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Abstract 

Network science established itself as a prominent tool for modeling time series 
and complex systems. This modeling process consists of transforming a set or a sin-
gle time series into a network. Nodes may represent complete time series, segments, 
or single values, while links define associations or similarities between the represented 
parts. R is one of the main programming languages used in data science, statistics, 
and machine learning, with many packages available. However, no single package 
provides the necessary methods to transform time series into networks. This paper pre-
sents a detailed revision of the main transformation methods in the literature and their 
implementation in the ts2net package in R. The package provides time series 
distance functions that can be easily computed in parallel and in supercomputers 
to process larger data sets and methods to transform distance matrices into networks. 
ts2net also provides methods to transform a single time series into a network, such 
as recurrence networks, visibility graphs, and transition networks. Together with other 
packages, ts2net permits the use of network science and graph mining tools 
to extract information from time series.
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Introduction
Networks are one of the most prominent tools for modeling complex systems (Mitchell 
2006). Complex systems are commonly represented by a set of time series with interde-
pendencies or similarities (Silva and Zhao 2018). This set can be modeled as a network 
where nodes represent time series, and links connect pairs of associated ones. Associ-
ations are usually measured by time series distance functions, carefully chosen by the 
user to capture the desired similarities. Thus, the network construction process consists 
of two steps. First, the distance between all pairs of time series is calculated and stored 
in a distance matrix. Then, this distance matrix is transformed into an adjacency matrix. 
The network topology permits not just the analysis of the small parts (nodes) in the sys-
tem but also their relationship (edges). This powerful model allows network science and 
graph mining tools to extract information from different domains such as climate sci-
ence (Boers et al. 2019; Ferreira et al. 2021a), social science (Ferreira et al. 2021b), neuro-
science (Bullmore and Sporns 2009), and finance (Tumminello et al. 2010).
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In recent years, networks have also been applied to model a single time series. The 
goal is to transform one time series into a network and apply network science techniques 
to perform time series analysis (Silva et al. 2021). Different modeling approaches have 
been proposed, and the general idea is to map single values (Lacasa et  al. 2008), time 
windows, transitions (Campanharo et  al. 2011), or recurrence (Donner et  al. 2010) as 
nodes and their relationship by links. Then, the general goal is to use network science 
and graph mining tools to extract information from the modeled time series.

R is one of the most used programming languages in statistics, data science, machine 
learning, and complex networks. In the context of time series analysis, there are plenty 
of packages in R covering many types of analysis, such as characterization, filtering, 
modeling, pattern recognition, and prediction (Shumway and Stoffer 2017; Hyndman 
and Athanasopoulos 2021). For network science, R provides some packages including 
igraph (Csardi and Nepusz 2006) and sna (Butts 2020). Even with many resources 
available in R, there is no package that links time series analysis and network science.

This paper presents ts2net, a package to construct networks from time series in R. 
Ts2net permits the use of network science to study time series. Together with other 
R packages, ts2net permits distance calculations, network construction, visualization, 
statistical measures extraction, and pattern recognition using graph mining tools. Most 
of the key functions are implemented using multicore programming, and some use-
ful methods make ts2net easy to run in supercomputers and computer clusters. The 
package is open-access and released under the MIT license.

In the following sections, I present a revision on the background concepts related to 
time series network modeling (Sect. 2), the ts2net package (Sect. 3), and two applica-
tions using real data (Sect. 4), followed by some final remarks.

Background Concepts
In summary, the whole network construction process involves the calculations of time 
series distance functions, represented by a distance matrix, and the transformation of 
this matrix into a network. This section presents a detailed revision on how to model 
time series into networks.

Distance functions

Time series comparison is a fundamental task in data analysis. This comparison can be 
estimated using similarity or distance functions (Deza and Deza 2009; Esling and Agon 
2012; Wang et al. 2013). Some research domains use the concept of similarity, while oth-
ers prefer distance functions. Similarity and distance are inverse concepts that have the 
same usefulness. Here in this paper, for simplicity, I use the distance concept. However, 
it is important to remember that a similarity function can be generally transformed into 
distance functions and vice-versa. The distance or metric d : X × X → R is a function 
that for all time series X ,Y ,Z ∈ X  , the following properties hold:

•	 non-negativity: d(X ,Y ) ≥ 0,
•	 symmetry: d(X ,Y ) = d(Y ,X),
•	 reflexity: d(X ,Y ) = 0 ⇐⇒ X = Y ,
•	 triangular difference: d(X ,Y ) ≤ d(X ,Z)+ d(Z,Y ).
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Some time series comparison measures used in ts2net are not true metrics because 
they do not follow one or more required properties above (Deza and Deza 2009). How-
ever, for simplicity reasons, this paper uses the term “distance” to generally refer to any 
of these functions.

The distance should be carefully chosen, as the network topology, and further anal-
ysis and conclusions will be directly affected by this choice. Choosing the appropriate 
distance depends on aspects such as the nature of the time series, the underlying pat-
terns, or specific features. Given these many aspects, there is no simple rule that guides 
the choice of the distance function. Previous papers provide comprehensive reviews on 
distance functions that can help users in the selection process (Esling and Agon 2012; 
Wang et al. 2013). This paper covers the most used distance functions used to construct 
networks from time series.

The rest of Sect. 2.1 reviews the main distance functions implemented in the ts2net 
package.

Correlation‑based distances

The Pearson Correlation Coefficient (PCC) r is one of the most used association meas-
ures (Asuero et al. 2006). Given two time series X and Y (both with length T), and their 
respective mean values X  and Y  , the PCC is defined as

The PCC can be transformed into a distance function by considering the absolute value 
of r as follows:

In this case (Eq. 2), both strong correlations ( r ≈ 1 ) and strong anti-correlation ( r ≈ −1 ) 
lead to dcor_abs(X ,Y ) ≈ 0 . This distance is particularly useful if both correlated and anti-
correlated time series should be linked in the network. Conversely, if only strong positive 
correlations or strong negative correlation should be mapped into links in the network, 
then Eq. 3 or Eq. 4 can be used instead.

Cross-correlation is also a widely used measure to find lagged associations between time 
series. Instead of directly calculating the PCC, the cross-correlation function (CCF) 
applies different lags (displacement) to the series and then returns the correlation to 
each lag. Instead of returning a single correlation value, as in the PCC, the CCF returns 
an array of size 2 · τmax + 1 , where τmax ∈ N is the maximum lag defined by the user. 
Each element of this array corresponds to the r(X ,Yτ ) between the time series X and Yτ , 
which is the Y lagged by τ ∈ [−τmax, τmax] units.

(1)r(X ,Y ) =
T
i=1(Xi − X)(Yi − Y )

T
i=1(Xi − X)2(Yi − Y )2

.

(2)dcor_abs(X ,Y ) = 1− |r(X ,Y )|.

(3)dcor_pos(X ,Y ) =1−max(0, r(X ,Y ))

(4)dcor_neg(X ,Y ) =1−max(0, −r(X ,Y ))
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The CCF can be transformed into a distance function in the same way as the PCC 
(Eqs. 2, 3, and 4). The maximum absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) cor-
relations r(X ,Yτ ),∀ τ ∈ [−τmax, τmax].

One crucial question is the correlation statistical significance. The significance test 
avoids spurious correlations and false links in the network. One way to test consists of 
using the Fisher z-transformation defined as (Asuero et al. 2006):

This transformation stabilizes the variance and can be used to construct a confidence 
interval (CI) using standard normal theory, defined (in z scale) as

where q is the desired normal quantile and T is the length of the time series. The CI can 
be transformed back into the original scale using the inverse transformation:

leading to

The correlation (Eqs. 2, 3, and 4) and cross-correlation distances (Eqs. 5, 6, and  7) can 
be adapted to consider the statistical test given a significance level α . These adaptations 
consist of substituting the correlation function r(X, Y) in the equations with a binary

Distances based on information theory

Mutual information (MI) is one of the most common measures used to detect non-lin-
ear relations between time series. The MI measures the average reduction in uncertainty 
about X that results from learning the value of Y or vice versa (MacKay 2003). The con-
cept of information is directly linked to Shannon’s entropy, which captures the “amount 

(5)dccor_abs(X ,Y ) =1−
(

max
τ∈[−τmax ,τmax]

|r(X ,Yτ )|
)

.

(6)dccor_pos(X ,Y ) =1−
(

max
τ∈[−τmax ,τmax]

max(0, r(X ,Yτ )

)

(7)dccor_neg(X ,Y ) =1−
(

max
τ∈[−τmax ,τmax]

max(0, −r(X ,Yτ )

)

(8)z(r) =
1

2
ln

1+ r

1− r
= (ln(1+ r)− ln(1− r))/2.

(9)
(

zmin = z −
q

√
t − 3

, zmax = z +
q

√
t − 3

)

,

(10)r(z) =
e2z − 1

e2z + 1
,

(11)CI = (r(zmin), r(zmax)).

(12)rtest(X ,Y ) =
{

0 if r(X ,Y ) ∈ CI (H0 not discarded)
1 otherwise (H1 holds).
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of information” in a time series. Given a discrete time series X and its probability mass 
function P(X), the marginal entropy H(X) is defined as

The conditional entropy H(X|Y) measures how much uncertainty X has when Y is 
known.

A histogram can be used to estimate the probabilities. The number of bins in the his-
togram directly influences the entropy results and should be chosen accordingly. Some 
common options to estimate the number of bins are the Sturges’s, Scott’s, and Freed-
man-Diaconis criteria (Wand 1997).

The mutual information (MI) can be estimated using Eq. 15.

The mutual information has only a lower bound (zero), which makes it sometimes dif-
ficult to interpret the results. Some normalization methods can limit the MI to the inter-
val [0, 1] to make the comparison easier. The normalized mutual information (NMI) can 
be defined as

where U is the normalization factor. Common normalization approaches are 
either the half of the sum of the entropies U = 0.5H(X)H(Y ) , minimum entropy 
U = min(H(X),H(Y )) , maximum entropy U = max(H(X),H(Y )) , or the squared root 
of the entropies product U =

√
H(X)H(Y ) (Vinh et al. 2010). The NMI distance is

Another common distance function based on MI is the Variation of Information (VoI) 
(Eq. 18) (Vinh et al. 2010). VoI, different from the MI, is a true metric.

The maximal information coefficient (MIC) is an algorithm that searches for the larg-
est MI between two series (Reshef et al. 2011). MIC considers that if there exists a rela-
tionship between two time series, then it is possible to draw a grid on the scatter plot 
of these two series that encapsulates that relationship. MIC automatically finds the best 
grid and returns the largest possible MI.

Dynamic time warping

The Dynamic Time Warping (DTW) (Berndt and Clifford 1994; Giorgino 2009) is an 
elastic distance function that uses a warping path to align two time series and then 
compare them. Different from lock-step measures (such as the Euclidean distance), 

(13)H(X) = −
t

∑

i=1

P(xi) log P(xi).

(14)H(X |Y ) = −
∑

i,j

p(Xi,Yj) log
p(Xi,Yj)

p(Yj)

(15)I(X ,Y ) = H(X)+H(Y )−H(X ,Y )

(16)NMI(X ,Y ) = I(X ,Y )/U ,

(17)dnmi(X ,Y ) = 1− NMI(X ,Y ).

(18)dvoi(X ,Y ) = H(X)+H(Y )− 2I(X ,Y )
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elastic measures use a warping path defining a mapping between the two series 
(Fig.  1). The optimal path minimizes the global warping cost. The DTW distance 
dDTW(X ,Y ) = dtw(i = t, j = t) between two time series X and Y (both of length T) can 
be defined using dynamic programming. The total distance is the cumulative distance 
calculated from the recurrence relation dtw(i, j), defined as:

Event‑based distances

The idea behind event-based distance functions is to compare marked time points where 
some events occur in the time series. The definition of an event is specific to the domain 
where the time series comes from. For example, Fig. 2a illustrates two ECG time series X 
and Y where events (black dots) can be defined as some local maximum values as the T 
wave representing the ventricular repolarization during the heartbeat. Another example 
is the concept of extreme events of precipitation that can be defined as the days with 
rainfall sums above the 99th percentiles of wet days during the rain season (Boers et al. 

(19)

ddtw(X ,Y ) = dtw(i = T , j = T ) =



















∞ if i = 0 xor j = 0
0 if i = j = 0

|Xi − Yj| +min







dtw(i − 1, j)
dtw(i, j − 1)
dtw(i − 1, j − 1)

otherwise
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Fig. 1  Comparison between lock-step and elastic measures. The figure shows a sine (red) and a cosine (blue) 
time series. The gray dashed lines show the comparison of the values in (a) a traditional lock-step distance 
such as the Euclidean distance and (b) in an elastic one as in DTW
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Fig. 2  The intuition behind event-based distance functions. a Two ECG time series X and Y are depicted in 
red (top) and blue (bottom), respectively. Data were extracted and adapted from (Goldberger et al. 2000; Liu 
et al. 2016). Black dots represent marked events in both time series. (b and c) Segments in red ( Xev ) and blue 
( Yev ) represent the events (black dots) in X and Y, respectively. b For each event in Xev , the distance function 
tries to find another event in Yev considering a time window ( τ = ±3 ), illustrated by the red and blue 
pentagons. c The same search can be performed the other way around
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2019). Common approaches used to define events are local maxima and minima, values 
higher or lower than a threshold, values higher or lower percentiles, or outliers in the 
series. An event time series Xev is here defined as a binary time series composed of ones 
and zeros representing the presence or absence of an event respectively in a time series 
X. Figure 2b and c illustrate these events time series for the ECG time series in Fig. 2a. 
Another common representation is the events sequence X ′ = {t1, t2, · · · , tN } that defines 
the time indices where each event occurs.

Event-based distance functions try to find co-occurrences or synchronization between 
two event time series. The general aim is to count pairs of events in both time series that 
occur at the same time window of length. For example, considering the five events (black 
dots) in Fig. 2a, b shows the co-occurrence of events from Xev to Y ev considering a time 
window. For the five events, only the last one does not co-occur. Fig 2c shows the inverse 
process that can or not be equal depending on the specific distance function. Thus, func-
tions can be symmetrical or not (directed). Symmetrical distances consider co-occur-
rences from X to Y but also from Y to X. Directed measures only consider the events in a 
precursor time series X compared to another one Y, but not the other way around.

Quian  Quiroga et  al. (2002) proposed a method to measure the synchronization 
between two event time series. Considering two event sequences X ′ = {t1, · · · , tNX } and 
Y ′ = {t1, · · · , tNY } , and a time lag τ , this method counts the number of times an event 
appears in X ′ shortly after it appears in Y ′ considering using the following equation

where J τij is defined as

where tXi  and tYj  are the time indices i and j from X ′ and Y ′ respectively. Analogously, 
cτ (Y ′|X ′) can also be calculated using Eq.  20. The symmetrical event-based distance 
between X ′ and Y ′ , can be calculated using Eq. 22, where dq(X ′,Y ′) = 0 indicates full 
synchronization.

The asymmetrical version counts only the number of events in X ′ that precede those in 
Y ′ (or the opposite in an analogous way), and it is originally defined in the interval [-1,1]. 
To standardize the interval with the other distances in this paper, Eq. 23 measures the 
asymmetrical distance where zero means that all events in X ′ precede those in Y ′ , and 
one no synchronization.

(20)cτ (X ′|Y ′) =
NX
∑

i=1

NY
∑

j=1

J τij ,

(21)J τij =







1 , if 0 < tXi − tYj ≤ τ

1/2 , if tXi = tYj
0 , otherwise

(22)d
sy
es(X

′,Y ′) = 1−
cτ (X ′|Y ′)+ cτ (Y ′|X ′)

√
NXNY

.

(23)dases (X
′,Y ′) = 1−

cτ (Y ′|X ′)− cτ (X ′|Y ′)+
√
NXNY

2
√
NXNY
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The authors also propose a local time window τij when event rates changes in the time 
series. The counting function (Eq. 20) can be adapted to a local time window by replac-
ing τ by

 Boers et al. (2019) introduce a parameter τmax that limits the maximum local time win-
dow (Eq. 24).

The van Rossum distance (v. Rossum 2001) is another method used to find synchro-
nizations between events. The main idea is to transform each event into a real function 
and compare them, as illustrated in Fig. 3. The first step consists on mapping an event 
sequence X ′ = {t1, · · · , tN } into a function V (X ′) = 1/N

∑N
i=1 hτ (t − xi)u(t − xi) , 

where hτ (t) is a filtering function. Examples of filtering functions include the Gauss-
ian hgτ (t) = exp(−t2/(2τ 2))/

√
2πτ 2 and the laplacian hlτ (t) = exp(−|t|/τ)/(2τ ) ker-

nels. The parameter τ defines the co-occurrence time scale. The van Rossum distance 
can be calculated as

One common approach to test the significance of event-based distance functions 
considers surrogate data (Boers et al. 2019; Ferreira et al. 2021b). The idea is to gen-
erate artificial event sequences by shuffling the events in the two original time series 
and then measuring their distance. After repeating this process a multiple times, it is 
possible to construct a distribution of distances and use it as a confidence level for the 
comparison.

Transforming a set of time series into a network

A network or a graph (Bondy and Murty 2008; Barabási and Pósfai 2016), G(V, E) is 
composed of a set of n nodes (also called vertices) V and a set of m links (also called 
edges) E connecting two nodes. The most common representation for a network is the 
adjacency matrix A whose entry aij = 1 if the nodes i and j are connected or aij = 0 
otherwise. A weighted network can also be represented by A. In this case, each entry 

(24)τij = min{tXi+1 − tXi , t
X
i − tXi−1, t

Y
j+1 − tYj , t

Y
j − tYj−1}/2.

(25)dvr(X
′,Y ′) =

√

∫ ∞

0
[V (X ′)− V (X ′)]2dt.
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Fig. 3  The general idea behind the van-Rossum distance (v. Rossum 2001). Two event time series a Xev and 
b Yev where vertical segments represent the events in both time series. The von-Rossum distance transforms 
each event into a real function illustrated respectively in (c) and (d). e Considering the difference between 
the two transformed time series VX − VY , the von-Rossum distance corresponds to the area under this curve 
(light gray)
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aij = wij ∈ R �=0 corresponds to the weight wij between nodes i and j, or aij = 0 if there 
is no link.

A set of time series X  can be transformed into a network by calculating the distance 
between all pairs of time series. These distances are represented by the distance matrix 
D whose position dij stores the distance between the time series i and j. The network 
construction process consists of transforming the distance matrix D into an adja-
cency matrix A where each node represents a time series. The most common building 
approaches are (Silva and Zhao 2018; Qiao et al. 2018):

•	 k-NN network: In a k nearest neighbors network (k-NN), each node (representing a 
time series) is connected to the k other ones with the shortest distances. Thus, the 
construction process requires finding for each row i of D the k other elements with 
shortest distances, where k ∈ W is a parameter defined by the user. Approximation 
algorithms speed up the construction process (Arya et al. 1998; Chen et al. 2009).

•	 ǫ-NN network: In a ǫ nearest neighbors network ( ǫ-NN), (Fig. 4b), each node is con-
nected to all the other ones if their distances are shorter than ǫ ∈ R+ , defined by the 
user. An advantage of the ǫ - over k-NN networks is that the ǫ permits a finer in the 
threshold choice. Another advantage is the fact that ǫ can restrict the connections to 
only strong ones, while the k-NN will always connect nodes regardless if the k short-
est distances are small or high. Similar to k-NN networks, approximations can speed 
up the construction process (Arya et al. 1998; Chen et al. 2009).

•	 Weighted network: Instead of limiting the number of links, a weighted network 
(Fig. 4c) can be constructed from D by simply connecting all pairs of nodes and using 
their distances to set weights. In general, link weights have the opposite definition 
of a distance, which means that the shorter the distance between two time series, 
the stronger the link connecting the respective nodes. Considering that D is in the 
interval [0,1], the weighted adjacency matrix can be defined as A = 1 - D. Conversely, 
if D ∈ [0,+∞] , D can be first normalized between [0,1] ( Dnorm ) and then consider A 
= 1 - Dnorm.

•	 Networks with significant links: In many applications, it is important to minimize 
the number of spurious links in the network. One way of minimizing these spuri-
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Fig. 4  The geometrical intuition behind three different network construction processes. Each time series 
is represented by a blue node in the network, except the reference time series represented in red. The 
figures show the distances from the reference time series to all the other ones. a In a k-NN (k=4) network, 
the reference node is connected to the four other ones with the shortest distances. b In a ǫ-NN ( ǫ = 0.4) 
network, the reference node is linked to all the nodes whose distance is shorter than ǫ (within the dashed 
circle). c In the weighted graph, the reference node is connected to all the other ones, and the link weight is 
( w = 1− d ). The link thickness is proportional to the weight
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ous links is by considering statistical tests for the distance functions. In other words, 
this network construction process connects all pairs of nodes only if their distance is 
statistically significant. For example, the significance of the Pearson correlation coef-
ficient can be tested using the z-transformation (Eq. 9) described in Sect. 2.1. This 
network construction process can be seen as a special case of ǫ-NN network where 
ǫ is a threshold for significant links. It is important to remember that this building 
approach minimizes the number of spurious links but does not guarantee that they 
will not appear.

Networks can be static or temporal (Holme and Saramäki 2012; Kivelä et  al. 2014). 
A static network G(V, E) uses the whole historical data in a time series to construct a 
single network. Temporal networks divide the historical period into time windows that 
are used to construct layers in a temporal (multilayered) network. A temporal network 
is a sequence of static networks ordered in time. Each layer can be seen as a snapshot of 
the time window. The temporal network construction process requires the computation 
of a set of distance matrices D = {D1, · · · ,DW } , one for each of the W windows. A time 
window is defined by the user and has a length �t and a step s that defines the number of 
values that are included and excluded in each window. The temporal network construc-
tion consists of transforming each distance matrix D ∈ D into a network layer using the 
same process used for a static network previously described in this section. One of the 
main advantages of this approach is to make possible the temporal analysis (evolution) 
of the modeled system.

The network construction process has a combinatorial nature. Considering a set of n 
time series, the whole construction process requires 

(n
2

)

 distance calculations in a static 
network or W ·

(n
2

)

 in a temporal network, where W is the number of layers. The trans-
formation from the distance matrix to the adjacency matrix requires searches for pairs of 
shortest nodes, a task that is much faster than the distance calculations. For this reason, 
the conversion step ( D → A ) can be neglected in the total time complexity is O(

(n
2

)

) . 
This means that the number of distance computations can increase very fast for very 
large time series data sets, making the network modeling approach infeasible.

Transforming a single time series into a network

This section presents methods to transform a single time series into a network (Zou 
et al. 2019; Silva et al. 2021).

Proximity networks

The most straightforward method to perform this transformation consists of breaking the 
time series into time windows and using the same approach described for multiple time 
series (Sect. 2.2). Each time window is considered a time series and the network construc-
tion process requires calculating a distance matrix D between all time windows using a dis-
tance function. Then, D can be transformed into an adjacency matrix using methods such 
as k-NN and ǫ-NN networks (Silva and Zhao 2018). The time window size should be care-
fully chosen. For example, time windows too small can be problematic when calculating 
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correlation distances. For this reason, this simple construction procedure may not be suit-
able for short time series because it could generate small time windows.

Transition networks

Transition networks map time series into symbols, represented by nodes and edges to link 
transitions between symbols. Campanharo et al. (2011) proposed a straightforward way of 
defining the symbols, which consists of first dividing a time series into equally spaced bins. 
Each bin corresponds to a symbol that is mapped to a node in the network. Each time series 
value is mapped to a sequence of symbols according to the bins they are inserted. Then, for 
every pair of consecutive symbols, a directed link is established between the correspond-
ing nodes. Two equal consecutive symbols lead to self-loops in the network. Edge weights 
count the number of times that a transition between the two symbols occurs. After the con-
struction process, the weights of the outgoing links from each node can be normalized and 
interpreted as a transition probability between symbols. In this case, the network can be 
seen as a Markov Chain. Figure 5 presents an example of a transition network.

Visibility graphs

Lacasa et al. (2008) proposed a method called visibility graph that transforms a time series 
into a network. The idea is to represent each value in a time series by a bar in a barplot, 
as illustrated in Fig. 6. Then, each value becomes a node and links connect them if they 
can “see” each other. In the original definition, called natural visibility graph (NVG), the 
concept of visibility is defined as a line in any direction that does not cross any other bar. 
Considering a time series X = {Xi, · · · ,XN } with N values and its natural visibility graph 
NVGX = {vi, · · · , vN } , two nodes vi and vj are connected if

Other works adapted or restricted the idea of visibility. The horizontal visibility graph 
(HVG) (Luque et al. 2009) defines visibility as horizontal lines between bars (Fig. 6c, d). 
In this case, two nodes vi and vj from HVGX are connected if

(26)Xk < Xi + (Xj − Xi)
k − i

j − k
∀ k ∈ {i < k < j}.

(27)Xk < Xi,Xj ∀ k ∈ {i < k < j}.
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Fig. 5  Transition networks. a Example of time series sampled from y(t) = sin(t)+ sin(4t)− sin(2t) . This 
example uses nine equally spaced bins divided by the dashed lines. Each bin is represented by a node 
depicted in red. b The resulting transition network is illustrated with edge widths proportional to the 
transition probability
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Threshold values can limit the maximum temporal distance between values (Ting-Ting 
et  al. 2012). Visibility graphs can also be directed, representing the temporal order. 
Another important concern is the time complexity of the construction process. The 
original algorithms to construct NVGs and HVGs have quadratic time complexity O(n2 ), 
where n is the number of elements in the series. Improvements can reduce this time 
complexity to O(n log n ) (Lan et al. 2015).

Recurrence networks

The transformation approach proposed by Donner et al. (2010) relies on the concept of 
recurrences in the phase space. The general idea consists of interpreting the recurrence 
matrix of a time series as an adjacency matrix. Nodes represent states in the phase-space 
and links connect recurrent ones. A recurrence matrix connects different points in time 
if the states are closely neighbored in phase space. Considering a time series X and its 
m-dimensional time delay embedding x = (Xt ,Xt+τ , · · · ,Xt+(m−1)τ ) where τ is the delay, 
a recurrence matrix can be defined as

where �(·) is the Heaviside function, d(·) is a distance function (e.g., Euclidean or Man-
hattan), and ǫ is a threshold distance that defines close states. A recurrence matrix R(ǫ) 
can then be transformed into an adjacency matrix A of a network as:

where δi,j is the Kronecker delta introduced to remove self-loops. The resulting network 
is unweighted, undirected, and without self-loops

The ts2net Package
The goal of the ts2net package is to provide methods to model a single or a set of time 
series into a network in R. It implements time series distance functions, parallel distance 
calculations, network construction methods, and some useful functions. Some functions 

(28)Rij(ǫ) = �(ǫ − d(xi − xj)),

(29)Aij = Rij(ǫ)− δi,j ,
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Fig. 6  Visibility graph construction. a and c An example of time series with values represented by the bars 
and points. Gray lines connect “visible” values as defined in the (a) natural (red) and (c) horizontal (blue) 
visibility graphs. The resulting natural (b) and horizontal (d) visibility graphs
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are fully implemented, while others are adapted from other packages. Thus, another goal 
of the ts2net package is to put together useful methods from other packages.

The ts2net package is available on the Comprehensive R Archive Network (CRAN) 
and can be installed with the following command:

Another option is to install ts2net from GitHub using the install_github func-
tion from either remotes or devtools packages:

Implementation aspects

The ts2net package relies on some other important packages. One of the most impor-
tant ones is igraph, which is used to model networks (Csardi and Nepusz 2006). The 
igraph package provides different graph and network analysis tools, which can be used 
to extract information from the modeled time series. The igraph objects can be easily 
transformed or exported to other formats such as graphml, gml and edge list. Besides, 
other network analysis packages commonly accept these objects. Examples are the sna 
(Butts 2020), tsna (Bender-deMoll and Morris 2021), and muxViz (De Domenico et al. 
2014).

The network construction process normally requires a high number of calculations. 
For this reason, the most important functions in ts2net are implemented in parallel 
using multi-core programming. The parallelization was implemented using the mclap-
ply function from the parallel, which comes with R. This implementation uses forks 
to create multiple processes, an operation that is not available in Windows systems. It 
means that, on Windows, all functions in ts2net with num_cores can only run with 
one core.

Besides the multicore parallelization, the ts2net package was also constructed to be 
run in supercomputers and computer clusters. The idea is to divide the distance calcu-
lations into jobs that could be calculated in parallel and then merged to construct the 
distance matrix. The ts_dist_part and ts_dist_part_file functions make this 
process easier.

The ts2net package provides the main functions to construct networks from time 
series. Other R packages can be integrated in this process during or after the network 
construction process. In the network construction process, the most related packages 
mainly involve different time series distance functions as the TSclust (Montero and 
Vilar 2014) and TSdist (Mori et  al. 2016) packages. After the network construction, 
the related packages mainly involve network analysis methods such as sna (Butts 2020).

Distance calculation

Functions to calculate the distance matrix:
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•	 ts_dist: Calculates all pairs of distances and returns a distance matrix D. 
This function receives a list of time series  that  can either have or not have the 
same length. It runs serial or in parallel (except in Windows) using mclap-
ply from parallel package. This function receives a distance function as a 
parameter. Ts2net provides some distance functions (functions starting with 
tsdist_...). Other distances can be easily implemented or adapted to be used 
within this function.

•	 ts_dist_part: Calculate distances between pairs of time series (similarly to 
ts_dist) in part of a list. This function is particularly useful to run in parallel as 
jobs in supercomputers or computer clusters (HPC). Instead of having a single job 
calculating all distances (with ts_dist), this function permits the user to divide 
the calculation into different jobs. The result is a data frame with the distances 
dij and indexes i and j. To construct the distance matrix D, the user can merge 
all the results using the functions dist_parts_merge or dist_parts_file_
merge.

•	 ts_dist_part_file: This function works similarly as ts_dist_part. The 
difference is that it reads the time series from RDS files in a directory. The advan-
tage of this approach is that it does not load all the time series in memory but 
reads them only when necessary. This means that this function requires much less 
memory and should be preferred when memory consumption is a concern, e.g., 
huge data sets or very long time series. The disadvantage of this approach is that 
it requires a high number of file read operations which considerably takes more 
time during the calculations. The user can merge all the results using the functions 
dist_parts_merge or dist_parts_file_merge.

List of distance functions:

•	 tsdist_cor: Absolute (Eq.  2), positive (Eq.  3),  or negative (Eq.  4) correlation 
distances. This function optionally tests the significance  of the correlation using 
the Fisher z-transformation (Eq. 8) (Asuero et al. 2006).

•	 tsdist_ccf: Absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) cross-correla-
tion distances.

•	 tsdist_dtw: Dynamic Time Warping (DTW) distance (Sect. 2.1.3). This func-
tion is a wrapper for the dtw function from the dtw package (Giorgino 2009).

•	 tsdist_nmi: Normalized mutual information distance (Eq. 17). The implemen-
tation uses functions from the infotheo package (Meyer 2014).

•	 tsdist_voi: Variation of information distance (Eq.  18). The implementation 
uses functions from the infotheo package (Meyer 2014).

•	 tsdist_mic: Maximal information coefficient (MIC) distance. This function 
transforms the mine function from the minerva package (Albanese et al. 2012) 
into a distance.

•	 tsdist_es: The events synchronization distance (Eq.  22) proposed by 
Quian Quiroga et al. (2002). This function can also use the modification proposed 
by Boers et al. (2019) ( τmax ). This function optionally tests the significance of the 
events synchronization by shuffling the events in the time series.
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•	 tsdist_vr: Van Rossum distance. This function uses the fmetric function from 
the mmpp package (Hino et al. 2015). It optionally tests the significance of the events 
synchronization by shuffling the events in the time series.

Other distances can be easily applied in the ts2net. The only two requirements are 
that the distance function should accept two arrays and it must return a distance. The 
packages TSclust (Montero and Vilar 2014) and TSdist (Mori et al. 2016) provide 
many other distance functions that can be used to create networks with ts2net. For 
example, the Euclidean distance (diss.EUCL from TSclust) can be used to construct 
the distance matrix:

It is important to remember that the parameter dist_func receives a function, so no 
parenthesis is necessary (dist_func=diss.EUCL() is an error).

Another possibility is to implement specific functions and apply them. For example, 
the following code snippet implements a distance function that compares the mean val-
ues of each time series and applies it to calculate the distance matrix D:

Network construction methods

Multiple time series into a network:

•	 net_knn: Constructs a k-NN network from a distance matrix D.
•	 net_knn_approx: Creates an approximated k-NN network from a distance matrix 

D. This implementation may omit some actual nearest neighbors, but it is consider-
ably faster than net_knn. It uses the kNN function from the dbscan package.

•	 net_enn: Constructs a ǫ-NN network from a distance matrix D.
•	 net_enn_approx: Creates an approximated ǫ-NN network from a distance matrix 

D. This implementation may omit some actual nearest neighbors, but it is consider-
ably faster than net_enn. It uses the frNN function from the dbscan package.

•	 net_weighted: Creates a full weighted network from a distance matrix D. In this 
case, D should be in the interval [0, 1] (see dist_matrix_normalize). The link 
weights in the resulting network are wij = 1− dij.

•	 net_significant_links: Construct a network with significant links.

A single time series into a network:

•	 ts_to_windows: Extract time windows from a time series. This function can be 
used to construct a network from time windows. It returns a list of windows that can 
be used as input for ts_dist to construct a distance matrix D.

•	 tsnet_qn: Creates transition (quantile) networks.
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•	 tsnet_vg: Creates natural and horizontal visibility graphs. This function can be 
run in parallel.

•	 tsnet_rn: Creates a recurrence network from a time series. This function uses 
the rqa function from the nonlinearTseries package to obtain the recurrence 
matrix.

Useful functions

•	 dist_matrix_normalize: normalizes (min-max) a distance matrix D between 
zero and one.

•	 dist_percentile: Returns the distance value that corresponds to the desired 
percentile. This function is useful when the user wants to generate networks with dif-
ferent distance functions but with the same link density.

•	 ts_dist_dirs_merge: ts_dist_dir and ts_dist_dir calculate parts of 
the distance matrix D. This function merges the results and constructs a distance 
matrix D.

•	 tsdist_file_parts_merge: Merges the distance parts as ts_dist_dirs_
merge, but reading them from files.

•	 events_from_ts: Function to extract events from a time series. For example, it 
can return the desired percentile of highest or lowest values. This function is particu-
larly useful for event-based distance functions.

Data

•	 dataset_sincos_generate: Generates a data set with sine and cosine time 
series with arbitrary noise.

•	 random_ets: Creates random event time series with uniform probability.
•	 us_cities_temperature_df: A data set containing the temperature in 27 US 

cities between 2012 and 2017. This data set was adapted from the original (Beniaguev 
2017) for simplicity reasons. Different from the original, this data set comprehends 
only cities in the US, grouped by month (mean value) temperature and without days 
with missing data. The data set is stored in a data frame with 61 rows and 28 vari-
ables where each column (except date), corresponds to the mean temperature values 
(°C) for each city.

•	 us_cities_temperature_list: Similar to us_cities_temperature_
df, but in a list, which is the required format for distance calculations (e.g. ts_
dist).

Source code

The ts2net is open-source and free to use according to the MIT License (https://​
github.​com/​lnfer​reira/​ts2net/​blob/​main/​LICEN​SE.​md). All the code is available on 
Github at https://​github.​com/​lnfer​reira/​ts2net.

https://github.com/lnferreira/ts2net/blob/main/LICENSE
https://github.com/lnferreira/ts2net/blob/main/LICENSE
https://github.com/lnferreira/ts2net
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Applications
This section presents how the ts2net package can be used to transform a set or a sin-
gle time series into networks. Two real data sets were used as examples. The goal here 
is not to present complicated applications and deep analyses but straightforward and 
didactic examples of how to use networks to model time series.

Transforming a set of time series into a network

This section presents a network modeling example using real data. The data set is com-
posed of monthly temperature data from 27 cities in the US between 2012 and 2017, 
illustrated in Fig. 7a. The version presented here was extracted and adapted from Kaggle 
(Beniaguev 2017) for simplicity reasons by taking the monthly averages and keeping only 
US cities.

The following code calculates the distance matrix (Fig.  7b) using DTW, finds the ǫ 
that corresponds to the 30% of the shortest distances, and constructs a ǫ-NN network 
(Fig. 7c):

Figure  7c illustrates the resulting network where nodes are conveniently placed 
according to their geographical position. Once the network is constructed, it can be ana-
lysed using measures and methods from network science, graph theory, and graph min-
ing Barabási and Pósfai (2016). The most common analysis methods and measures are 
implemented in R packages such as igraph (Csardi and Nepusz 2006) and sna (Butts 
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Fig. 7  Transforming time series into a network using ts2net. (a) The historical temperature of 27 cities in 
the US. (b) The distance matrix D (normalized DTW) for the data set. (c) The ǫ-NN network was constructed 
using 30% of the shortest distances. Node colors represent communities (Girvan and Newman 2002)
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2020). A typical analysis consists of finding the most central and peripheral nodes in the 
network using centrality measures (Barabási and Pósfai 2016). The closeness centrality is 
one example that be calculated using the following code:

The closeness centrality shows that Minneapolis and Albuquerque are the least and 
most central nodes, respectively. This means that the distance in the network from Albu-
querque to all the other cities is the smallest, while Minneapolis has the longest distance. 
Considering that DTW was applied to construct the network, the closeness centrality 
can be used to find the cities with the most and least different temperatures in terms 
of yearly variation and scale. Albuquerque presents more similarities in its temperature 
variation and scale to other cities than Minneapolis.

Another interesting network analysis is community detection, which consist of find-
ing groups of highly connected nodes Girvan and Newman (2002). This analysis can be 
made using some community detection algorithms implemented in igraph. The fol-
lowing code exemplifies this process:

The result of community detection is also illustrated in Fig. 7c, where node colors rep-
resent the two communities in the network. In this simple context, the two communities 
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represent groups of cities with similar temperatures. As expected, the two groups are 
divided by a latitude that splits the nodes into cities with cold (north) and hot (south) 
temperatures. This is a didactic example of how graph mining tools can be used to find 
meaningful information from a set of time series.

Transforming a single time series into a network

This section presents how a time series extracted from real data can be modeled as net-
works. The time series with the monthly atmospheric concentration of carbon dioxide 
(ppm) measured in the Mauna Loa Observatory between 1959 and 1997 (Keeling et al. 
2005), illustrated in Fig. 8a. This data set was mainly chosen by its simplicity and acces-
sibility (available with the base installation of R).

The following code generates a time-window network (net_w) with width 12 and 
one-value step, a visibility graph (net_vg), a recurrence network (net_rn) with ǫ = 5 , 
and a transition network (net_qn) using 100 equally spaced bins using the ts2net 
package.

Figure 8b–e illustrates the networks resulting from the transformation of the CO2 time 
series. From the topology of the resulting networks, it is possible to extract useful infor-
mation. For example, the time-window network (Fig.  8b) shows 12 groups represent-
ing each month (seasonality). These groups can be detected using community detection 
algorithms. The visibility graph (Fig. 8c) presents many small-degree nodes that repre-
sent the values on valleys while a few hubs connect peak values of CO2 after 1990 to 
many other nodes. These hubs appear due to the increasing trend of CO2 contraction 
and some slightly higher peaks during the seasons after 1980. The recurrence (Fig. 8d) 
and transition (Fig. 8e) networks present some local connections caused by the seasons, 
and a line shape, which is a result of the increasing trend in the CO2 concentration over 
the years.

Final considerations
This paper presents ts2net, a package to transform time series into networks. This 
paper also presents a detailed revision of the main transformation methods in the litera-
ture. With ts2net, users can model one or multiple time series into networks and use 
network science tools to extract information from spatio-temporal data. No other pack-
age in R provides all the necessary tools to make these transformations. This package is 
useful for virtually any scientific domain dealing with temporal data.
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One important drawback when transforming a set of time series into a network is the 
high computational cost required to construct a distance matrix (combinations of time 
series), making it unfeasible for huge data sets. To minimize this problem, ts2net pro-
vides tools to run distance functions in parallel and in high-performance computers via 
multiple jobs.

The examples presented in Sect. 4 were chosen for didactic reasons. The main goal is 
to show how the transformation process occurs and provide some simple ideas on how 
these methods can be used to extract information from time series. Each of these meth-
ods is by itself a subject for research, which makes the exploration of all these methods 
unfeasible in this paper. This paper was thought to be a starting point for the interested 
reader who can use all the references to explore each method in detail.

The ts2net’s goal is not to provide all transformation methods in the literature but 
the most used ones. It does not mean that this package cannot be extended or custom-
ized. As explained in Sect. 3.2, this package accepts time series distance functions imple-
mented by other packages or the user. New distance functions can be incorporated into 
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the package. Additional network construction methods, visualization, and computa-
tional improvements can also be added to the package in the future.

Finally, I would like to remember that ts2net is an open-source package that accepts 
contributions. I invite and encourage all interested users to contribute to this package.

Computational details
The ts2net package requires R version 4.1.0 or higher. R itself and all packages used 
are available from the Comprehensive R Archive Network (CRAN) at https://​CRAN.R-​
proje​ct.​org/.
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