemati-
cal concepts with their application to these data and culminate in the procedure of 
calculating mobility loci alongside their identification for the country of New Zea-
land. The intention for this format is to both construct a statistical procedure as well 
as provide insights to better understand commuting patterns in the country. Section 
“New Zealand commuting data” provides an overview of the data, a description of 
the preprocessing required to go from raw census data to directed mobility graphs, 
and an overview of the spatial properties of the resulting mobility graph. Section “The 
directed mobility graph” characterizes the directed mobility graph and constructs the 
optimization for finding the stationary distribution. We note that the calculation of 
stationary distribution is not new and can be found in various sources, mostly online 
or in the waypoint literature (Navidi and Camp 2004; Hyytia et al. 2006; Mitsche et al. 
2014). However, for completeness, we have followed Chang (2007) before providing a 
formal construction. Section “A permutation test for loci” proposes a test for finding 
loci, those elements of the stationary distribution that are larger than what is expected 
when keeping the graph structure fixed and permuting on traffic between SA2 areas, 
as well as a procedure for finding groups of loci while addressing multiple-testing 
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challenges. Section “Stationary distribution and loci as global graphproperties” casts 
the stationary distribution and loci as global vertex properties. Because the notion of 
mobility loci is a novel vertex property, there is not a direct comparison with other 
procedures to evaluate the results. However, we do provide analyses quantifying 
how much information is encoded in these features compared to local graph features 
including vertex degree and others explained later. Section “Conclusions” includes 
potential applications for this work, which fit readily into the spatial research frame-
work as well as other potential application areas.

New Zealand commuting data
Data overview

The New Zealand 2018 Census includes, among other questions, information about 
the main means of travel to work. Based on the answers to this question and respec-
tive residence/workplace addresses the Stats NZ Tatauranga Aotearoa, New Zealand’s 
official data agency, publishes a commuter view dataset (Stats 2020) which aggregates 
the number of usually resident population aged 15 years and over by main means of 
travel to work. The spatial aggregation is done by “statistical areas” (Stats 2017) which 
is a spatial partition of the entire country with focus on retaining comparably con-
stant population per partition in urban and suburban areas. The commuter dataset 
uses partitions induced by Statistical Area 2 (SA2) polygons (represented as shape 
files) which typically have population of 2000–4000 residents in urban areas.

The data use fixed random rounding to protect confidentiality. Counts of less than 6 
are suppressed according to 2018 confidentiality rules (Stats 2019). For the purpose of 
this analysis we will ignore suppressed values which may lead to a slight under-count 
in sparsely populated rural areas, but does not affect urban or sub-urban areas. Given 
our additive treatment of the individual counts we expect the rounding to not have a 
significant impact given the magnitude of the resulting values.

The census data, as provided, include SA2 of usual residence as well as those of the 
workplace. They do not include the actual routes taken by individuals on particular 
days or traffic volume on individual roads, nor the actual time of day that individuals 
commute to and from work. We assume that the majority of the commuting to work 
is done during morning hours and commuting to home is done in the late-afternoon/
evening hours. Consider the downtown Auckland region, shown in Fig.  1. Figure  2 
shows (a) the spatial distribution of commuter residential locations while (b) shows 
the spatial distribution of commuter work locations, with red indicating the high-
est counts and white denoting the lowest. These two maps show that residences are 
evenly dispersed across the greater Auckland area while work locations are relatively 
concentrated. They also reveal that the spatial distribution for residential and work 
locations are fairly inverse of one another - high density residential areas have lower 
work location densities. The yellow-white colored cluster of SA2s on the water in the 
center-west of Fig. 2a (with small areas) constitutes Auckland’s Central Business Dis-
trict, New Zealand’s leading financial hub and the centre of the country’s economy. 
The red SA2 in Fig. 2b is part of the Penrose district, an industrial suburb. Unsurpris-
ingly, there are relatively few residents in these commercial areas.
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Data preprocessing: constructing directed mobility graphs

The goal of the preprocessing step is twofold. The first is to determine the most likely 
route taken by commuters from their residential SA2 area to their work location. We 
note that on a given day the route taken to work may vary based on many factors 
including, construction, congestion, etc. and that many residents may not take the 
most direct or shortest route for any number of reasons such as carpooling, dropping 
children off at school, etc. However, we assume that the procedure used is sufficient 
to capture commuting paths for most of the residents enough of the time for the anal-
ysis to be valid.

In order to model actual movement through space, we focus on the commutes. The 
GraphHopper routing engine (GraphHopper 2022) was used to infer the most likely 
route from home to work, and road topology was sourced from Open Street Map 
(OpenStreetMap 2022). The resulting route is represented as a sequence of line seg-
ments of the most likely roads taken to work/home SA2 area, which is then used to infer 
the sequence of SA2s along the way using a spatial join. One additional complication is 
the fact that SA2s often use roads as boundaries so small deviations may cause apparent 
frequent movement between adjacent SA2s along the road. To counteract that effect we 
use 10 m buffers around borders and will consider a transition from one SA2 to another 
only if the route has fully left the SA2 including the extra margin. Sequences can be 
reversed for work-to-home commutes and the same approach can be used for different 
modes of transport (public transit, cycling, etc.).

The second goal of the preprocessing step is to aggregate the individual-level commut-
ing sequences into a directed graph. SA2 areas are represented as vertices in the graph. 
Any movement from one SA2 to another constitutes a directed edge. The weight of the 

Fig. 1 The downtown Auckland NZ area
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Fig. 2 a Spatial distribution of commuter residential locations and b Spatial distribution of commuter work 
locations in downtown Auckland
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edge is the count of transitions between pairs of SA2s. Note that by design, edges can 
only lead from one SA2 to its neighboring SA2s.

The subset of the resulting graph corresponding to the region around central Auck-
land is illustrated in Fig. 3. The graph represents the movement from home to work, typ-
ically corresponding to the home-to-work commute. Each arrow represents the directed 
movement from one SA2 to another. In many cases there is a movement in both direc-
tions for a pair of areas, where some people leave one area and others enter that area. 
In order to visually distinguish the magnitudes of the flows, we define a “major” direc-
tion which, for a pair of vertices, is the edge with the higher weight. In Fig. 3 we color 
the major direction edges in red and correspondingly the opposite minor direction (if it 
exists) in blue.

The total width of the red arrows shows us the general major movement between 
regions. Movements that are counter to the major direction are then seen in blue. We 
can see an entire series of such counter-movement in the center of the plot, corre-
sponding to the main artery in the region: State Highway 1. The presence of those large 
counter-movements should be noted because it contradicts a common assumption that 
workers move from suburbs into the city for work in a “spoke-and-hub” fashion. This is 
not supported by the visualization. There is a significant north–south flow in both direc-
tions, while east–west flows dominate in the direction towards the city.

Figure 4 shows the distribution of the in-flows with red indicating the highest counts 
and white denoting the lowest. In-flows count all individuals who enter an SA2, 

Fig. 3 Commuter movement between SA2 areas at commute time from home to work in the central 
Auckland region. Edges are drawn from the area centroid. The thickness of the directed edges is proportional 
to the square root of the number of people moving from one area to another, while the arrows indicate the 
direction. The major direction of movement has been drawn in red and minor in blue, therefore edges with 
significant blue thickness have relatively high counter-movement against the major direction



Page 8 of 24Kane et al. Applied Network Science            (2024) 9:57 

regardless of whether they stay there or subsequently leave. The figure reveals that, as 
expected, contiguous areas with high traffic are associated with major highway corridors.

The directed mobility graph
The result of the preprocessing step on the home-to-work commute data is the con-
struction of a directed mobility graph that encodes the SA2s as vertices and the aggre-
gate movement between adjacent spatial areas as edge weights in a directed graph. 
This can be thought of as an extension to the origin–destination matrix described in 
de Dios Ortúzar and Willumsen (2002), containing not only start and endpoints but the 
intermediate transitions as well. We then partition the directed graph into strong com-
ponents, i.e., sets of vertices that can be reached from any other vertex in the compo-
nent. Figure 5 shows these strong components. The largest one, in red (component 1), 
contains 1426 SA2 areas covering most of the North Island and has the largest popula-
tion, and will be the focus for the rest of this analysis.

Histograms of the edge weights in the largest component appear in Fig. 6. The weights 
appear to decrease exponentially, indicating few transitions between most adjacent SA2 
areas, except for a few. This is likely because a large portion of the SA2 areas correspond 
to rural areas, where there are fewer transitions in general as well as those SA2 transi-
tions in more suburban and urban areas with populations who are not commuting to 
high population-density areas, like city centers.

Figure 7a shows histograms of the in- and out-degrees vertices in the largest compo-
nent. These two distributions are relatively symmetric with the out-degree histogram 
having a slightly larger mode and the in-degree histogram having a slightly heavier tail. 

Fig. 4 Distribution of the traffic in-flows, the count of all individuals who enter an SA2, regardless of whether 
they stay there or subsequently leave
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Since these are taken from a strong component and each vertex must have at least one 
in-edge and one out-edge we may conclude that, on average, vertices incoming and out-
going traffic is balanced. Figure 7b shows a histogram of the log of the edge-weighted 
in- and out-degrees. The out-degree distribution is sightly more concentrated than that 
of the in-degree. This is likely an artifact of the difference between rural/suburban and 
urban SA2 areas, where in rural/suburban areas, a greater proportion of commuters 
travel in the direction of more urban SA2 areas and have a larger weighted out-degree. 
Urban areas tend to have more symmetric weighted in- and out-degree values.

Directed mobility graph to its stationary distribution

The directed mobility graph with n vertices can be represented as a matrix, M ∈ R
n×n , 

quantifying the aggregate movement between adjacent areas with the rows correspond-
ing to the “from” (origin) location, columns corresponding to the “to” (destination) 
locations, and elements of the matrix corresponding to the number of people moving 
between respective locations. The sum of a column captures the total movement of peo-
ple to a location.

Let P ∈ R
n×n be the matrix that results from normalizing over the rows of the mobility 

graph and let Pi,· denote the ith row of P.

Fig. 5 Strong components in the New Zealand commuter mobility graph for the home-to-work commute
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Fig. 6 The histogram of in- and out-degree of the largest strong component of the mobility graph

Fig. 7 a The histogram of in- and out-degrees for home-to-work commutes of the largest strong 
component. b The histogram of log of edge-weighted in- and out-degrees for home-to-work commutes of 
the largest strong component
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The scaling provides a mobility measure relative to individuals, rather than total move-
ment between SA2s, allowing us to directly compare movement patterns between areas 
with different population densities. It is also equivalent to estimating the transition 
probabilities between SA2 areas using the maximum likelihood estimator, under the 
first-order Markov assumptions. This matrix will be referred to as the Probability Transi-
tion Matrix (PTM).

Figure 8 shows the histogram of the non-zero transition probabilities for the largest 
strong component in the New Zealand data for both the home-to-work commute as 
well as work-to-home. There are several things to note. First, the home-to-work mobility 
matrix is the transpose of the work-to-home mobility matrix. However, the same rela-
tionship does not hold for the probability transition matrices since they are normalized 
by the total movement by row. Second, for the home-to-work histogram counts drop off 
roughly exponentially. This may be because a large number of people live in suburban 
areas, outside of the city. The first few transitions for these commuters can vary drasti-
cally, depending on their destination, corresponding to low-probability transitions. As 
they transition to secondary or primary roads, “traffic flows” become more regular with 
less variation on commuting patterns, corresponding to higher transition probabilities 
on fewer roads. Third, there is a spike at transitions near a value of one. This likely cor-
responds to traffic along highways outside of urban areas where individuals are commut-
ing toward urban areas.

Calculating the stationary distribution

The PTM is an object allowing us to create a procedure for evaluating the aggregate 
movement of individuals in between SA2s as a Markov Chain. To quantify mobility with 
these data, we propose a feature based on the stationary distribution of SA2 areas, which 
is defined as the probability distribution

Pi,· = Mi,·

/

n
∑

j=1

Mi,j

Fig. 8 The histogram of values of the transition probabilities for “Home to work” and “Work to home” 
commutes
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where P is the PTM. In order to be able to calculate the stationary distribution, and for 
it to be unique, two conditions on P must be satisfied (Chang 2007). First, the matrix P 
must be irreducible, meaning that there is a path from any area to any other area in the 
mobility graph. Second, P must be aperiodic, meaning that the greatest common divisor 
(gcd) of {m : (Pm)i,i > 0} for each i ∈ {1, ..., n}.

The first is satisfied by conditioning on strong components in the mobility graph, 
which ensures that there is a path from each vertex to any other vertex in the strong 
component. The second can be checked directly by examining the diagonals of Pk for 
1 ≤ k ≤ n since the strong component condition guarantees that the path length from 
a vertex to itself has length less than or equal to the number of vertices in the strong 
component. The gcd can then be calculated for each of the diagonal elements of Pk . If 
the gcd of any of those values is not 1, then the PTM is periodic and convergence is not 
guaranteed.

When these two conditions are met, we can solve for π directly by first rearranging the 
terms

for the identity matrix I ∈ R
n×n . We now have a linear system of n equations of n vari-

ables. To constrain π so that its sum is one, we add the following row to the system.

where the bracket signifies the matrix resulting from adding new rows (1 to the left side 
and the vector π on the right) to the system of equations, plus the constraints that the 
value of π must be at least zero and at most one, define a constrained, linear-optimiza-
tion problem whose solution can be found via standard methods.

There are two interpretations for the stationary distribution in this setting. The first, 
standard statistical interpretation is that if an individual were to start at a random SA2 
and proceed to an adjacent SA2 according to the probabilities in the PTM, then the sta-
tionary distribution is the proportion of time the individual visits each SA2 area as time 
goes to infinity. Another related interpretation is that the chain is a random dynami-
cal system, with discrete time and discrete state space. The stationary distribution π 
is a fixed-point attractor since it is mapped to itself by the PTM as described in Eq. 1. 
Roughly, we can interpret SA2s with relatively large stationary distribution values as 
areas individuals tend to go to and through, regardless of their starting point.

A permutation test for loci
The attractor, as defined in this paper, is π , the vector of stationary distribution values 
with index corresponding to SA2 area. The attractor’s values depend on two properties 
of the mobility graph. First is the graph structure, which is characterized by the connec-
tivity between vertices, encoded with the edges. Second is the individual-level preference 

(1)π = Pπ ,

0 = Pπ − π

0 = Pπ − Iπ

0 = (P − I)π

[

0
1

]

=

[

(P − I)π
π

]
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for direction, which is encoded by the edge weights as transition probabilities. The sta-
tionary distribution of SA2’s show that some elements have values much larger than oth-
ers. However, these large observed values might be unremarkable given the structure of 
the graph. Based on this observation a natural question to ask is, “which attractor ele-
ments have large values that are greater than expected, given the structure of the mobility 
graph for New Zealand’s largest North Island strong component?” Posing the question in 
this way allows us to identify those SA2 areas that individuals tend to go to and through, 
independent of the overall population of the area or the total number of people going 
to or through an area, at a rate that is unusually higher than expected. We term such an 
SA2 area a locus.

Samples from the null distribution of attractors can be derived by randomly permuting 
the edge weights of the mobility graph, and then calculating the stationary distribution. 
Fixing the structure of the graph tailors the distribution to that of the mobility graph, 
while permuting over edge weights fixes the total movement captured by the mobility 
graph. We will refer to the null attractor distribution as � . Let �i and πi denote the ith 
element of � and π respectively, and let α be a suitable cutoff. Then, we formally define 
the element πi as a locus if

Figure 9 shows the stationary distribution, in black, of the “home to work” and “work 
to home” commmutes on the original and log scale along with the quantile values of � , 
in red, when α = 5 %. The values are in descending order of the “home to work” commute 
stationary distribution. The largest stationary distribution element start with a value of 
0.133 and drops off quickly to values close to zero. The corresponding quantile values 
are relatively small meaning that it is unlikely that larger stationary distribution values 
would occur under � . The graphs of the work-to-home commutes are quite different. 
The stationary distribution values are all very close to 0.000701, which is the expected 
value of the probability mass function of the uniform distribution on the counting num-
bers from one to 1426 (the number of vertices in the strong component). A total of 87 of 
the stationary distribution values fall below the 5% threshold.

Figure 10 shows the individual estimates of the tail-probabilities (p-values) for home-
to-work and work-to-home commutes. Together, the plots suggest that home-to-work 
commutes see the concentration of individuals from their home locations to areas with 
higher than expected stationary distribution values (loci), while the work-to-home com-
mute does not experience this same phenomenon and behaves more closely to uniform 
mixing over the strong component.

A procedure for identifying high‑probability SA2 areas for home‑to‑work commutes

The previous section essentially amounts to a statistical test where elements of π 
are used to calculate the tail probability (p-value) under the null distribution, which 
was sampled by a permutation procedure. While this procedure is effective for test-
ing individual elements of π , identifying sets of loci brings with it the multiple test-
ing challenge. This challenge is mitigated by the fact that, as stated previously, we are 

(2)P{�i ≥ πi} ≤ α.
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Fig. 9 The stationary distribution of all vertices, in black, in descending order of the “home to work” 
stationary distribution, of the “home to work” and “work to home” commutes on the original and log scale 
along with the quantile values of � , in red, when α = 5%

Fig. 10 The tail probabilities and stationary distribution of all SA2’s, ordered by largest to smallest 
home-to-work stationary distribution. Home-to-work commute was assumed to take place in the morning 
for all commuters, while work-to-home commute was assumed to happen in the evening
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interested in the intersection of SA2 areas whose stationary distribution is large and 
whose value is greater than expected. For the rest of this section we will focus on 
home-to-work commutes.

Let �(i) and π(i) be the i th values of � and π ordered in decreasing value of π . Let

be the tail-probability of π(i) with respect to �(i) . Let k be an integer from 1 to n, the 
number of vertices in the strong component, and let

be the vector of tail probabilities corresponding to the k largest stationary distribution 
value. This can be thought of as a vector of p-values that can be adjusted for using any 
of the standard methods for multiple comparisons (Bonferroni 1935; Benjamini and 
Hochberg 1995; Benjamini and Yekutieli 2001; Hommel 1988, etc.) In this analysis we 
will show results based on Benjamini-Hochberg procedure. This is the least conservative 
of the listed methods and the liberalness of the procedure is likely warranted because, as 
will be shown later, the tests are not independent, with sets of loci tending to be highly 
spatially correlated.

To find the set of loci for the mobility graph, we find

the k that maximizes the number of loci. We then report those SA2 areas with adjusted 
tail probabilities less than α . We do note that by adjusting over different vector sizes, we 
are essentially doing a “test-of-tests.” However, we remind the reader that the goal of this 
procedure is not to get the adjusted p-values, but rather it is to maximize the number of 
loci while taking into account the multiple testing problem for each value of k.

Figure 11 shows the number of significant loci, up to k, after adjusting the tail prob-
ability ( α = 0.05 ) according to the Benjamini-Hochberg procedure. Roughly, as the 
number of the largest stationary distribution elements increases, so does the num-
ber of significant loci. This continues until new stationary distribution values are not 
enough to justify the increased number of tests and the number of significant loci 

(3)X(i) = P
{

�(i) ≥ π(i)

}

(4)X(1:k) = X(1),X(2), ...,X(k)

(5)arg max
k

k
∑

i=1

{

X(i) < α
}

,

Fig. 11 The number of significant loci conditioned on top stationary distribution values
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begins to decrease. However, the increase is not strict and the graph has three local 
maxima.

The value of k maximizing Eq. 5 for the largest strong component in the New Zea-
land mobility graph (with α = 0.05 ) is 68. The graph of the adjusted p-values is shown 
in Fig. 12. From the graph we can see that it is not true that all of the top stationary 
distribution values are statistically significant. Depending on the underlying graph 
structure, we may be able to add more of the top stationary distribution vertices, even 
when some are not significant, to find the maximum number of adjusted, significant 
vertices.

Figure 14 is a spatial visualization of the loci in the largest strong component for New 
Zealand. Loci appear in central Auckland, Wellington, Palmerston North, Hamilton, 
Kerikeri, Kaitāia, and Rotorua. Local spatial representation of these loci is shown in 
Fig. 13 (Rotorua is not pictured because it is a singelton). Although the detection of loci 
in major cities is intuitively expected, even more rural towns like Kerikeri and Kaitāia 
with population of only around 8000 and 6300, respectively, are hosts of loci which is 
consistent with their role as hubs in a more sparsely populated region. We note that it is 
not sufficient for there to only be a few roads in a rural area to have a loci. It could be the 
case that those roads are difficult to access, in which case its stationary distribution may 
be small (it would not attract movement). The loci can be interpreted as places individu-
als are commuting to and through in greater proportion compared to other areas, and 
may be independent of total traffic moving through an SA2 area. In general, delays at 
loci likely translates to proportionally greater systemic delays when movement through 
these areas is hampered.

Stationary distribution and loci as global graph properties
The stationary distribution of the strong component as well as the loci, as formulated 
here, describe global properties of the mobility graph. Intuitively, this can be seen from 
Section  “Calculating the stationary distribution” where the linear-optimization is over 
the probability transition matrix of the entire graph. The loci feature inherits the global 
property characterization since it is a subset of the stationary distribution, which is 
global. These properties can also be seen as properties of individual, corresponding ver-
tices: stationary distribution (proportion of times individuals go to and through that ver-
tex) and loci status (yes or no).

Fig. 12 The False-Detection-Rate (FDR) adjusted p-values
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The procedures for calculating both the stationary distribution of the mobility 
graph and the loci encode novel feature information in the mobility literature and 
are not represented by existing supervised or unsupervised procedures. As a result, 
a direct comparison between it and similar procedures is not possible. However, it 
remains important to evaluate these features in terms that allow us to distinguish 
them from other related approaches and provide a more intuitive understanding of 
the mobility information that they encode. To do this, we assess how much informa-
tion is encoded in this feature compared to four standard local features that can be 
classified as either local properties of vertices or features that are calculated from the 
user trajectories, the sequence of SA2s defining a commute in this paper. The first 
local graph vertex property is the in-degree of each vertex, i.e., the number of edges 

Fig. 13 Loci in the various regions of the North Island, colored by stationary distribution values (yellow 
corresponds to larger stationary distribution values)
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going from neighbors of an SA2 area into the SA2 area. The second is the weighted 
in-degree, which multiplies each in-edge by the number of commuters coming into 
the SA2 area. The first trajectory feature will be termed the total incoming traffic. It 
counts the total number of commuters going to (and not through) an SA2 area from 
any location. It is equivalent to the weighted in-degree of the source-destination net-
work. The fourth and final is the total traffic which measures how many commuters 
start at, go through, or end at a given SA2 area. This is calculated by taking all of the 
trajectories and counting how many include a given SA2. Together, these four features 
will be referred to as the comparison features.

This section provides three results supporting the claim that both the stationary 
distribution as well as the loci provide distinct and potentially valuable information 
when understanding population-scale human mobility. First, up to approximately 
one-quarter of the variation in the stationary distribution is captured by the trajectory 
features. This implies that the global features encoded in the stationary distribution 
are partially captured by information in individual trajectories. Second, because most 
of the variation cannot be explained in terms of comparison features, the global fea-
tures capture information that is distinct from them. This information is likely from 
the graph structure, which cannot be recovered from the local graph or trajectory fea-
tures presented. Third, when the trajectory features are regressed onto the stationary 

Fig. 14 Loci in the North Island strong component
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distribution, the loci have larger corresponding residual values thereby reinforcing 
the claim that loci identify vertices where there is more than expected mobility.

Admittedly, the fact that these four local features fail to encode the global features 
being proposed does not imply that there are not other features that do. There are not 
general theorems telling us under which conditions global properties can be recovered 
from the features we are comparing against. The claim that they cannot in this case, is 
left as a conjecture.

Table 1 Association between local graph features and stationary distribution

Linear adj. R2 is the adjusted R2 value of the linear regression. RF OOB R2 is the out-of-bag R2 value of the random forest 
model.xx‘

Metric p‑value Linear adj. R2 RF OOB R2.

In-degree 0.005 0.005 0.001

Weighted in-degree 0.561 ≤ 0.001 ≤ 0.001

Total incoming < 0.001 0.143 0.150

Total traffic < 0.001 0.249 ≤ 0.001

Fig. 15 Scatter plots of the local features versus the square root of the stationary distribution
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Figure  15 shows a scatter plot of the the square root of the stationary distribution 
(x-axis) versus each of the comparison features (y-axis), along with the loci status of each 
SA2 area. The graph shows that loci tend to have higher stationary distribution values 
but not necessarily higher comparison-feature values. Table  1 shows the associative 
relationships between each of the comparison features and the stationary distribution. 
The first column is the p-value of the slope coefficient of the linear model regressing 
the comparison feature onto the stationary distribution. The second column gives the 
adjusted R2 values of the associated linear models. The third column gives the out-of-bag 
R2 values of the associated random forest model. The third column is provided to show 
that the associative information exists on a linear subspace and can be well-character-
ized using a linear model. Other linear model regression diagnostics were performed, 
including a QQ-plot of the residuals, which showed that the residuals were approxi-
mately normal but did contain heavy, symmetric tails. The table shows that, except for 
the “Weighted in-degree” variable, each of the comparison features had significant lin-
ear association with the stationary distribution. However, the comparison features were 
not able to account for a large portion of the variation with the “Total traffic” variable 
accounting for 24.9% and others accounting for less.

Since Table 1 shows that “Total incoming” and “Total traffic” are associated with the 
stationary distribution, similar linear and non-linear models were constructed to quan-
tify the associative relationship between these variables. Table 2 shows the relationship 
between the two trajectory features (“Total incoming” and “Total traffic”); and, the rela-
tionship between the stationary distribution and the two trajectory features together. 
The “Total incoming” variable explains 24.9% of the in-sample variation of the station-
ary distribution using a linear model and 14.4% of the out-of-sample variation using a 
random forest model, while “Total traffic” variable explains 14.3% and 0% of the varia-
tion, respectively (Table 1). “Total traffic” accounts for 33.4% and 19.3% of the variation 
in “Total incoming traffic”, and the combined trajectory features account for 26.1% and 
23.0% of the variation in the stationary distribution, respectively (Table 2). From this we 
can conclude that although some of the variation in the stationary distribution can be 
explained by the trajectory features, it is only about one quarter of the stationary distri-
bution’s total variation.

Figure 16 plots the fitted vs. residuals values for the combined linear model on the left 
and the regression between the trajectory features on the right. From the plot on the 
left we can see that the loci (colored in red) tend to have large, positive residual values. 
This is likely because the global structure, which is not captured by “Total incoming traf-
fic” and “Total traffic” plays a large role in determining the vertices with large stationary 
distribution values, resulting in large, positive residuals. The plot on the right shows that 
large residuals between the trajectory feature model is not sufficient for identifying loci 
since they are interspersed with non-loci residuals.

Table 2 Association between comparison distribution and traffic

Metric Lin. adj. R2 RF OOB R2

Total inc. ∼ Total traffic 0.334 0.193

Stat. Dist. ∼ Total inc. + Total traffic 0.261 0.230
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Conclusions
As shown, mobility loci identify locations to which people move to and through at a 
rate higher than expected given the movement and structure of the underlying mobil-
ity graph. For the New Zealand commuting data, we identified SA2 areas considered 
to be mobility loci. These corresponded to specific, high-population and high-move-
ment areas in Auckland and Wellington as well as less populated areas of high mobil-
ity. For infrastructure planners, loci with greater total traffic could be seen as places 
with high “commuting stress” or places where, when they experience delays, have 
greater impact on commute time on the population than others. Additionally, the two 
vertex features presented here (stationary distribution and loci status) can be used to 
study area-level associations with applications in epidemiology and urban planning, 
among others.

We note that like many analyses conducted on spatially aggregated units like SA2, the 
results described here are subject to the modifiable areal unit problem where the conclu-
sions can change based on the size and boundaries of the spatial units used. Aggregating 
data into different-sized units can lead to variations in statistical outcomes, potentially 
misleading conclusions about spatial relationships and patterns. While the results we 
arrived at in this analysis make sense contextually, it is possible that had the analysis 
been done using SA1s (or other spatially aggregated units) as the vertices, the loci identi-
fied could be in different regions. Thus, careful consideration must be given to the selec-
tion of spatial units to ensure that the findings reflect the underlying spatial scale being 
considered.

In this analysis, we only had data on home and work locations, which we used to impute 
the likely commute route to and from work. In the absence of exact time of these com-
mutes, we also assumed that all of the commute happened at the same time (in the morning 
to work, and in the evening back to home). If data were available at finer spatial or temporal 
resolutions (e.g. exact route to work and time of day, which could be different on different 
days), it would be interesting to explore the evolution of the graph over time, and how the 
dynamics of these loci might vary. Such analyses would also be of interest in other applica-
tions such as understanding disease spread. However, given the likely correlated nature of 

Fig. 16 Residual plots from regressing the stationary distribution on trajectory features (left), and total 
incoming traffic on total traffic (trajectory features) (right)
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the location of loci over time, the evolution would need to be modeled to ensure that this 
characteristic is adequately captured.

As a final note, it should be pointed out that the underlying procedure for identifying 
loci is by no means limited to mobility graphs and should extend readily to other domains. 
For example, research in social networks tends to focus on community detection, encoded 
as an undirected graph with the goal of identifying members of a community. Other areas 
of application include transportation networks, genomic pathway analysis, or other areas 
whose representation may be a directed, potentially weighted graph.

Software implementation
All aspects of the analysis presented were implemented using the R Programming Envi-
ronment (R Core Team 2022). Data formatting and shaping relied on the dplyr (Wick-
ham et al. 2022), tibble (Müller and Wickham 2022), and tidyr (Wickham and Girlich 
2022) packages with variable checking performed using the checkmate (Lang 2017) pack-
age. The construction of routes between home and work SA2’s was performed using the 
ghroute (Urbanek 2022) package. Parallel processing, employed to speed-up the per-
mutation procedure and other analyses, used the foreach (Microsoft and Weston 2022) 
package with the multicore backend provided by doMC (Revolution Analytics and Weston 
2022). Plots were created using ggplot2 Wickham (2016) and patchwork (Pedersen 
2020). Spatial visualizations were created using proj4 (Urbanek 2022), sf (Pebesma 
2018), and snippets (Urbanek 2022) with RColorBrewer (Neuwirth 2022) provid-
ing color mappings. Mobility graphs were represented and processed and analyzed using a 
combination of packages igraph Csardi and Nepusz (2006), tidygraphPedersen (2022), 
Matrix (Bates et al. 2022), and graphmobility (Kane 2022), the last of which encap-
sulates the novel analysis aspects of this paper. Finally, the randomForestSRC (Ishwaran 
et al. 2008) package was used for the Random Forest analysis.
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