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Abstract 

In 2009, Shao et al. (Phys Rev Lett 103(1):018701, 2009) introduced the Non-consensus 
opinion (NCO) model, which allows different opinions to coexist in the steady state. 
We propose a mean-field-based dynamical model for the NCO model on networks 
with low degree correlation, which reveals the mechanism of opinion formation 
in the NCO model. This mean-field model provides a new way of estimating important 
system properties such as the fraction of a certain opinion F, the critical threshold fc , 
and the size of the largest connected cluster for a given opinion s1 . It offers an accu-
rate estimation in less time than the Monte Carlo simulations. The scale invariance 
of the NCO model is discussed. The variation in the degree of nodes holding different 
opinions in the dynamics of the NCO model is investigated. The trends in the dynamics 
of the NCO model are also revealed. This approach can be applied to real-world social 
networks, providing a method of analyzing opinion dynamics in human society.

Introduction
In recent years, there has been significant progress in the study of social dynamics and 
group behavior, with particular focus on the dissemination of opinions within social net-
works (Aletti et al. 2010; Sîrbu et al. 2016; Sun et al. 2013; Hassani et al. 2022). Opin-
ion dynamics is driven by human behavior and is dependent on many factors, including 
individual predisposition, the influence of other people (social networks playing a 
crucial role in this respect), and many others. Different models have been developed, 
encompassing different elements of the opinion formation process. The study of opin-
ion dynamics was first undertaken by John R. P. et  al. in 1956 French (1956). Several 
models of opinion dynamics with varying rules for forming opinions have emerged over 
the past decades, including the Galam model (Galam et al. 1982; Galam 2008), Sznajd 
model (Sznajd-Weron and Sznajd 2000; Katarzyna Sznajd-Weron 2005), the voter model 
(Lambiotte and Redner 2008; Shang 2018; Redner 2019), the majority rule model (Galam 
2002), and, Deffuant model (Shang 2013). These models explore the evolution of com-
peting opinions, which can be mapped to spin models and find applications in the fields 
of physics, biology, chemistry and social science.

Most spin-type opinion models tend to converge to a consensus state with a single opin-
ion, which does not fully reflect the coexistence of different opinions observed in real life. 
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To address this, Shao et al. introduced a non-consensus opinion model (NCO model) that 
allows for a stable coexistence state (Shao et al. 2009). Shao et al. discovered that the opin-
ion formation process in the NCO model can be mapped to a percolation problem, which 
is characterized by the appearance of a large spanning cluster of the minority opinion. This 
was the first time that a social dynamic model was mapped to percolation (Li et al. 2013).

In the NCO model, when the fraction of nodes holding a particular opinion surpasses a 
critical threshold, these nodes form a supportive cluster, where each member receives suf-
ficient backing from others within the cluster. This phenomenon mirrors real-life scenarios 
where certain groups in society uphold extreme opinions that contradict the majority view, 
yet they persist due to the cohesive support they receive from like-minded individuals. 
Consequently, these extreme opinions are challenging to eradicate.

Other researchers have extended the NCO model in various directions. Li et al. (2011) 
proposed the Inflexible Contrarian Opinion (ICO) model, which introduces stubborn 
nodes that consistently maintain their opinions, regardless of the opinion of their neigh-
bours. Li et al. (2013) incorporated a weight factor w for each node in the NCO model, giv-
ing rise to the NCOW model. Liu et al. (2023) extend the NCO model by introducing three 
types of malicious nodes, that intend to interfere with the NCO dynamics. Ben-Avraham 
(2011) develops exact solutions of the NCO model in one dimension and in a Cayley tree. 
These advancements have provided valuable insights into understanding the dynamics of 
opinion formation and coexistence in complex social networks.

However, a theory explaining the dynamics of the NCO model has been lacking. The 
main contribution of this paper is the proposal of a mean-field-based theory for the NCO 
model, along with a series of governing equations used to analyze its dynamics. The mean-
field-based theory of the NCO model can be used to estimate important system properties, 
such as the opinion fraction of a certain opinion, the size of the largest connected com-
ponent, and the critical threshold. Compared to Monte Carlo simulations, the mean-field 
method is both accurate and more efficient. The mean-field description offers an analyti-
cal approach of studying the behavior of the NCO model. In this paper, we first introduce 
the basic opinion formation rules of the NCO model and discuss important parameters of 
interest in “The NCO model” section. In “Mean-field dynamics of NCO model” section, the 
core of this paper, the mean-field dynamics of the NCO model are presented. The mean-
field-based NCO-governing equations are also presented in this section. In “Simulation 
results and discussions” section, we explain how to use the mean-field-based NCO govern-
ing equations to compute the opinion fraction, the size of the largest connected component, 
and the critical threshold, and compare them with simulation results. The results obtained 
from the mean-field-based NCO governing equations show high accuracy, indicating that 
the mean-field theory accurately explains opinion formation in the NCO model. The degree 
variation and behavioral trends in the NCO model are also discussed. In “Conclusion” sec-
tion summarizes the paper.

The NCO model
The NCO model describes the opinion formation process of two distinct opinions, 
labeled as σ+ and σ− , within a network, where each node adopts one of these two opin-
ions. The network G(V, E) consists of the set V of nodes, representing individual agents, 
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and the set E of links represent the social connections between the agents. The neigh-
borhood of each node v is denoted as Nv , encompassing all nodes adjacent to v.

The dynamics of the NCO model are demonstrated in Fig. 1. At each discrete time step 
t, nodes determine their opinion state Sv(t) (either +1 or -1) based on their own opinion 
and the opinions of their neighbours. If a node’s local majority opinion aligns with its 
own, it will keep its current opinion. Conversely, if the local majority opinion differs, the 
node will change its opinion. This process is represented by the following equation:

where Nv represents the set of neighboring nodes of vertex v ∈ V  , and ε ∈ (0, 1) is a 
parameter that ensures nodes keep their own opinion when a local majority opinion 
does not exist.

A crucial parameter of the NCO model is the opinion fraction F(t), which is defined as 
the proportion of nodes holding the σ− opinion at a certain time t:

where nσ−(t) is the number of nodes holding the σ− opinion at time t, and N is the total 
number of nodes in the system.

At the beginning, the two opinions σ− and σ+ are randomly distributed in the network, 
with a fraction f and 1− f  , respectively. Figure 2a shows how the opinion fraction F(t) 
changes with f = 0.3 over time t. When the σ− opinion is a minority opinion ( f < 0.5 ), 
F decreases with time t according to the dynamics rule of the NCO model. However, 
the value of F does not go to zero, which is what distinguishes the non-consensus model 
from other spin-type models.

Figure 2b shows the final opinion fraction F, normalized size of the largest σ− cluster 
s1 and normalized size of the second largest σ− cluster s2 for an Erdős–Rényi (ER) graph 
with N = 10,000 nodes and average degree 4. It is conceivable that steady-state opinion 
fraction F increases with initial opinion fraction f. Shao et al. found that the NCO model 
in random networks exhibits a second-order phase transition that belongs to regular 
mean-field percolation. There exists a critical threshold fc , below which the relative size 
of the largest cluster s1 tends to 0. Once the initial opinion fraction f is larger than fc , a 

(1)Sv(t) = sign



(1+ ε) · Sv(t − 1)+
�

u∈Nv

Su(t − 1)





(2)F(t) =
nσ−(t)

N

Fig. 1 Dynamics of the NCO model on a network with N = 9 nodes. a At t = 0 , 4 nodes are assigned with a 
σ+ opinion (red), and the other 5 nodes with a σ− opinion (blue). This makes node 5 to judge its local opinion 
ratio as σ+ : σ− = 3:2. Node 5 converts to σ+ . b At t = 1 , node 3 judges it local opinion ratio as σ+ : σ− = 3:2 
and node 6 converts to σ+ . c At t = 2 , all nodes hold an opinion that they consider to be a local majority. 
Hence, the network has reached a steady state
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giant component emerges in the steady state, which is accompanied by a peak in the rel-
ative size of the second-largest cluster s2 . For the situation in Fig. 2b, the critical thresh-
old fc roughly occurs at fc ≈ 0.28.

Mean‑field dynamics of NCO model
Past research on non-consensus models has primarily been conducted through simula-
tions. These models require calculating the state of each node at the next iteration step 
based on the states of its neighbors. Here, we introduce a dynamics model based on the 
mean field approach for the NCO model, which offers another angle for understanding 
and analyzing the NCO model. The mean-field dynamics of the NCO model can pro-
vide deeper insights into the system’s behavior. The mean-field dynamics of the NCO 
model is based on the assumption that each node in the network selects its interact-
ing neighbors without any preference, which means that the network does not have any 
degree–degree correlation (or a very low degree–degree correlation). In this model, we 
define the state of a node by its current opinion and by counting its σ− and σ+ neighbors. 
We then use the fractions of nodes in different states to represent the system’s state as, 
s = {fσ ,0,0, . . . , fσ ,i,j , . . .} . The mean-field dynamics of NCO model investigates the evolu-
tion of these fractions.

The basic idea of the Mean-Field-NCO model is that when nodes in the system change 
their opinions, the opinions of all their neighbors change with the same probability. 
According to the fraction of nodes that change the opinions, we can compute the prob-
ability that the neighbors of nodes in the system changes their opinions. According to 
this probability, fractions of nodes with composition of neighboring nodes at next time 
slot are obtained.

We regard networks of nodes holding the same opinion in the system as a subgraph. 
There are two subgraphs in the network, the σ− subgraph and the σ+ subgraph, as shown 
in the example in Fig. 3.

Instead of considering the state of every node independently, we aggregate nodes hold-
ing the same opinion with the same composition of neighboring nodes. Let fσ− and fσ+ 
denote the fractions of nodes holding σ− and σ+ opinions, respectively. At time t = 0 , in 
both the σ− and σ+ subgraphs the fraction of nodes that have dσ− σ− neighbors and dσ+ 
σ+ neighbors is given by:

Fig. 2 a The fraction of σ− opinion as a function of time t for an ER network with N = 10,000, p = 0.0004, 
and initial opinion fraction f = 0.03 . b Normalized size of the largest cluster s1 (blue line), the second largest 
cluster s2 (green full line) and the fraction of σ− nodes F (red full line) in the steady state for an ER network 
with N = 10,000 and p = 0.0004
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where θk represents the fraction of nodes with degree k, and 
(

dσ− + dσ+
dσ−

)

 denotes a 

binomial coefficient.
According to the opinion formation rule of the NCO model, a σ− ( σ+ ) node with 

more neighbors holding a different opinion with them than neighbors holding the 
same plus one (the node’s own opinion) will change its opinion. As the opinions of σ− 
( σ+ ) nodes change, the number of links in σ− ( σ+ ) nodes will also change. We denote 
the sets of nodes that change their opinion from σ− to σ+ and from σ+ to σ− as Sσ+ and 
Sσ− , like the example in Fig. 4 shows. The fraction of nodes with different composition 
of neighboring nodes in sets Gσ−|Sσ+ , Gσ+|Sσ− , Sσ− , and Sσ+ are denoted as f ′

σ−,dσ− ,dσ+
 , 

f ′
σ+,dσ− ,dσ+

 , f ′′
σ−,dσ− ,dσ+

 , and f ′′
σ+,dσ− ,dσ+

 , respectively, where

In the Gσ− and Gσ+ subgraphs, the process of nodes changing their opinions involves 
removing some nodes and links, while adding new ones. For both subgraphs, the frac-
tions of links that fail are described as follows:

and

(3)
fσ−,dσ− ,dσ+

(t = 0) = fσ− · θk=dσ−+dσ+
·
(

dσ− + dσ+
dσ−

)

· f dσ−σ− · f dσ+σ+

fσ+,dσ− ,dσ+
(t = 0) = fσ+ · θk=dσ−+dσ+

·
(

dσ− + dσ+
dσ−

)

· f dσ−σ− · f dσ+σ+

(4)

Gσ− : dσ+ > dσ− + 1 : f ′
σ−,dσ− ,dσ+

= 0, f ′′
σ+,dσ− ,dσ+

= fσ−,dσ− ,dσ+
Gσ+ : dσ− > dσ+ + 1 : f ′

σ+,dσ− ,dσ+
= 0, f ′′

σ−,dσ− ,dσ+
= fσ+,dσ− ,dσ+

Gσ− : dσ+ ≤ dσ− + 1 : f ′
σ−,dσ− ,dσ+

= fσ−,dσ− ,dσ+
, f ′′

σ+,dσ− ,dσ+
= 0

Gσ+ : dσ− ≤ dσ+ + 1 : f ′
σ+,dσ− ,dσ+

= fσ+,dσ− ,dσ+
, f ′′

σ−,dσ− ,dσ+
= 0

(5)fσ−,fail =

∑

f ′′
σ+,dσ− ,dσ+

· dσ−
∑

fσ−,dσ− ,dσ+
· dσ−

Fig. 3 State of a NCO system at certain time slot t. A graph with 17 nodes, which 6 nodes holding the σ− 
opinion and 11 nodes holding the σ+ opinion. The graph Gσ− consists of the σ− subgraph and the graph Gσ+ 
consists of the σ+ subgraph
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The fractions of links between the Gσ− and Gσ+ subgraphs becoming links in the Gσ− and 
Gσ+ subgraphs are respectively

and

Figure  5 shows an opinion changing process of Gσ− subgraph. In Fig.  5a, there are 
Nσ− = 6 nodes and L = 9 links in the Gσ− subgraph. Node 2 has 6 links, two of them 
are connecting to σ− nodes, the others are connecting to σ+ nodes. In Fig. 5b, as node 
2 changes its opinion, node 2 and link a, b are removed from the Gσ− subgraph. Node 7 
and link c, d join the Gσ− subgraph. The fractions fσ−,fail and fσ−,add in this example are 
respectively 29 and 213.

Suppose there is a node l− in Gσ−|Sσ+ and Sσ+ , and following one of its link l, node 
l+ holding opinion σ− is found, and l− knows nothing about l+ other than l+ ’s opinion. 
Since the nodes have no preference for neighbor, from l− ’s view, the probability that 
node l+ ’s opinion change equals to the fractions of link that are fail fσ−,fail . When l+ ’s 
opinion is σ+ , the probability is fσ−,add . Then we know for a node with m σ− neighbors 
and n σ+ neighbors. Both for the σ− and σ+ nodes, their number of σ− and σ+ neighbors 
changes according to the binomial distribution. For nodes in Gσ−|Sσ+ and Sσ+ with m 
σ− neighbors and n σ+ neighbors, probabilities that e− of its σ− neighbors change their 
opinion and that e+ of its σ+ neighbors change their opinion are:

(6)fσ+,fail =

∑

f ′′
σ−,dσ− ,dσ+

· dσ+
∑

fσ+,dσ− ,dσ+
· dσ+

(7)fσ−,add =

∑

f ′′
σ−,dσ− ,dσ+

· dσ−
∑

fσ+,dσ− ,dσ+
· dσ−

(8)fσ+,add =

∑

f ′′
σ+,dσ− ,dσ+

· dσ+
∑

fσ−,dσ− ,dσ+
· dσ+

(9)pσ−,m(e−) =
(

m
e−

)

· f e−
σ−,fail

· (1− f
e−
σ−,fail

)m−e−

Fig. 4 State of a NCO system as in Fig. 3, but at time t = t + 1 . Node 2 changes its opinion from σ− to σ+ , and 
node 7 changes its opinion from σ+ to σ− . Sets Sσ+ and Sσ− consist of node 2 and node 7, respectively
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Similarly, for nodes in Gσ+|Sσ− and Sσ− , the probabilities are:

Given a node in Gσ−|Sσ+ and Sσ+ with m neighbors sharing its opinion and n σ+ neigh-
bors, the probability that this node evolves to have dσ− σ− neighbors and dσ+ σ+ neighbors 
is:

Similarly, for a node in Gσ+|Sσ− and Sσ− with m σ− neighbors and n neighbors sharing its 
opinion, the probability that it transitions to have dσ− σ− neighbors and dσ+ σ+ neighbors 
is:

Figure  6 shows an example of computing the probability that a σ− node with certain 
neighborhood opinion composition to another. In Fig. 6a, for a node in the σ− subgraph 
the probability that its σ+ neighbor change opinions is 14 . Accoridng to this probability, 
we can computer the probabilities that its two σ+ neighbor keep their opinion, one keep 
its opinion and another change opinion, and both of this two neighbors change opinions. 
The probabilities are respectively 916 , 

3
8 , and 116 . Base on the same computation, we can get 

the probabilities for its σ− neighbors. In Fig. 6b, a σ− node with 2 σ− neighbors and 2 σ+ 
neighbors can become a σ− node with 3 σ− neighbors and 1 σ+ neighbor in two ways: 1. 

(10)pσ−,n(e+) =
(

n
e+

)

· f e+
σ−,add

· (1− f
e+
σ−,add

)n−e+

(11)pσ+,m(e−) =
(

m
e−

)

· f e−
σ+,add

· (1− f
e−
σ+,add

)m−e−

(12)pσ+,n(e+) =
(

n
e+

)

· f e+
σ+,fail

· (1− f
e+
σ+,fail

)n−e+

(13)pσ−,m,n→dσ− ,dσ+
=

∑

e−≤m,e+≤n,m−e−+e+=dσ−

pσ−,m(e−) · pσ−,n(e+)

(14)pσ+,m,n→dσ− ,dσ+
=

∑

e−≤m,e+≤n,m−e−+e+=dσ−

pσ+,m(e−) · pσ+,n(e+)

Fig. 5 Schematic representation of the neighbor opinion changing process of the Gσ− subgraph. The colors 
of the links shows whether the link is connecting to a σ− node (blue) or a σ+ node (red). a State of the Gσ− 
subgraph at time t. b State of the Gσ− subgraph at time t + 1 . Node 2 changes its opinion and be removed 
from Gσ− subgraph. Node 7 changes its opinion and be added to Gσ− subgraph
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One of its σ+ neighbor become σ− neighbor, and the σ− opinion neighbors keep their 
opinion. 2. Both of the σ+ neighbors change their opinion, and one of its σ− neighbor 
change its opinion. The probability that a σ− node with 2 σ− neighbors and 2 σ+ neigh-
bors become a σ− node with 3 σ− neighbors and 1 σ+ neighbor equals to the probability 
that one of these two events happens, which is pσ−,2,2→3,1 = 3

8 × 16
25 + 1

16 × 8
25 = 13

50.
Finally, the ratio of σ− nodes and σ+ that have m σ− neighbors and n σ+ neighbors after 

one iteration to the number of nodes that hold the σ− opinion at the initial state are:

Figure 7 illustrates the entire flow of mean-field dynamics for the NCO model. 

(A) Given the fractions of nodes in different states of the system at a given time t, we 
calculate the fractions of nodes that change their opinions.

(B) With the change of opinions of nodes in σ− and σ+ subgraphs, we get the fraction 
of links removed from (and added to) σ− and σ+ subgraphs.

(15)

fσ−,dσ− ,dσ+
(t + 1) =

∑

m+n=dσ−+dσ+

f ′σ−,m,n(t) · pσ−,m,n→dσ− ,dσ+

+
∑

m+n=dσ−+dσ+

f ′′σ−,m,n(t) · pσ+,m,n→dσ− ,dσ+

(16)

fσ+,dσ− ,dσ+
(t + 1) =

∑

m+n=dσ−+dσ+

f ′σ+,m,n(t) · pσ+,m,n→dσ− ,dσ+

+
∑

m+n=dσ−+dσ+

f ′′σ+,m,n(t) · pσ−,m,n→dσ− ,dσ+

Fig. 6 An example of computing the probability that a σ− node with 2 σ− neighbors and 2 σ+ neighbors 
changing to a σ− node with 3 σ− neighbors and 1 σ+ neighbor. a Probabilistic neighbors state transition of 
a σ− node with 2 σ− neighbors and 2 σ+ neighbors. b Probabilistic state transition of a σ− node with 2 σ− 
neighbors and 2 σ+ neighbors
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(C) Based on the changes of links in the σ− and σ+ subgraphs, we get the probability 
that the neighbors of a node in σ− and σ+ subgraphs change their opinions.

(D) According to the probability that a node’s neighbor changes their opinion, we 
obtain the probability that nodes in certain state changes to other state.

(E) Fractions of nodes in different states at time t + 1 are calculated according to the 
probability that the nodes in certain state change to other state.

We refer to the set of equations used to describe the dynamics of the NCO model in this 
section as the Mean-Field NCO governing equation.

Simulation results and discussions
The time complexity of the Monte-Carlo simulation of NCO model is O(MDmaxN ) , where 
M is the number of repetitions of the simulation, Dmax is the maximum degree in the net-
work and N is the number of nodes in the network. Estimating the opinion fraction through 
simulation is clearly very time-consuming. The mean-field dynamics of the NCO model 
provide a faster way to estimate the opinion fraction F at time t for a specific random graph. 
The time complexity of this method is O(D2

max) . For the Monte Carlo simulation method, 
to achieve high simulation accuracy, we need to perform the simulation many times. How-
ever, for the mean-field method, only a single numerical integration is required. Theoreti-
cally, the maximum degree in a network can be N − 1 , but the probability of nodes with 

Fig. 7 Flowchart of mean-field dynamics for the NCO model
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extremely large degrees is very low. Considering this low probability, we disregard these 
nodes in practical calculations. We set a degree truncation threshold (DTT) Dmax accord-
ing to the following truncation criterion inequality:

where θk represents the fraction of nodes with degree k. The accuracy of the prediction 
results increases as η decreases. For Erdős–Rényi (ER) graphs, the degree truncation 
threshold (DTT) Dmax equals:

where µ = (N − 1)p , σ =
√

Np(1− p) , and � is the cumulative distribution function of 
the standard normal distribution. For Barabási-Albert (BA) models, the degree trunca-
tion threshold (DTT) Dmax equals:

The derivation of these two DTTs is given in Appendix . In this paper, we set η = 10−5 
for ER graphs, and η = 10−3 for BA models. We set a larger η for BA models because BA 
models have more heterogeneous degree distributions.

Opinion fraction F

We first investigate the NCO governing equations described in “Mean-field dynamics 
of NCO model” section on Erdős–Rényi (ER), Barabási-Albert (BA) and configuration 
models by comparing the Monte–Carlo simulation results and the estimation results of 
the opinion fraction F at time t.

The σ− opinion fraction at time t is denoted as:

Theoretically, there is always a possibility that the system will continue to iterate. We set 
the iteration to stop when the rate of change of the final opinion fraction is less than a 
tiny value ǫ , denoted as:

In this paper, we set ǫ = 10−5 . Figure  8 presents the simulation and estima-
tion results of Erdős–Rényi graphs (N  =  10,000, p = 0.0004 ), Barabási-Albert 
graphs (N  =  10,000, kmin = 2 ), and configuration models (with degree distribution 

(17)
∑Dmax

k=0 θk · k
∑N−1

k=0 θk · k
> 1− η

(18)Dmax = min
d∈Z

{

d

∑d
k=0 θk · k

∑N−1
k=0 θk · k

> 1− η

}

(19)Dmax =
⌈

µ+ σ�−1

(

σ(1− η)+
σ

µ
√
2π

exp

(

−
µ2

2σ 2

)

+�

(

−
µ

σ

)

)⌉

(20)Dmax =
⌈

N −m− 1+ 2N − 2m− 2ηN + 2ηm

1+ ηN +m− ηm

⌉

(21)F(t) =
Dmax
∑

dσ−+dσ+=0

fσ−,dσ− ,dσ+
(t)

(22)|F(t + 1)− F(t)| < ǫ



Page 11 of 25Liu et al. Applied Network Science            (2024) 9:47  

D = [0.0, 0.147, 0.106, 0.045, 0.153, 0.158, 0.089, 0.124, 0.039, 0.138] ). Averages over 1000 
realizations are shown for all curves. Figure 9 illustrates the simulation and estimation 
results for the degree distribution of the σ− nodes at time t. As shown in the figures, the 
NCO governing equations provide a good estimate of the opinion fraction in the non-
consensus model.

Fig. 8 Simulation results and mean-field estimations of the final opinion fraction F as a function of initial 
opinion fraction f for different network models
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Fig. 9 The simulation result and mean-field estimation of the opinion fraction F(t) as a function of time t 
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Although the estimated results of final opinion fraction F are very close to the simula-
tion results, there are still some differences between them. Two factors may contribute 
to this discrepancy:

• Some nodes with very large degrees are ignored when performing the estimation, 
which can be improved by reducing the value of η.

• The size of the network used for simulation may not be sufficiently large. Limited 
by computer resources, the maximum network size used in our experiments is 
only 10,000, which may not be sufficiently large to approximate the asymptotic 
result of the NCO mean-field model.

Critical threshold of NCO model

The critical threshold of the NCO model is defined as a specific initial opinion frac-
tion, denoted as fc . Below this threshold, only scattered clusters exist in the steady 
state. However, once the initial opinion fraction surpasses fc , the system can exhibit 
a giant component. The emergence of giant components implies that nodes holding 
a minority opinion in the steady state form non-invasive clusters, whose size is pro-
portional to the size of the network, allowing the minority opinion to stably exist in 
the steady state. The critical threshold is marked by the peak in the relative size of 
the second largest cluster. The NCO governing equations described in “Mean-field 
dynamics of NCO model” section offer a method for determining this critical thresh-
old. Through iterative computations, we obtain the fractions of σ− nodes with differ-
ent neighbor compositions in the steady state. Based on these fractions we can get the 
degree distribution of nodes within the σ− subgraph by

(23)PD=dσ−
=

Dmax−dσ−
∑

j=0

fσ−,dσ− ,j

Fig. 10 The degree distributions of the σ− subgraph at two steady states with different initial opinion 
fraction f of a NCO system in ER networks with N = 10,000, p = 0.0004
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Additionally, by calculating the first and second-order moments of the degree distribu-
tion, we can identify the presence of giant components. For random graphs where giant 
components exist, the following criteria apply (Van Mieghem et al. 2014):

Figure 10 presents the degree distributions of the σ− subgraph at two steady states of an 
NCO system in an ER network with N = 10,000 and p = 0.0004 . Figure 10a shows the 
degree distribution of the σ− subgraph at steady state for an initial opinion fraction of 
f = 0.25 , and Fig. 10b for f = 0.35 . The values of E[k2] − 2 · E[k] for the two cases are 
respectively −0.1898 and 0.8768. For an initial opinion fraction of f = 0.25 , there is no 
giant component of the σ− opinion in the steady state, while for f = 0.35 , a giant com-
ponent will form.

Figure 11 presents the values of E[k2] − 2 · E[k] and the second largest cluster as func-
tions of the initial opinion fraction f for ER, BA model, and configuration model net-
works. The red star marks the zero-crossing point of the E[k2] − 2 · E[k] curve, which 
shows the critical threshold fc derived through NCO governing equation. According 
to Fig. 11, the critical thresholds fc , obtained through the NCO governing equation are 
very close to the critical thresholds derived through simulations.

Size of the largest cluster

The size of the largest σ cluster can also be obtained using the NCO governing equation. 
Newman et al. (2001), Van Mieghem et al. (2014) proposed a method to estimate the size 
of the giant component in random graphs with arbitrary degree distributions, employ-
ing the probability generating function (pgf ). The degree distribution of the σ− subgraph 
at the steady state is obtained in the same manner as described in “Critical threshold of 
NCO model” section. Given this degree distribution, we define the degree generating 
function as follows:

Here, ϕD(z) denotes the degree generating function, where E[zD] represents the expected 
value of z raised to the power of degree D, and Pr[D = j] is the probability of a node hav-
ing degree j.

For an arbitrarily chosen link l and its endpoint l+ , the pgf of the degree Dl+ minus 1 is:

This equation, ϕDl+−1
(z) , represents the pgf for the degree at endpoint l+ , decreased by 

1. Here, ϕ′
D(z) is the first derivative of ϕD(z) , and ϕ′

D(1) is its value at z = 1.
Finally, the normalized size of the largest cluster, s1 , can be derived using:

(24)E[k2] − 2 · E[k] > 0

(25)ϕD(z) = E[zD] =
N−1
∑

j=0

Pr[D = j] · zj

(26)ϕDl+−1(z) = E[zDl+−1] =
ϕ′
D(z)

ϕ′
D(1)

(27)u = ϕDl+−1(u), s1 = 1− ϕD(u)
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In this formulation, u is the solution to the equation involving the pgf, and once found, it 
allows for calculating the normalized size of the largest component s1.

Figure  12 shows the relative size of the largest connected cluster at steady state, as 
obtained by simulation and the NCO governing equation. From these figures, we find 

Fig. 11 Simulation results of the normalized second largest cluster s2 and the value of E[k2] − 2 · E[k] 
obtained from mean-field estimations. ǫ = 1× 10−5 . The intersection of the E[k2] − 2 · E[k] curve with the 
y = 0 curve is the estimate of the critical threshold fc
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that the size of the largest cluster can be accurately derived through the NCO governing 
equation.

Scale invariance of the NCO model

In the mean-field NCO model, the state of the system is represented by the fractions 
of nodes in different states in the system as s = {fσ ,0,0, . . . , fσ ,i,j , . . .} . For NCO systems 
with different numbers of nodes, if the initial states s(0) are the same, the subsequent 

Fig. 12 The simulation result and estimation of the relative size of the largest σ− cluster s1
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states s(t) will also be the same. The fractions of nodes in different states in the initial 
state depend on the degree distribution of the network. For networks with different 
numbers of nodes, as long as their degree distributions are the same, the initial state 
s(0) will be the same, and thus the subsequent states will also be the same.

The degree distribution of an ER graph follows a binomial distribution B(N , p) . 
The binomial distribution B(N , p) can be approximated by a Poisson distribution 
Poisson(�) when N  is large and p is small, such that the mean � = Np remains suf-
ficiently small (Ross 2014).

Under these conditions, the binomial distribution B(N , p) can be approximated by a 
Poisson distribution with � = Np:

Thus, when N  is large, the degree distribution of an ER graph approximately equals the 
probability mass function (PMF) of a Poisson distribution:

If the average degree k = Np of two ER networks is the same, the degree distributions 
of these two networks are approximately equal, which is Poisson(k) . Figure 13 shows the 
Monte Carlo simulation results of the final opinion fraction F  as a function of the initial 
opinion fraction f  for two ER graphs with different numbers of nodes N  and the same 
average degree k  . As we expect, the final opinion fractions of two ER graphs with differ-
ent numbers of nodes N  but the same average degree k  are highly similar.

Degree variation in the NCO model

Nodes with different degrees have different behaviors in the NCO model. To study the 
behavior of nodes with varying degrees, we conduct simulations on the configuration 
model graph with a uniform degree distribution, where the fractions of nodes at each 
degree are the same. This graph was chosen as the experimental network due to the ease 

B(N , p) ∼ Poisson(�)

(28)P[D = k] =
�
ke−�

k!

Fig. 13 Monte–Carlo simulation of the final opinion fraction F as a function of initial opinion fraction f  for 
two ER graphs with N = 100 , p = 0.04 and N = 10,000, p = 0.0004
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of observation. Figure  14 shows how the fractions of σ− nodes with different degrees 
change over time. From Fig. 14, we find that

• Among the σ− opinion nodes, nodes with higher degree are more likely to change 
their opinions to σ+.

• Odd-degree nodes ( d = 2n+ 1 ) are more resistant to opinion change compared to 
even-degree nodes ( d = 2n).

For nodes with high degrees, their individual opinions count less weight within their 
local opinions, making them more responsive to the prevailing global consensus. Conse-
quently, nodes with high degrees are more likely to change their opinions.

According to the analysis in “Mean-field dynamics of NCO model” section, the prob-
ability of the number of σ− neighbors of a node becoming σ+ neighbors follows the bino-
mial distribution. Normally, those minority opinion σ− nodes with higher degree has 
more σ− neighbors than those with lower degree. This means σ− nodes with high degree 
are more likely to lose σ− neighbors, and more likely to become a node with more σ+ 
neighbors than σ− neighbors. Thus nodes with higher degree are more likely to change 
their opinions.

Another intriguing phenomenon we have noticed is that odd-degree nodes 
( d = 2n+ 1 ) are more resistant to opinion change compared to even-degree nodes 
( d = 2n ). Surprisingly, despite odd-degree nodes having one more neighbor compared 
to even-degree nodes with one less neighbor, the probability of odd-degree nodes being 
influenced is lower than that of even-degree nodes.

The probability of opinion change for even-degree σ− nodes with d = 2n and 
Nσ−,v = i , and odd-degree σ− nodes with d = 2n+ 1 and Nσ−,v = i can be expressed as 
follows:

Fig. 14 The fraction of σ− nodes as a function of node degree in the configuration model network based 
on a uniform degree distribution (N = 10,000, dmin = 1, dmax = 16 ) for different time slot t. The intial opinion 
fraction f = 0.45
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Now, we analyze the difference between podd,i and peven,i:

where X1,X2 follows binomial distributions B(2n+ 1− i, pσ−,add),B(2n− i, pσ−,add).
For the two binomial distribution with same p and same required successes num-

ber, the larger the number of Bernoulli trials, the higher the probability, and thus 
Pr[X1 < n− i + e−] − Pr[X2 < n− i + e−] < 0 . Therefore, we can conclude that, for 
nodes with the same number of σ− neighbors, even-degree nodes are more likely to 
change their opinions compared to odd-degree nodes. This explains to some extent why 
the opinions of nodes of odd degree are more stable.

Behavioural trends in NCO models

The behavioral logic of nodes in the NCO model is to adopt the local majority opinion. 
From each node’s perspective, this results in a decrease in the number of neighboring 
nodes that hold a different opinion. Generally, from a global perspective, the conse-
quence of each node adopting this behavior is a decrease in the number of links con-
necting nodes with dissenting opinions after each opinion change. This trend is realized 
in two ways:

• The decrease in the number of nodes holding the minority opinion. Like the example 
in Fig. 15 shows, the number of minority opinion (red) nodes decrease from 4 to 1. 
The number of links connecting red and blue opinion nodes decreases from 12 to 1.

• The formation of separated σ− and σ+ clusters in the network, where nodes in each 
cluster have more connections to each other than to other clusters. As illustrated in 

(29)
peven,i,2n+1−i =

∑

e−<i

∑

i − e− + e+ < n

pσ−,i(e−) · pσ+,2n+1−i(e+),

(30)
podd,i,2n−i =

∑

e−<i

∑

i − e− + e+ < n

pσ−,i(e−) · pσ+,2n−i(e+).

(31)
podd,i,2n+1−i − peven,i,2n−i

=
∑

e−<i pσ−,i(e−) · (Pr[X1 < n− i + e−] − Pr[X2 < n− i + e−])
< 0

Fig. 15 Dynamics of the NCO model on a network with N = 11 nodes. a At t = 0 , 4 nodes are assigned with 
a red opinion, and the other 7 nodes with a blue opinion. The local majority opinion for node 1, 5, 8 are blue, 
and they will change their opinions. b At t = 1 , all nodes in the system are holding a local majority opinion. 
The system has reached a steady state
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Fig. 16, nodes 1–5 form a blue opinion cluster, while nodes 6–11 form a red opinion 
cluster. The number of links connecting red and blue opinion nodes decreases from 
14 to 1.

To study the behavioral trends in the NCO model for large-sized graphs, we per-
form simulations on a configuration model network with a uniform degree distribu-
tion (N = 10,000, dmin = 1 , and dmax = 16 ) with initial opinion fractions f = 0.45 and 
f = 0.5 . When the fractions of σ− and σ+ are the same at the initial state, as shown in 
Fig. 17, the fraction of σ− nodes F(t) does not change over time. However, the number of 
links between σ− and σ+ subgraphs lσ−σ+ decreases as time progresses. Figure 18 shows 
that after each iteration both the the fraction of σ− nodes F(t) and the number of links 
between σ− and σ+ subgraphs lσ−σ+ decrease. Additionally, in first several time slots, 
lσ−σ+ doesn’t decrease proportionally with F(t), which means minority opinion nodes 
with more majority opinion neighbors are more likely to change their opinions. These 

Fig. 16 Dynamics of the NCO model on a network with N = 11 nodes. a At t = 0 , 6 nodes are assigned 
with a red opinion, and the other 5 nodes with a blue opinion. The local majority opinion for node 1, 5, 6, 10 
are different with their own current opinion, and they will change their opinions. b At t = 1 , all nodes in the 
system are holding a local majority opinion. The system has reached a steady state

Fig. 17 Number of links between σ− and σ+ subgraphs lσ−σ+ and the opinion fraction F(t) as functions 
of time t of the dynamics of the NCO model in the Configuration Model network with a uniform degree 
distribution (N = 10,000, dmin = 1, dmax = 16 ) and f = 0.5
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figures also illustrate how the number of links between the σ− and σ+ subgraphs changes 
over time for these two cases.

Conclusion
To enhance further understanding of the Non-Consensus Opinion (NCO) model, we 
derived in this paper a mean-field-based description for the NCO model under the assump-
tion of low degree–degree correlation. The mean-field NCO equations merely require 
knowledge on a node’s own current opinion and the number of its σ− and σ+ neighbors 
but does not require any knowledge on the exact network structure. The basic assumption 
of the mean-field dynamics in the configuration model of the NCO model is that, at each 
iteration, the σ− ( σ+ ) neighboring nodes of a node change its opinion according to a certain 
probability. This probability can be obtained from the fractions of nodes in different states. 
Important parameters such as the fraction of a certain opinion F , the critical threshold fc , 
and the size of the largest connected cluster for a given opinion s1 can be derived using this 
mean-field method. Simulation results show that this mean-field dynamics can effectively 
approximate F , fc , and s1 . This mean-field description provides an analytical way to explain 
some phenomena observed in the NCO model. The scale invariance of the NCO model is 
discussed. The variation in the degrees of nodes with different opinions in the dynamics 
of the NCO model is also investigated. We explain why nodes with minority opinions and 
greater degrees are more likely to change their opinions in the NCO model. We also explain 
why nodes with minority opinions and even degrees are more likely to change their opin-
ions than those with odd degrees. Additionally, we reveal that, in most cases, the dynamics 
of the NCO model tends toward a decrease in the number of links connecting nodes with 
different opinions.

The mean-field description given in this study can be used in studies of other spin-type 
opinion models. In particular, the mean-field equations are beneficial in spin-type opinion 
models where exact solutions are scarce and simulations time-consuming. Analysing phase 

Fig. 18 Number of links between σ− and σ+ subgraphs lσ−σ+ and the opinion fraction F(t) as functions 
of time t of the dynamics of the NCO model in the Configuration Model network with a uniform degree 
distribution (N = 10,000, dmin = 1, dmax = 16 ) and f = 0.45
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transitions and other key properties of the opinion models are much easier and insightful 
with the help of our mean-field method. An open question is whether a similar method can 
be derived for networks with a large degree–degree correlation.

Appendix 1: Degree truncation threshold (DTT)
Appendix 1.1: Erdős–Rényi (ER) Graph

For an Erdős–Rényi (ER) graph, the degree distribution θk follows a binomial distribution:

Then we obtain that:

The term 
(

N − 1
k

)

pk(1− p)N−1−k is the probability density function (PDF) of the 

binomial distribution. According to the Central Limit theorem(Van Mieghem et al. 2014; 
Walker and Helen 1985), the binomial distribution approximately equals the normal dis-
tribution for large N. The truncation criterion function of ER graph can then be approxi-
mated as follows:

where µ = (N − 1)p and σ =
√

(N − 1)p(1− p).
To get Dmax , we need to solve the following truncation criterion inequality:

Next, rearrange to solve for the integral:

(32)θk =
(

N − 1
k

)

pk(1− p)N−1−k

(33)

∑Dmax

k=0 θk · k
∑N−1

k=0 θk · k

=

∑Dmax

k=0 k

(

N − 1
k

)

pk(1− p)N−1−k

∑N−1
k=0 k

(

N − 1
k

)

pk(1− p)N−1−k

(34)

∑Dmax

k=0 k

(

N − 1
k

)

pk(1− p)N−1−k

∑N−1
k=0 k

(

N − 1
k

)

pk(1− p)N−1−k

=

∑Dmax

k=0 k

(

N − 1
k

)

pk(1− p)N−1−k

µ

=

∫ Dmax

0 k 1√
2πσ

exp
(

− (µ−k)2

2σ 2

)

dk

µ

(35)
∫ Dmax

0 k 1√
2πσ

exp
(

− (µ−k)2

2σ 2

)

dk

µ
> 1− η

(36)
∫ Dmax

0
k

1
√
2πσ

exp

(

−
(µ− k)2

2σ 2

)

dk > (1− η)µ
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Let Z be the standard normal variable:

Then,

Substitute k and dk into the integral:

This simplifies to:

Recognize the integrals:

The first integral:

where � is the cumulative distribution function of the standard normal distribution.
The second integral:

In general Dmax is large, thus exp
(

− (Dmax−µ)2

2σ 2

)

≈ 0 . Then we obtain:

Finally, the truncation criterion inequality becomes:

Z =
k − µ

σ

dk = σ dZ and k = µ+ σZ

(37)
∫

Dmax−µ
σ

−µ
σ

(µ+ σZ)
1

√
2πσ

exp

(

−
Z2

2

)

σ dZ > (1− η)µ

(38)
∫

Dmax−µ
σ

−µ
σ

(

µ

σ

1
√
2π

exp

(

−
Z2

2

)

+
σZ
√
2π

exp

(

−
Z2

2

))

dZ > (1− η)µ

(39)

µ

σ

∫
Dmax−µ

σ

−µ
σ

1
√
2π

exp

(

−
Z2

2

)

dZ + σ

∫
Dmax−µ

σ

−µ
σ

Z
√
2π

exp

(

−
Z2

2

)

dZ > (1− η)µ

(40)
µ

σ

∫
Dmax−µ

σ

−µ
σ

1
√
2π

exp

(

−
Z2

2

)

dZ =
µ

σ

(

�

(

Dmax − µ

σ

)

−�

(

−
µ

σ

)

)

σ

∫
Dmax−µ

σ

−µ
σ

Z
√
2π

exp

(

−
Z2

2

)

dZ

= −
σ

√
2π

exp

(

−
Z2

2

)∣

∣

∣

∣

Dmax−µ
σ

Z=−µ
σ

=
σ

√
2π

(

exp

(

−
(Dmax − µ)2

2σ 2

)

− exp

(

−
µ2

2σ 2

)

)

σ

∫
Dmax−µ

σ

−µ
σ

Z
√
2π

exp

(

−
Z2

2

)

dZ ≈ −
σ

√
2π

exp

(

−
µ2

2σ 2

)

(41)
µ

σ

(

�

(

Dmax − µ

σ

)

−�

(

−
µ

σ

)

)

−
σ

√
2π

exp

(

−
µ2

2σ 2

)

> (1− η)µ
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Solve for Dmax:

Appendix 1.2: Barabási‑Albert (BA) model

For an Barabási-Albert (BA) model, the degree distribution θk follows a binomial distri-
bution (Pósfai and Barabási 2016):

Then we obtain that:

Then we obtain the truncation criterion inequality:

Finally, solve for Dmax:
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(42)Dmax =
⌈

µ+ σ�−1

(

σ(1− η)+
σ

µ
√
2π

exp

(

−
µ2

2σ 2

)

+�

(

−
µ

σ

)

)⌉

(43)θk =
2m(m+ 1)

k(k + 1)(k + 2)

(44)

∑Dmax

k=0 θk · k
∑N−1

k=0 θk · k

=
∑Dmax

k=m
2m(m+1)
(k+1)(k+2)

∑N−1
k=m

2m(m+1)
(k+1)(k+2)

=
1

m+1 − 1
Dmax+2

1
m+1 − 1

N+1

=
(Dmax + 1−m)(N + 1)

(Dmax + 2)(N −m)

(45)
(Dmax + 1−m)(N + 1)

(Dmax + 2)(N −m)
> 1− η

(46)Dmax =
⌈

N −m− 1+ 2N − 2m− 2ηN + 2ηm

1+ ηN +m− ηm

⌉
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