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Introduction
A large amount of social network data is recorded in unstructured text: nodes are men-
tioned with non-standard labels, and the edges between them, which may constitute one 
or more kinds of interaction, are described with idiosyncratic, contextually dependent 
phrases. This makes it difficult to accurately reconstruct networks in an automated way. 
While manual annotation can be performed for small datasets, this approach becomes 
prohibitively costly at scale. In particular, leading scholars to either rely on low quality 
data, or to direct attention elsewhere.

Research on scientific collaboration is a good example. Identifying who works with 
whom, and what they contribute is essential for the allocation of resources and credit, 
as well as for improving the organization of scientific work (Fortunato et al. 2018). Exist-
ing research focuses almost exclusively on co-authorship, in part because it can be easily 
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the highly contextual case of recovering the task allocation structure of teams from 
their unstructured attribution page to 0.9 for the more explicit case of retrieving the 
collaboration with other teams from direct mentions, showing a 32% improvement 
over a fuzzy matching approach. Beyond science, the flexibility of LLMs means that 
our approach can be extended broadly through minor prompt revision.
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observed in an article’s metadata. However, sociologists have long described the invis-
ible college that underlies research production: helpful scientists who share resources 
and advice without being included as authors (Solla Price and Beaver 1966; Oettl 2012). 
These informal collaborations are described in the acknowledgements that accompany 
tens-of-millions of articles. They are accessible to researchers, but unused because they 
would be prohibitively difficult to extract with existing methods. Similarly, the division 
of labor amongst co-authors is central to the quality and reliability of their work. Jour-
nals are increasingly adopting contribution statements to describe the division of labor. 
But only a fraction of them are reported in a structured format, and even those that do 
typically lack fine-grained descriptions of the tasks (Larivière et al. 2020; Sauermann and 
Haeussler 2017). Other extensive qualitative approaches such as surveys (Walsh and Lee 
2015), interviews and manual annotation (Lazega et al. 2008) or self-reported statements 
(Masselot et al. 2023) have been used, and despite ensuring high quality in the curated 
data, are severely limited by time, granularity and resource constraints. As a result, we 
have a rather narrow and uncertain view of how scientific collaborations are formed, 
structured, and affect knowledge production (Hall et al. 2018).

In this study, we focus on a context-rich, large-scale text dataset of wiki-based digi-
tal laboratory notebooks from 2,000 + scientific teams participating in the international 
Genetically Engineered Machines (iGEM) synthetic biology competition (Santolini et al. 
2023). In their wiki page, teams document their scientific project and outcomes, along 
with team member attributions – who did what – and collaborations with other teams. 
Prior work using the iGEM dataset reconstructs a proxy of the task allocation network 
from how members of a team co-edit different sections of the wiki. However, moving 
beyond digital traces, the rich textual information provides a more elaborated view on 
task allocation structure in scientific teams. As such, obtaining these inter-team col-
laboration networks and intra-team organizational structures across this large number 
of teams requires extracting specific information from heterogeneous and unstructured 
text.

To address these challenges in measurement, we present a semi-supervised approach 
leveraging on Large Language Models (LLMs). We evaluate the performance of using 
LLMs on two network retrieval tasks from unstructured text of increasing difficulty. 
First, we aim to identify the inter-team collaboration network, where direct interac-
tions between teams are encoded within the wiki text. In this task, we have some prior 
knowledge about team names, and are interested in retrieving team collaborations along 
with the type of interaction. Second, we identify the task contribution structure of iGEM 
teams from the self-reported attribution statements of team members. Here, we retrieve 
a member-to-task bipartite network where we have prior knowledge about team mem-
bers, and are inferring task allocation from contextual data. For both cases, we use a 
manual labeling test set to evaluate the accuracy of LLMs in retrieving relationships and 
their contexts, and investigate their ability to accurately reproduce local and global net-
work properties. Beyond the quantitative results, we aim to provide the reader with a 
guide on the good practices and pitfalls we experienced with using LLMs for these infor-
mation retrieval tasks.

The paper is organized into 4 further sections. We talk about recent approaches in 
using LLMs in information retrieval and present some background for the iGEM com-
petition and dataset. We then describe in the Methods section the pipeline to curate and 
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validate the intra-team contribution structure and the inter-team collaboration network. 
Finally, we present the results and discuss perspectives for future work in leveraging the 
iGEM dataset and using LLMs for network reconstruction in computational social sci-
ence research.

Related work

Text data encodes relationships between heterogeneous entities. Recognizing these rela-
tions is crucial across various scientific disciplines, and has benefitted from the advent 
of natural language processing and machine learning methods (Detroja et al. 2023; 
Pawar et al. 2017). For example, biologists might be interested in retrieving interactions 
between proteins from the published literature to build a comprehensive protein inter-
action network that can serve medical insights (Rolland et al. 2014). For this, research-
ers will have to navigate the different ways these proteins can be referred to, and the 
different phrase structures that can evoke a similar relation. In the humanities, scholars 
might be interested in retrieving character networks from fiction works to study narra-
tive patterns across stories (Labatut and Bost 2020). In social sciences, the extraction of 
relationships from online data, free text surveys or unstructured self-reports can recover 
multimodal social relationships at scale (Deri et al. 2018; Irfan et al. 2015).

Ensuring a high quality of information retrieval from text is challenging and requires 
tedious manual annotation and validation with experts. The use of information coding 
software, such as MAXQDA, has provided a strong support for the analysis of qualita-
tive and mixed data, such as surveys with both standardized and open-ended questions 
(Kuckartz and Rädiker 2021). Yet, with the increasing availability of large-scale digital 
text data collections, the complexity of extracting and annotating these relationships 
increases further. To cope with scale, a popular method has been the use of Amazon’s 
Mechanical Turk (MTurk) service. By leveraging non-expert crowd workers, the MTurk 
platform presents a low-cost and scalable method for text annotation tasks, showcasing 
significant correlations with expert annotation (Snow et al. 2008). However, recent stud-
ies have shown a significant decrease in data quality and reliability, requiring additional 
response validity indicators and data screening (Chmielewski and Kucker 2020).

Against that background, Large Language Models (LLMs) present an opportunity 
for assisting mixed methods research at scale (Karjus 2023). Leveraging their ability to 
understand linguistic contexts and address low to medium complexity tasks, studies 
have quantified the efficacy of using LLMs for text annotation, and showed they improve 
over manual curation using Amazon Mechanical Turk (Alizadeh et al. 2023; Gilardi et 
al. 2023; Törnberg 2023). By refining prompts using manually curated validation data 
(Reiss 2023), annotation tasks can be customized for each use case to yield more rel-
evant results (Goel et al. 2023). These encouraging findings have led to the development 
of open-source tools such as GraphGPT (Shenoy, 2023/2024) that extract heterogeneous 
information networks out of text data, paving the way for the application of LLMs in the 
context of network reconstruction. Preliminary insights using the textbook example “Les 
Misérables” character network reconstruction from Hugo’s eponym fictional work show 
a promising increase in richness of information retrieval compared to the smaller manu-
ally obtained version, including non-plot characters discussed by Hugo in tangential sec-
tions of the book (Karjus 2023).
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As such, LLMs are a promising tool for reconstructing social networks from unstruc-
tured text data. Focusing on the digital lab notebooks from teams participating in the 
iGEM competition, we aim to address the gap in evaluating the efficacy in using them as 
an adaptive solution for curating social networks and present the framework as a low-
effort, yet reliable solution to address similarly structured tasks in the information and 
the social sciences.

The iGEM dataset

Launched in 2003, the iGEM competition has become a cornerstone in the Synthetic 
Biology field, promoting an open, collaborative approach to solving real-world prob-
lems using standardized DNA elements, or “BioBricks.” It encourages a bottom-up, 
community-based learning method, fostering dialogue and transparency around ethical 
and safety concerns. From its inception with just 5 teams, iGEM has expanded glob-
ally, involving over 4,300 university and high school teams from 40 countries. Annually, 
teams use BioBricks to create synthetic biology solutions, culminating in a Jamboree 
where their projects are judged. The competition emphasizes collaboration and high-
quality documentation, with each team’s wiki serving as a key evaluative tool.

The team wiki website serves as an extended scientific article that includes technical 
specifications of the project, experimental and modeling methods, project results, and 
outreach practices the team members undertook. In addition to describing the content 
of the team project, the website contains context-rich information on the team mem-
bers, their background and contribution to the project, and the collaborations the team 
maintained with other iGEM teams. This rich data source enables analysis of collabora-
tion networks and project outcomes, offering insights into the practice and impact of 
collaborative science in interdisciplinary contexts (Santolini et al. 2023).

While wikis have an overall topical structure dictated by the needs of the competi-
tion – i.e. they must showcase collaborations with other teams and describe the con-
tributions of team members–, the presentation of the content within each page varies 
significantly across teams. With over 2,200 participating teams in 2008 to 2018 and an 
average 17 members per team, manually curating and labeling individual contributions 
within teams and collaborations across teams is a time and resource consuming process. 
Here we use LLMs and specifically the GPT family of models to tackle this challenge and 
evaluate their performance.

To reconstruct the team collaboration and task allocation networks, we first extract 
the raw text from all teams public wiki pages. The text content of the pages was extracted 
using the “KeepEverythingExtractor” option in the boilerpipe.extract library for process-
ing and removing boilerplate content after web scraping. This amounts to 106,207 pages 
from 2,265 teams over 11 years, from 2008 to 2018. The raw html and processed text 
of the wikis is available in Zenodo, along with team metadata from the iGEM website 
(Blondel et al. 2024).

Methods
Network reconstruction pipeline

We show in Fig. 1 an overview of the workflow to reconstruct the collaboration and task 
allocation networks in iGEM teams using GPT models. The workflow is similar for both 
the intra- and inter-team networks, with specific changes in the implementation.
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Pipeline to extract the team contribution and inter-team collaboration structure from 
the text data of wiki pages from iGEM teams. The text from the wiki page is processed 
and passed to the language model along with the prompt. The output is a table with 
the decorated relationships, i.e. the user identifier, the activity they performed and the 
matched category for the contribution network and the team, target and the context of 
collaboration for the inter-team collaboration network. Schematic networks are shown 
in the bottom left, where circular blue nodes denote teams in the inter-team collabora-
tion network, green pentagons denote team members and yellow rectangles the catego-
ries of tasks they performed in the intra-team contribution structure.

The first step is to process the text from the wiki pages into chunks. This is to primarily 
remove pages that do not contain information about either inter-team collaborations or 
about intra-team contributions. This step also ensures that input size limits (tokens) for 
the GPT models are preserved.

The curation using the GPT models is split into two steps. The first step extracts 
all relationships between entities present in the provided input text along with their 
described context. The objective of this step is to maximize recall and to ensure that 
there are minimal false negatives. The second step aims to match the extracted entities 
with their corresponding identifiers. In the inter-team case - it is to match team names 
to their official team IDs and the context of their collaboration to one of five standard 
collaboration categories in iGEM - “Work”, “Material Transfer”, “Meetup”, “Advice” or 
“Other”. For the intra-team case, it is to match team members to their member IDs and 
the tasks they undertook to a standard list of tasks that teams are expected to perform 
during the iGEM competition. This list is inspired by the CRediT Contributor Roles 
Taxonomy (Larivière et al. 2020), and constructed to encompass all tasks and deliver-
ables that teams work on and are evaluated on in iGEM. The categories are: “Design”, 
“Experiments”, “Documentation”, “Interlab”, “Modeling”, “Analysis”, “Parts”, “Safety”, 
“Entrepreneurship”, “Hardware”, “Software”, “Human Practices”, “Public Engage-
ment”, “Collaboration”, “Fundraising”, “Creative Contributions”, “Administration”, 
“Material Supply”, “Supervision”, “Training” and “Other”. In this step, we eliminate 
the false positives and increase the precision of the final curated network.

To evaluate the curated networks, we create a validation set by manually curating rela-
tionships from teams and text chunks selected at random. For the inter-team case, we 
also use fuzzy matching to construct an alternate reference set - although this approach 
does not identify the contexts of inter-team collaborations. As a part of their iGEM proj-
ect in 2016, team Waterloo constructed a database of collaborations between teams in 
2015 - which we use as a further benchmark to evaluate the quality of the approach.

Specifications of the intra- and inter-team curation - such as the text processing, the 
prompts used, constructing the validation sets and the implementation details using the 
GPT models are detailed in the Supplementary Information.

Statistical analyses

Standard errors for the precision and recall scores of the inter-team collaboration net-
works in Fig. 2a are computed using the jackknife method over chunks. In the case of 
the intra-team contribution networks, precision and recall are computed at the team 
level and we show in Fig. 3a the average and standard error across the manually curated 
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teams. The confusion matrices between relationship contexts for the intra- and inter-
team networks in Figs. 2b and 3b are row normalised using Z-scores: each observation 
x is centred and standardised using Z = (x − µ)/σ , where μ is the row average and σ its 
standard deviation.

We use the pROC library in R for computing the ROC curves and Area under the ROC 
curve (AUC) of Fig. 2c.

Hierarchical clustering in Supplementary Fig. 5 is performed by computing the Euclid-
ean distances between predicted categories from the confusion matrix (i.e. the rows) 
with the R dist function, and then using the “hclust” function in R.

All network analyses were performed with the igraph library in R. The betweenness 
and closeness centrality measures are unweighted and computed using their namesake 
functions. The coreness of the network was computed using the “coreness” function and 
the local clustering coefficient using the “transitivity” function setting the type argument 
to be “local”. The network assortativity measures were computed for the categorical ver-
tex attributes region, country and section using the “assortativity_nominal” function in 
igraph. The degree assortativity is computed using the “assortativity_degree” function. 
Standard errors for the network properties are computed using the jackknife method by 
removing one team from the network in each iteration, recomputing the corresponding 
network property, and calculating the standard deviation across the obtained values.

The degree distributions of the intra-team bipartite networks are computed using 
the in-built function degree_distribution from the igraph library with the “cumulative” 
option set to true. To quantify nestedness, we compute the standardized NODFc nested-
ness metric based on overlap and decreasing fill, described in (Song et al. 2017), using 
the maxnodf library in R (Hoeppke and Simmons 2021).

Results
Team collaboration networks

Accuracy of inferred relations

We first investigate the accuracy of GPT models and a fuzzy matching approach in 
retrieving the collaboration relations between iGEM teams. Our approach is described 
in Methods. We manually curate 200 text chunks from the Collaboration wiki pages 
across teams to extract the relationships present in the text. The same text chunks 
are then passed through the GPT and fuzzy matching pipelines to retrieve predicted 

Fig. 1  Overview of the pipeline to reconstruct social networks from text
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relationships. We compare the performance of the GPT and fuzzy models against manu-
ally curated data in Fig. 2a. We focus on precision and recall, quantifying respectively 
the proportion of predicted relations that are in the manually curated set, and the pro-
portion of manually curated relations that are retrieved. We find that newer GPT models 
consistently increase in precision and recall. Amongst the various models tested, gpt-4 
has a higher recall while gpt-3.5-turbo and gpt-4-1025-preview models have a compara-
ble performance, with the former being 10x cheaper. The turbo instruct models allow for 
inbuilt parallel request calls, but their performance is a detrimental tradeoff for infor-
mation extraction and curation tasks. While precision flattens after GPT3.5-Turbo-16k, 
recall shows a significant improvement with GPT4, with a recall of 0.91. Interestingly, 
while fuzzy matching does not yield too many false positives – it has competing preci-
sion with GPT3.5 models–, it does not provide a good coverage of manual edges, with a 
recall of 0.69, giving GPT4 a 32% improvement over the fuzzy approach.

Inference of the collaboration context

Beyond edge retrieval, we evaluate the ability of the GPT models to infer the collabo-
ration context from the surrounding text. In the following we focus on gpt-3.5-turbo-
16k as it has the higher performance-to-cost ratio. This harder problem, that the fuzzy 
approach does not tackle, is evaluated by comparing the results to manual labeling. We 
show in Fig. 2b the comparison between the categories inferred with gpt-3.5-turbo-16k 
and the manually labeled ones. We find an overall accuracy of 0.26 – i.e. the predicted 
category matches the manually labeled category 26% of the time. However, there is 
variation across categories. ‘Meetups’ are identified with a high accuracy of 0.65, while 

Fig. 2  Reconstruction of inter-team collaboration networks (a) Precision and recall of GPT models and fuzzy 
matching approach against manually curated chunks. (b) Confusion matrix showing the accuracy of category pre-
diction for relationship contexts. The color coding indicates row-standardized Z scores values. (c) Receiver Operat-
ing Curves (ROC curves) for weighted interactions from 2015. Dashed line indicates a line of slope 1 and intercept 
0. (d) Comparison between network assortativity values for reconstructed and manually obtained 2015 inter-team 
network. (e) Correlations of network properties between the 2015 reconstructed and manual network. In all plots, 
the error bars are computed using the jackknife method
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categories ‘Advice’ and ‘Material transfer’ have accuracies of 0.46 and 0.45 respectively, 
and are sometimes confused with one another. On the other end of the spectrum, most 
of the relationships identified as a ‘Work’ relationship by GPT are manually labeled as 
‘Other’, leading to a poor accuracy of 0.16 for this category. This may be due to a lot of 
non-work relationships still using phrases like ‘we worked with’, ‘we collaborated with’ in 
their descriptions. Overall, these results show that while there is some degree of confi-
dence in extracting categories from context, there is a strong variation between catego-
ries, with some being very accurate and others very hard to predict. We note that this 
exercise depends on the taxonomy chosen for the categorization, and the poor results in 
some categories might as well be seen as a poor definition of the category itself. Supple-
mentary Fig. 2 shows the confusion matrix between categories for the other GPT mod-
els, indicating a similar pattern with the other models.

Accuracy of the reconstructed network

While previous measures focus on the ability to infer an edge and its context, here we 
investigate the ability of GPT models to infer accurate network properties in the recon-
structed network. To do so, we evaluate the gpt-3.5-turbo model and fuzzy approach 
against a manually curated network of the significant inter-team collaborations in 2015, 
extracted by the 2016 Waterloo iGEM team (see Supplementary Information). This 
curated network does not comprise all team mentions that can be retrieved from the 
pages, but only the ones deemed significant by the curators. For both inference methods, 
the edges are weighted by the number of unique text chunks where the corresponding 
collaboration is reported. These weights can then be used to predict the occurrence of 
a significant edge in the manually curated network. We show the resulting ROC curve 
in Fig. 2c, along with corresponding Areas under the ROC curve (AUCs). We find that 
GPT outperforms fuzzy matching with an AUC of 0.944 (edge recall of 0.90) compared 
to 0.906 (recall of 0.83) for the fuzzy method. Finally, we investigate the extent to which 
the reconstructed networks, though still somehow noisy at the edge level, recover some 
key network properties of the manually reconstructed network. We show in Fig. 2d that 
GPT3.5 consistently improves over fuzzy matching to recover assortativities of the team 
attributes. We finally investigate if GPT can recover the relative importance of nodes 
in the network. For this we use Spearman correlation as a measure of the similarity of 
ranks under various network centrality measures between the inferred networks and the 
manually curated one. We find larger Spearman correlations across several local (clus-
tering) and global (betweenness, closeness, and coreness) centrality measures for GPT 
compared to fuzzy matching, showing the ability of the former to build a more accurate 
overall representation of the network. We note poor results for clustering, which might 
be due to curation decisions – e.g. meetups between several teams can create large 
cliques that might not be considered significant by the Waterloo team.

Team contribution structure

Accuracy of inferred relations

In this second part, we focus on the question of identifying the tasks that team mem-
bers have done in their project from the attribution page. Identifying the contribution 
structure of a team is a more complex task as only the name of the member is encoded 
in the text, while the category of the relationship they were involved in is inferred from 
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the description of their activities. We first compare the precision and recall scores for 
the task categories retrieved using GPT models against the manually curated teams. 
Figure 3a shows a significant performance improvement in using the newer gpt-4-turbo 
class of models, with an edge-level recall across the manually labeled teams of 0.79, and 
a precision of 0.62. The lower precision means that descriptive task contexts are often 
matched to both the manually assigned category (high recall), but also to other catego-
ries, decreasing the precision.

Task-level accuracy

To investigate this mismatch, we compare the manual and GPT matching of the descrip-
tion of the individual members’ task attributions to the defined task categories. Figure 3b 
shows the confusion matrix between the predicted and manual labels. Overall, we find 
an accuracy of 0.66, with variation between categories (see Supplementary Fig.  3 for 
precision and recall values across categories). We observe higher accuracy for catego-
ries with specific descriptions - such as being involved in interlab (accuracy = 0.92), per-
forming human practices (0.80) or modeling work (0.79). However, categories with high 
similarities in their descriptions are either misidentified, or identified to all similar alter-
natives, especially amongst experiments, performing analyses, design or between super-
vision and training. The clustering of categories based on the similarity of their labeling 
profile in the confusion matrix (Supplementary Fig. 5) identifies groups of strongly inter-
related tasks (e.g. supervision and training), corresponding to similar tasks when work-
ing within an iGEM team. Information from these clusters could be used to increase the 
specificity of each subcategory description and reduce their similarity, or merge similar 
categories to improve the overall accuracy.

Accuracy of inferred network properties

FInally, we go beyond the edge level to investigate the ability of GPT to reproduce key 
properties of the team bipartite networks. First, we show in FIgure 4a the degree dis-
tributions for each layer in the inferred and manual networks. We find similar distri-
butions, with large Pearson correlations between (the log10 of the) degrees of r = 0.76 

Fig. 3  Reconstruction of team contribution structure (a) Precision and recall of GPT models against manually 
curated contribution networks. (b) Confusion matrix of inferred category labels
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(p < 2e-16) for users and r = 0.85 (p < 2e-16) for tasks. In addition to degree distributions, 
bipartite networks are often characterized by a correlation between the degrees of the 
layers, leading to nested structures that can be quantified with the NODFc value (Mari-
ani et al. 2019). We show in Fig.  4b the predicted and observed values of nestedness, 
with a high Pearson correlation of r = 0.66 (p = 1e-4). We find the presence of an outlier 
team with a high manually curated NODFc and a low predicted one. Under inspection 
it is due to the specificity format of the team page, involving images of team members 
rather than their name. Such outlier events can be taken care of using preprocessing of 
high-confidence pages that can offer a good inference, for example by evaluating the 
proportion of names of team members present in the page.

Discussion
This study aimed at showcasing the use of GPT models to infer team collaboration net-
works from text, providing a quantified account of what had been scoped in previous 
work (Karjus 2023). Overall, we found that the use of GPT models has clear benefits for 
extracting such information at scale. In extracting direct relationships between teams 
encoded within the text, it performs significantly better than a fuzzy approach, and 
can recover key aspects of the network structure. For example, fuzzy matching fails in 
cases where teams mention the names of members using their first name or nicknames, 
or in cases where they describe teams by the names of the universities they are based 
in rather than their team name. Similarly, the partial substring matching of the fuzzy 
approach has difficulty disambiguating team names with similar acronyms, such as UCL 
and UCLA. GPT models overcome these challenges through their larger inbuilt con-
texts which allows better disambiguation. Extracting the contexts of the relationships is 
another advantage that GPT models have over fuzzy matching methods, which would 
require additional language processing methods such as topic modeling to extend to 
other similar settings.

The similar performance between gpt-3.5-turbo and the more expensive gpt-4 class of 
models, unlike the lower performance observed in the second, more complex task, sug-
gests a higher feasibility in reconstructing these direct relationships with simple few shot 
prompts and minimal post-processing. We also note that further pre-processing of the 
dataset aiming to provide higher quality text through filtering out pages with low abun-
dance of certain words (such as team names or team member names), would probably 

Fig. 4  Recovering bipartite network properties. (a) Cumulative degree distributions for the task categories and 
team members layers of the bipartite network, comparing manually curated networks (grey) with gpt-4 inferred 
networks (green). (b) Nestedness values, computed using NODFc (Song et al. 2017), are shown between the pre-
dicted and manual networks. Dashed line indicates a line of slope 1 and intercept 0
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increase the overall precision and recall, while decreasing the amount of data that can be 
treated with the method.

Matching the contexts of the relationships to a list of categories has certain caveats. 
With the pipeline first extracting the relationship contexts and then performing the 
matching, some information beyond the sentence describing the relationship is lost. 
Attempting to perform both the extraction and the matching in a single step preserves 
most contextual information from the text, but performs poorly in precision and recall, 
especially when tested with the cheaper gpt-3.5 class of models. This could potentially 
be caused by an individual request now performing a more complex task, which current 
advances in model complexity might resolve.

Evaluating the performance of reconstructing the indirect relationships of the intra-
team contribution structure shows promising initial results, with drastic improve-
ments observed with newer GPT models. This might reflect the task complexity that 
heavily relies on context-awareness for the task allocation to team members. The simi-
larity between the properties of the manual and inferred networks – degree distribu-
tions and nestedness values – indicates that the inferred networks can be leveraged for 
future studies comparing their structure across the large number of teams of the iGEM 
competition.

We also note that the process of manual curation is itself prone to inter-individual 
variation. Decisions on assigning a description to a specific category relies on personal 
judgment, and quantifying this variation would require a more extensive investigation 
using platforms like Mechanical Turk. As such, it is yet not clear whether GPT mod-
els already outperforms human annotators or not in the context of this study. The high 
recall rates and comparatively low precision have been interpreted as a larger richness 
of GPT models (Karjus 2023), capturing more peripheral relations than immediately 
catches the eye. Future work could investigate whether this richness helps capture more 
subtle phenomena that can be useful in downstream analyses.

Finally, the ability to extract and label relationships from text in bulk saves on human 
effort, but does not eliminate it. There are several drawbacks in using proprietary LLMs 
- including but not limited to reproducibility, sensitivity to temperature, prompt adjust-
ment and model updates. This creates the necessity to carefully evaluate model per-
formance, ideally with high quality manually annotated data (Ollion et al. 2023, 2024; 
Reiss 2023). An additional concern is working with surveys and other confidential data 
sources. A potential workaround is by leveraging open source LLMs for network recon-
struction. Open source LLMs have shown to outperform crowd workers, but lag behind 
the GPT models in text annotation (Alizadeh et al. 2023). However, this gap can poten-
tially be reduced by fine-tuning open source LLMs with contextual data to improve on 
performance. The approach requires further human work in curating a training set, but 
allows customizability and executing requests in-house. This is a potential extension of 
the study.

Conclusion
We assessed the performance of using OpenAIs GPT family of models in curating and 
annotating team collaboration networks from unstructured text. We leveraged digital 
laboratory notebooks from scientific teams participating in the iGEM competition to 
infer inter-team collaborations and the team contribution structure from heterogeneous 
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self-reported data. We show that despite wide differences in page structures, the net-
works can be extracted with Large Language Models by using prompts that include 
minimally supervised team-specific information (list of users, team names, and types of 
contributions), resulting in structured graph data showing precision in par with manu-
ally curated data. We find that recall rates consistently increase with each new model, 
indicating that future improvements are expected with upcoming releases. We also 
showcase that LLMs can partially retrieve contextual information to infer edge types, 
with future improvements possible with new models and improved prompt design and 
category definition. This work has implications for the study of division of labor in scien-
tific teams that often relies on CREDIT contribution reports (Xu et al. 2022), providing 
both a Method and a fine-grained dataset (Blondel et al. 2024) for studying fine-grained 
task allocation structure. More generally, this study suggests that LLMs can be a useful, 
scalable and efficient approach to network reconstruction for assisting manual curation 
work in computational social science and digital humanities.
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