
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

REVIEW

Ferreira ﻿Applied Network Science (2024) 9:32
https://doi.org/10.1007/s41109-024-00642-2

Applied Network Science

From time series to networks in R
with the ts2net package
Leonardo N. Ferreira1,2* 

Abstract 

Network science established itself as a prominent tool for modeling time series
and complex systems. This modeling process consists of transforming a set or a sin-
gle time series into a network. Nodes may represent complete time series, segments,
or single values, while links define associations or similarities between the represented
parts. R is one of the main programming languages used in data science, statistics,
and machine learning, with many packages available. However, no single package
provides the necessary methods to transform time series into networks. This paper pre-
sents a detailed revision of the main transformation methods in the literature and their
implementation in the ts2net package in R. The package provides time series
distance functions that can be easily computed in parallel and in supercomputers
to process larger data sets and methods to transform distance matrices into networks.
ts2net also provides methods to transform a single time series into a network, such
as recurrence networks, visibility graphs, and transition networks. Together with other
packages, ts2net permits the use of network science and graph mining tools
to extract information from time series.

Keywords:  Time series, Networks, Complex systems, Data science, R programming

Introduction
Networks are one of the most prominent tools for modeling complex systems (Mitchell
2006). Complex systems are commonly represented by a set of time series with interde-
pendencies or similarities (Silva and Zhao 2018). This set can be modeled as a network
where nodes represent time series, and links connect pairs of associated ones. Associ-
ations are usually measured by time series distance functions, carefully chosen by the
user to capture the desired similarities. Thus, the network construction process consists
of two steps. First, the distance between all pairs of time series is calculated and stored
in a distance matrix. Then, this distance matrix is transformed into an adjacency matrix.
The network topology permits not just the analysis of the small parts (nodes) in the sys-
tem but also their relationship (edges). This powerful model allows network science and
graph mining tools to extract information from different domains such as climate sci-
ence (Boers et al. 2019; Ferreira et al. 2021a), social science (Ferreira et al. 2021b), neuro-
science (Bullmore and Sporns 2009), and finance (Tumminello et al. 2010).

*Correspondence:
ferreira@leonardonascimento.
com

1 The Center for Humans
and Machines, Max Planck
Institute for Human
Development, Lentzeallee 94,
14195 Berlin, Germany
2 Big Data Institutes, University
of Oxford, Old Road Campus,
Oxford OX3 7LF, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-024-00642-2&domain=pdf

Page 2 of 22Ferreira ﻿Applied Network Science (2024) 9:32

In recent years, networks have also been applied to model a single time series. The
goal is to transform one time series into a network and apply network science techniques
to perform time series analysis (Silva et al. 2021). Different modeling approaches have
been proposed, and the general idea is to map single values (Lacasa et al. 2008), time
windows, transitions (Campanharo et al. 2011), or recurrence (Donner et al. 2010) as
nodes and their relationship by links. Then, the general goal is to use network science
and graph mining tools to extract information from the modeled time series.

R is one of the most used programming languages in statistics, data science, machine
learning, and complex networks. In the context of time series analysis, there are plenty
of packages in R covering many types of analysis, such as characterization, filtering,
modeling, pattern recognition, and prediction (Shumway and Stoffer 2017; Hyndman
and Athanasopoulos 2021). For network science, R provides some packages including
igraph (Csardi and Nepusz 2006) and sna (Butts 2020). Even with many resources
available in R, there is no package that links time series analysis and network science.

This paper presents ts2net, a package to construct networks from time series in R.
Ts2net permits the use of network science to study time series. Together with other
R packages, ts2net permits distance calculations, network construction, visualization,
statistical measures extraction, and pattern recognition using graph mining tools. Most
of the key functions are implemented using multicore programming, and some use-
ful methods make ts2net easy to run in supercomputers and computer clusters. The
package is open-access and released under the MIT license.

In the following sections, I present a revision on the background concepts related to
time series network modeling (Sect. 2), the ts2net package (Sect. 3), and two applica-
tions using real data (Sect. 4), followed by some final remarks.

Background Concepts
In summary, the whole network construction process involves the calculations of time
series distance functions, represented by a distance matrix, and the transformation of
this matrix into a network. This section presents a detailed revision on how to model
time series into networks.

Distance functions

Time series comparison is a fundamental task in data analysis. This comparison can be
estimated using similarity or distance functions (Deza and Deza 2009; Esling and Agon
2012; Wang et al. 2013). Some research domains use the concept of similarity, while oth-
ers prefer distance functions. Similarity and distance are inverse concepts that have the
same usefulness. Here in this paper, for simplicity, I use the distance concept. However,
it is important to remember that a similarity function can be generally transformed into
distance functions and vice-versa. The distance or metric d : X × X → R is a function
that for all time series X ,Y ,Z ∈ X  , the following properties hold:

•	 non-negativity: d(X ,Y) ≥ 0,
•	 symmetry: d(X ,Y) = d(Y ,X),
•	 reflexity: d(X ,Y) = 0 ⇐⇒ X = Y ,
•	 triangular difference: d(X ,Y) ≤ d(X ,Z)+ d(Z,Y).

Page 3 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

Some time series comparison measures used in ts2net are not true metrics because
they do not follow one or more required properties above (Deza and Deza 2009). How-
ever, for simplicity reasons, this paper uses the term “distance” to generally refer to any
of these functions.

The distance should be carefully chosen, as the network topology, and further anal-
ysis and conclusions will be directly affected by this choice. Choosing the appropriate
distance depends on aspects such as the nature of the time series, the underlying pat-
terns, or specific features. Given these many aspects, there is no simple rule that guides
the choice of the distance function. Previous papers provide comprehensive reviews on
distance functions that can help users in the selection process (Esling and Agon 2012;
Wang et al. 2013). This paper covers the most used distance functions used to construct
networks from time series.

The rest of Sect. 2.1 reviews the main distance functions implemented in the ts2net
package.

Correlation‑based distances

The Pearson Correlation Coefficient (PCC) r is one of the most used association meas-
ures (Asuero et al. 2006). Given two time series X and Y (both with length T), and their
respective mean values X and Y  , the PCC is defined as

The PCC can be transformed into a distance function by considering the absolute value
of r as follows:

In this case (Eq. 2), both strong correlations ( r ≈ 1 ) and strong anti-correlation ( r ≈ −1 )
lead to dcor_abs(X ,Y) ≈ 0 . This distance is particularly useful if both correlated and anti-
correlated time series should be linked in the network. Conversely, if only strong positive
correlations or strong negative correlation should be mapped into links in the network,
then Eq. 3 or Eq. 4 can be used instead.

Cross-correlation is also a widely used measure to find lagged associations between time
series. Instead of directly calculating the PCC, the cross-correlation function (CCF)
applies different lags (displacement) to the series and then returns the correlation to
each lag. Instead of returning a single correlation value, as in the PCC, the CCF returns
an array of size 2 · τmax + 1 , where τmax ∈ N is the maximum lag defined by the user.
Each element of this array corresponds to the r(X ,Yτ) between the time series X and Yτ ,
which is the Y lagged by τ ∈ [−τmax, τmax] units.

(1)r(X ,Y) =
T
i=1(Xi − X)(Yi − Y)

T
i=1(Xi − X)2(Yi − Y)2

.

(2)dcor_abs(X ,Y) = 1− |r(X ,Y)|.

(3)dcor_pos(X ,Y) =1−max(0, r(X ,Y))

(4)dcor_neg(X ,Y) =1−max(0, −r(X ,Y))

Page 4 of 22Ferreira ﻿Applied Network Science (2024) 9:32

The CCF can be transformed into a distance function in the same way as the PCC
(Eqs. 2, 3, and 4). The maximum absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) cor-
relations r(X ,Yτ),∀ τ ∈ [−τmax, τmax].

One crucial question is the correlation statistical significance. The significance test
avoids spurious correlations and false links in the network. One way to test consists of
using the Fisher z-transformation defined as (Asuero et al. 2006):

This transformation stabilizes the variance and can be used to construct a confidence
interval (CI) using standard normal theory, defined (in z scale) as

where q is the desired normal quantile and T is the length of the time series. The CI can
be transformed back into the original scale using the inverse transformation:

leading to

The correlation (Eqs. 2, 3, and 4) and cross-correlation distances (Eqs. 5, 6, and 7) can
be adapted to consider the statistical test given a significance level α . These adaptations
consist of substituting the correlation function r(X, Y) in the equations with a binary

Distances based on information theory

Mutual information (MI) is one of the most common measures used to detect non-lin-
ear relations between time series. The MI measures the average reduction in uncertainty
about X that results from learning the value of Y or vice versa (MacKay 2003). The con-
cept of information is directly linked to Shannon’s entropy, which captures the “amount

(5)dccor_abs(X ,Y) =1−
(

max
τ∈[−τmax ,τmax]

|r(X ,Yτ)|
)

.

(6)dccor_pos(X ,Y) =1−
(

max
τ∈[−τmax ,τmax]

max(0, r(X ,Yτ)

)

(7)dccor_neg(X ,Y) =1−
(

max
τ∈[−τmax ,τmax]

max(0, −r(X ,Yτ)

)

(8)z(r) =
1

2
ln

1+ r

1− r
= (ln(1+ r)− ln(1− r))/2.

(9)
(

zmin = z −
q

√
t − 3

, zmax = z +
q

√
t − 3

)

,

(10)r(z) =
e2z − 1

e2z + 1
,

(11)CI = (r(zmin), r(zmax)).

(12)rtest(X ,Y) =
{

0 if r(X ,Y) ∈ CI (H0 not discarded)
1 otherwise (H1 holds).

Page 5 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

of information” in a time series. Given a discrete time series X and its probability mass
function P(X), the marginal entropy H(X) is defined as

The conditional entropy H(X|Y) measures how much uncertainty X has when Y is
known.

A histogram can be used to estimate the probabilities. The number of bins in the his-
togram directly influences the entropy results and should be chosen accordingly. Some
common options to estimate the number of bins are the Sturges’s, Scott’s, and Freed-
man-Diaconis criteria (Wand 1997).

The mutual information (MI) can be estimated using Eq. 15.

The mutual information has only a lower bound (zero), which makes it sometimes dif-
ficult to interpret the results. Some normalization methods can limit the MI to the inter-
val [0, 1] to make the comparison easier. The normalized mutual information (NMI) can
be defined as

where U is the normalization factor. Common normalization approaches are
either the half of the sum of the entropies U = 0.5H(X)H(Y) , minimum entropy
U = min(H(X),H(Y)) , maximum entropy U = max(H(X),H(Y)) , or the squared root
of the entropies product U =

√
H(X)H(Y) (Vinh et al. 2010). The NMI distance is

Another common distance function based on MI is the Variation of Information (VoI)
(Eq. 18) (Vinh et al. 2010). VoI, different from the MI, is a true metric.

The maximal information coefficient (MIC) is an algorithm that searches for the larg-
est MI between two series (Reshef et al. 2011). MIC considers that if there exists a rela-
tionship between two time series, then it is possible to draw a grid on the scatter plot
of these two series that encapsulates that relationship. MIC automatically finds the best
grid and returns the largest possible MI.

Dynamic time warping

The Dynamic Time Warping (DTW) (Berndt and Clifford 1994; Giorgino 2009) is an
elastic distance function that uses a warping path to align two time series and then
compare them. Different from lock-step measures (such as the Euclidean distance),

(13)H(X) = −
t

∑

i=1

P(xi) log P(xi).

(14)H(X |Y) = −
∑

i,j

p(Xi,Yj) log
p(Xi,Yj)

p(Yj)

(15)I(X ,Y) = H(X)+H(Y)−H(X ,Y)

(16)NMI(X ,Y) = I(X ,Y)/U ,

(17)dnmi(X ,Y) = 1− NMI(X ,Y).

(18)dvoi(X ,Y) = H(X)+H(Y)− 2I(X ,Y)

Page 6 of 22Ferreira ﻿Applied Network Science (2024) 9:32

elastic measures use a warping path defining a mapping between the two series
(Fig. 1). The optimal path minimizes the global warping cost. The DTW distance
dDTW(X ,Y) = dtw(i = t, j = t) between two time series X and Y (both of length T) can
be defined using dynamic programming. The total distance is the cumulative distance
calculated from the recurrence relation dtw(i, j), defined as:

Event‑based distances

The idea behind event-based distance functions is to compare marked time points where
some events occur in the time series. The definition of an event is specific to the domain
where the time series comes from. For example, Fig. 2a illustrates two ECG time series X
and Y where events (black dots) can be defined as some local maximum values as the T
wave representing the ventricular repolarization during the heartbeat. Another example
is the concept of extreme events of precipitation that can be defined as the days with
rainfall sums above the 99th percentiles of wet days during the rain season (Boers et al.

(19)

ddtw(X ,Y) = dtw(i = T , j = T) =



















∞ if i = 0 xor j = 0
0 if i = j = 0

|Xi − Yj| +min







dtw(i − 1, j)
dtw(i, j − 1)
dtw(i − 1, j − 1)

otherwise

−1.0

−0.5

0.0

0.5

1.0

0π 1π 2π 3π 4π
x

y

sin
cos

a

−1.0

−0.5

0.0

0.5

1.0

0π 1π 2π 3π 4π
x

y

b

Fig. 1  Comparison between lock-step and elastic measures. The figure shows a sine (red) and a cosine (blue)
time series. The gray dashed lines show the comparison of the values in (a) a traditional lock-step distance
such as the Euclidean distance and (b) in an elastic one as in DTW

0.00
0.25
0.50
0.75
1.00

E
C
G

0.00
0.25
0.50
0.75
1.00

0 50 100 150
time

E
C
G

time

time

a b

c

Fig. 2  The intuition behind event-based distance functions. a Two ECG time series X and Y are depicted in
red (top) and blue (bottom), respectively. Data were extracted and adapted from (Goldberger et al. 2000; Liu
et al. 2016). Black dots represent marked events in both time series. (b and c) Segments in red ( Xev ) and blue
( Yev ) represent the events (black dots) in X and Y, respectively. b For each event in Xev , the distance function
tries to find another event in Yev considering a time window ( τ = ±3 ), illustrated by the red and blue
pentagons. c The same search can be performed the other way around

Page 7 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

2019). Common approaches used to define events are local maxima and minima, values
higher or lower than a threshold, values higher or lower percentiles, or outliers in the
series. An event time series Xev is here defined as a binary time series composed of ones
and zeros representing the presence or absence of an event respectively in a time series
X. Figure 2b and c illustrate these events time series for the ECG time series in Fig. 2a.
Another common representation is the events sequence X ′ = {t1, t2, · · · , tN } that defines
the time indices where each event occurs.

Event-based distance functions try to find co-occurrences or synchronization between
two event time series. The general aim is to count pairs of events in both time series that
occur at the same time window of length. For example, considering the five events (black
dots) in Fig. 2a, b shows the co-occurrence of events from Xev to Y ev considering a time
window. For the five events, only the last one does not co-occur. Fig 2c shows the inverse
process that can or not be equal depending on the specific distance function. Thus, func-
tions can be symmetrical or not (directed). Symmetrical distances consider co-occur-
rences from X to Y but also from Y to X. Directed measures only consider the events in a
precursor time series X compared to another one Y, but not the other way around.

Quian Quiroga et al. (2002) proposed a method to measure the synchronization
between two event time series. Considering two event sequences X ′ = {t1, · · · , tNX } and
Y ′ = {t1, · · · , tNY } , and a time lag τ , this method counts the number of times an event
appears in X ′ shortly after it appears in Y ′ considering using the following equation

where J τij is defined as

where tXi and tYj are the time indices i and j from X ′ and Y ′ respectively. Analogously,
cτ (Y ′|X ′) can also be calculated using Eq. 20. The symmetrical event-based distance
between X ′ and Y ′ , can be calculated using Eq. 22, where dq(X ′,Y ′) = 0 indicates full
synchronization.

The asymmetrical version counts only the number of events in X ′ that precede those in
Y ′ (or the opposite in an analogous way), and it is originally defined in the interval [-1,1].
To standardize the interval with the other distances in this paper, Eq. 23 measures the
asymmetrical distance where zero means that all events in X ′ precede those in Y ′ , and
one no synchronization.

(20)cτ (X ′|Y ′) =
NX
∑

i=1

NY
∑

j=1

J τij ,

(21)J τij =







1 , if 0 < tXi − tYj ≤ τ

1/2 , if tXi = tYj
0 , otherwise

(22)d
sy
es(X

′,Y ′) = 1−
cτ (X ′|Y ′)+ cτ (Y ′|X ′)

√
NXNY

.

(23)dases (X
′,Y ′) = 1−

cτ (Y ′|X ′)− cτ (X ′|Y ′)+
√
NXNY

2
√
NXNY

Page 8 of 22Ferreira ﻿Applied Network Science (2024) 9:32

The authors also propose a local time window τij when event rates changes in the time
series. The counting function (Eq. 20) can be adapted to a local time window by replac-
ing τ by

 Boers et al. (2019) introduce a parameter τmax that limits the maximum local time win-
dow (Eq. 24).

The van Rossum distance (v. Rossum 2001) is another method used to find synchro-
nizations between events. The main idea is to transform each event into a real function
and compare them, as illustrated in Fig. 3. The first step consists on mapping an event
sequence X ′ = {t1, · · · , tN } into a function V (X ′) = 1/N

∑N
i=1 hτ (t − xi)u(t − xi) ,

where hτ (t) is a filtering function. Examples of filtering functions include the Gauss-
ian hgτ (t) = exp(−t2/(2τ 2))/

√
2πτ 2 and the laplacian hlτ (t) = exp(−|t|/τ)/(2τ) ker-

nels. The parameter τ defines the co-occurrence time scale. The van Rossum distance
can be calculated as

One common approach to test the significance of event-based distance functions
considers surrogate data (Boers et al. 2019; Ferreira et al. 2021b). The idea is to gen-
erate artificial event sequences by shuffling the events in the two original time series
and then measuring their distance. After repeating this process a multiple times, it is
possible to construct a distribution of distances and use it as a confidence level for the
comparison.

Transforming a set of time series into a network

A network or a graph (Bondy and Murty 2008; Barabási and Pósfai 2016), G(V, E) is
composed of a set of n nodes (also called vertices) V and a set of m links (also called
edges) E connecting two nodes. The most common representation for a network is the
adjacency matrix A whose entry aij = 1 if the nodes i and j are connected or aij = 0
otherwise. A weighted network can also be represented by A. In this case, each entry

(24)τij = min{tXi+1 − tXi , t
X
i − tXi−1, t

Y
j+1 − tYj , t

Y
j − tYj−1}/2.

(25)dvr(X
′,Y ′) =

√

∫ ∞

0
[V (X ′)− V (X ′)]2dt.

0.0

0.5

1.0

X
ev

0.0

0.5

1.0

Y
ev

0.0

0.5

1.0

0 5 10 15 20 25
t

V
X

0.0

0.5

1.0

0 5 10 15 20 25
t

V
Y

−1.5

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15 20 25
t

V
X
−
V

Y

a b

c d

e

Fig. 3  The general idea behind the van-Rossum distance (v. Rossum 2001). Two event time series a Xev and
b Yev where vertical segments represent the events in both time series. The von-Rossum distance transforms
each event into a real function illustrated respectively in (c) and (d). e Considering the difference between
the two transformed time series VX − VY , the von-Rossum distance corresponds to the area under this curve
(light gray)

Page 9 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

aij = wij ∈ R �=0 corresponds to the weight wij between nodes i and j, or aij = 0 if there
is no link.

A set of time series X can be transformed into a network by calculating the distance
between all pairs of time series. These distances are represented by the distance matrix
D whose position dij stores the distance between the time series i and j. The network
construction process consists of transforming the distance matrix D into an adja-
cency matrix A where each node represents a time series. The most common building
approaches are (Silva and Zhao 2018; Qiao et al. 2018):

•	 k-NN network: In a k nearest neighbors network (k-NN), each node (representing a
time series) is connected to the k other ones with the shortest distances. Thus, the
construction process requires finding for each row i of D the k other elements with
shortest distances, where k ∈ W is a parameter defined by the user. Approximation
algorithms speed up the construction process (Arya et al. 1998; Chen et al. 2009).

•	 ǫ-NN network: In a ǫ nearest neighbors network ( ǫ-NN), (Fig. 4b), each node is con-
nected to all the other ones if their distances are shorter than ǫ ∈ R+ , defined by the
user. An advantage of the ǫ - over k-NN networks is that the ǫ permits a finer in the
threshold choice. Another advantage is the fact that ǫ can restrict the connections to
only strong ones, while the k-NN will always connect nodes regardless if the k short-
est distances are small or high. Similar to k-NN networks, approximations can speed
up the construction process (Arya et al. 1998; Chen et al. 2009).

•	 Weighted network: Instead of limiting the number of links, a weighted network
(Fig. 4c) can be constructed from D by simply connecting all pairs of nodes and using
their distances to set weights. In general, link weights have the opposite definition
of a distance, which means that the shorter the distance between two time series,
the stronger the link connecting the respective nodes. Considering that D is in the
interval [0,1], the weighted adjacency matrix can be defined as A = 1 - D. Conversely,
if D ∈ [0,+∞] , D can be first normalized between [0,1] ( Dnorm ) and then consider A
= 1 - Dnorm.

•	 Networks with significant links: In many applications, it is important to minimize
the number of spurious links in the network. One way of minimizing these spuri-

d=0.51

d=0.32

d=0.2

d=0.5

d=0.57

d=0.36

d=0.49

k=4

a

d=0.51

d=0.32

d=0.2

d=0.5

d=0.57

d=0.36

d=0.49

ε= 0.4

b

d=0.51

d=0.32

d=0.2

d=0.5

d=0.57

d=0.36

d=0.49

w=0.49

w=0.68

w=0.8

w=0.5

w=0.43

w=0.64

w=0.51

c

Fig. 4  The geometrical intuition behind three different network construction processes. Each time series
is represented by a blue node in the network, except the reference time series represented in red. The
figures show the distances from the reference time series to all the other ones. a In a k-NN (k=4) network,
the reference node is connected to the four other ones with the shortest distances. b In a ǫ-NN ( ǫ = 0.4)
network, the reference node is linked to all the nodes whose distance is shorter than ǫ (within the dashed
circle). c In the weighted graph, the reference node is connected to all the other ones, and the link weight is
( w = 1− d ). The link thickness is proportional to the weight

Page 10 of 22Ferreira ﻿Applied Network Science (2024) 9:32

ous links is by considering statistical tests for the distance functions. In other words,
this network construction process connects all pairs of nodes only if their distance is
statistically significant. For example, the significance of the Pearson correlation coef-
ficient can be tested using the z-transformation (Eq. 9) described in Sect. 2.1. This
network construction process can be seen as a special case of ǫ-NN network where
ǫ is a threshold for significant links. It is important to remember that this building
approach minimizes the number of spurious links but does not guarantee that they
will not appear.

Networks can be static or temporal (Holme and Saramäki 2012; Kivelä et al. 2014).
A static network G(V, E) uses the whole historical data in a time series to construct a
single network. Temporal networks divide the historical period into time windows that
are used to construct layers in a temporal (multilayered) network. A temporal network
is a sequence of static networks ordered in time. Each layer can be seen as a snapshot of
the time window. The temporal network construction process requires the computation
of a set of distance matrices D = {D1, · · · ,DW } , one for each of the W windows. A time
window is defined by the user and has a length �t and a step s that defines the number of
values that are included and excluded in each window. The temporal network construc-
tion consists of transforming each distance matrix D ∈ D into a network layer using the
same process used for a static network previously described in this section. One of the
main advantages of this approach is to make possible the temporal analysis (evolution)
of the modeled system.

The network construction process has a combinatorial nature. Considering a set of n
time series, the whole construction process requires

(n
2

)

 distance calculations in a static
network or W ·

(n
2

)

 in a temporal network, where W is the number of layers. The trans-
formation from the distance matrix to the adjacency matrix requires searches for pairs of
shortest nodes, a task that is much faster than the distance calculations. For this reason,
the conversion step ( D → A ) can be neglected in the total time complexity is O(

(n
2

)

) .
This means that the number of distance computations can increase very fast for very
large time series data sets, making the network modeling approach infeasible.

Transforming a single time series into a network

This section presents methods to transform a single time series into a network (Zou
et al. 2019; Silva et al. 2021).

Proximity networks

The most straightforward method to perform this transformation consists of breaking the
time series into time windows and using the same approach described for multiple time
series (Sect. 2.2). Each time window is considered a time series and the network construc-
tion process requires calculating a distance matrix D between all time windows using a dis-
tance function. Then, D can be transformed into an adjacency matrix using methods such
as k-NN and ǫ-NN networks (Silva and Zhao 2018). The time window size should be care-
fully chosen. For example, time windows too small can be problematic when calculating

Page 11 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

correlation distances. For this reason, this simple construction procedure may not be suit-
able for short time series because it could generate small time windows.

Transition networks

Transition networks map time series into symbols, represented by nodes and edges to link
transitions between symbols. Campanharo et al. (2011) proposed a straightforward way of
defining the symbols, which consists of first dividing a time series into equally spaced bins.
Each bin corresponds to a symbol that is mapped to a node in the network. Each time series
value is mapped to a sequence of symbols according to the bins they are inserted. Then, for
every pair of consecutive symbols, a directed link is established between the correspond-
ing nodes. Two equal consecutive symbols lead to self-loops in the network. Edge weights
count the number of times that a transition between the two symbols occurs. After the con-
struction process, the weights of the outgoing links from each node can be normalized and
interpreted as a transition probability between symbols. In this case, the network can be
seen as a Markov Chain. Figure 5 presents an example of a transition network.

Visibility graphs

Lacasa et al. (2008) proposed a method called visibility graph that transforms a time series
into a network. The idea is to represent each value in a time series by a bar in a barplot,
as illustrated in Fig. 6. Then, each value becomes a node and links connect them if they
can “see” each other. In the original definition, called natural visibility graph (NVG), the
concept of visibility is defined as a line in any direction that does not cross any other bar.
Considering a time series X = {Xi, · · · ,XN } with N values and its natural visibility graph
NVGX = {vi, · · · , vN } , two nodes vi and vj are connected if

Other works adapted or restricted the idea of visibility. The horizontal visibility graph
(HVG) (Luque et al. 2009) defines visibility as horizontal lines between bars (Fig. 6c, d).
In this case, two nodes vi and vj from HVGX are connected if

(26)Xk < Xi + (Xj − Xi)
k − i

j − k
∀ k ∈ {i < k < j}.

(27)Xk < Xi,Xj ∀ k ∈ {i < k < j}.

1

2

3

4

5

6

7

8

9

−2

−1

0

1

2

0 10 20 30
t

a

9

3

1

2

8

4

7

5

6

b

Fig. 5  Transition networks. a Example of time series sampled from y(t) = sin(t)+ sin(4t)− sin(2t) . This
example uses nine equally spaced bins divided by the dashed lines. Each bin is represented by a node
depicted in red. b The resulting transition network is illustrated with edge widths proportional to the
transition probability

Page 12 of 22Ferreira ﻿Applied Network Science (2024) 9:32

Threshold values can limit the maximum temporal distance between values (Ting-Ting
et al. 2012). Visibility graphs can also be directed, representing the temporal order.
Another important concern is the time complexity of the construction process. The
original algorithms to construct NVGs and HVGs have quadratic time complexity O(n2 ),
where n is the number of elements in the series. Improvements can reduce this time
complexity to O(n log n ) (Lan et al. 2015).

Recurrence networks

The transformation approach proposed by Donner et al. (2010) relies on the concept of
recurrences in the phase space. The general idea consists of interpreting the recurrence
matrix of a time series as an adjacency matrix. Nodes represent states in the phase-space
and links connect recurrent ones. A recurrence matrix connects different points in time
if the states are closely neighbored in phase space. Considering a time series X and its
m-dimensional time delay embedding x = (Xt ,Xt+τ , · · · ,Xt+(m−1)τ) where τ is the delay,
a recurrence matrix can be defined as

where �(·) is the Heaviside function, d(·) is a distance function (e.g., Euclidean or Man-
hattan), and ǫ is a threshold distance that defines close states. A recurrence matrix R(ǫ)
can then be transformed into an adjacency matrix A of a network as:

where δi,j is the Kronecker delta introduced to remove self-loops. The resulting network
is unweighted, undirected, and without self-loops

The ts2net Package
The goal of the ts2net package is to provide methods to model a single or a set of time
series into a network in R. It implements time series distance functions, parallel distance
calculations, network construction methods, and some useful functions. Some functions

(28)Rij(ǫ) = �(ǫ − d(xi − xj)),

(29)Aij = Rij(ǫ)− δi,j ,

1

3

5

7

9

1 2 3 4 5 6 7
t

X

a

1 2 3 4 5 6 7

b

1

3

5

7

9

1 2 3 4 5 6 7
t

X

c

1 2 3 4 5 6 7

d

Fig. 6  Visibility graph construction. a and c An example of time series with values represented by the bars
and points. Gray lines connect “visible” values as defined in the (a) natural (red) and (c) horizontal (blue)
visibility graphs. The resulting natural (b) and horizontal (d) visibility graphs

Page 13 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

are fully implemented, while others are adapted from other packages. Thus, another goal
of the ts2net package is to put together useful methods from other packages.

The ts2net package is available on the Comprehensive R Archive Network (CRAN)
and can be installed with the following command:

Another option is to install ts2net from GitHub using the install_github func-
tion from either remotes or devtools packages:

Implementation aspects

The ts2net package relies on some other important packages. One of the most impor-
tant ones is igraph, which is used to model networks (Csardi and Nepusz 2006). The
igraph package provides different graph and network analysis tools, which can be used
to extract information from the modeled time series. The igraph objects can be easily
transformed or exported to other formats such as graphml, gml and edge list. Besides,
other network analysis packages commonly accept these objects. Examples are the sna
(Butts 2020), tsna (Bender-deMoll and Morris 2021), and muxViz (De Domenico et al.
2014).

The network construction process normally requires a high number of calculations.
For this reason, the most important functions in ts2net are implemented in parallel
using multi-core programming. The parallelization was implemented using the mclap-
ply function from the parallel, which comes with R. This implementation uses forks
to create multiple processes, an operation that is not available in Windows systems. It
means that, on Windows, all functions in ts2net with num_cores can only run with
one core.

Besides the multicore parallelization, the ts2net package was also constructed to be
run in supercomputers and computer clusters. The idea is to divide the distance calcu-
lations into jobs that could be calculated in parallel and then merged to construct the
distance matrix. The ts_dist_part and ts_dist_part_file functions make this
process easier.

The ts2net package provides the main functions to construct networks from time
series. Other R packages can be integrated in this process during or after the network
construction process. In the network construction process, the most related packages
mainly involve different time series distance functions as the TSclust (Montero and
Vilar 2014) and TSdist (Mori et al. 2016) packages. After the network construction,
the related packages mainly involve network analysis methods such as sna (Butts 2020).

Distance calculation

Functions to calculate the distance matrix:

Page 14 of 22Ferreira ﻿Applied Network Science (2024) 9:32

•	 ts_dist: Calculates all pairs of distances and returns a distance matrix D.
This function receives a list of time series that can either have or not have the
same length. It runs serial or in parallel (except in Windows) using mclap-
ply from parallel package. This function receives a distance function as a
parameter. Ts2net provides some distance functions (functions starting with
tsdist_...). Other distances can be easily implemented or adapted to be used
within this function.

•	 ts_dist_part: Calculate distances between pairs of time series (similarly to
ts_dist) in part of a list. This function is particularly useful to run in parallel as
jobs in supercomputers or computer clusters (HPC). Instead of having a single job
calculating all distances (with ts_dist), this function permits the user to divide
the calculation into different jobs. The result is a data frame with the distances
dij and indexes i and j. To construct the distance matrix D, the user can merge
all the results using the functions dist_parts_merge or dist_parts_file_
merge.

•	 ts_dist_part_file: This function works similarly as ts_dist_part. The
difference is that it reads the time series from RDS files in a directory. The advan-
tage of this approach is that it does not load all the time series in memory but
reads them only when necessary. This means that this function requires much less
memory and should be preferred when memory consumption is a concern, e.g.,
huge data sets or very long time series. The disadvantage of this approach is that
it requires a high number of file read operations which considerably takes more
time during the calculations. The user can merge all the results using the functions
dist_parts_merge or dist_parts_file_merge.

List of distance functions:

•	 tsdist_cor: Absolute (Eq. 2), positive (Eq. 3), or negative (Eq. 4) correlation
distances. This function optionally tests the significance of the correlation using
the Fisher z-transformation (Eq. 8) (Asuero et al. 2006).

•	 tsdist_ccf: Absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) cross-correla-
tion distances.

•	 tsdist_dtw: Dynamic Time Warping (DTW) distance (Sect. 2.1.3). This func-
tion is a wrapper for the dtw function from the dtw package (Giorgino 2009).

•	 tsdist_nmi: Normalized mutual information distance (Eq. 17). The implemen-
tation uses functions from the infotheo package (Meyer 2014).

•	 tsdist_voi: Variation of information distance (Eq. 18). The implementation
uses functions from the infotheo package (Meyer 2014).

•	 tsdist_mic: Maximal information coefficient (MIC) distance. This function
transforms the mine function from the minerva package (Albanese et al. 2012)
into a distance.

•	 tsdist_es: The events synchronization distance (Eq. 22) proposed by
Quian Quiroga et al. (2002). This function can also use the modification proposed
by Boers et al. (2019) ( τmax ). This function optionally tests the significance of the
events synchronization by shuffling the events in the time series.

Page 15 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

•	 tsdist_vr: Van Rossum distance. This function uses the fmetric function from
the mmpp package (Hino et al. 2015). It optionally tests the significance of the events
synchronization by shuffling the events in the time series.

Other distances can be easily applied in the ts2net. The only two requirements are
that the distance function should accept two arrays and it must return a distance. The
packages TSclust (Montero and Vilar 2014) and TSdist (Mori et al. 2016) provide
many other distance functions that can be used to create networks with ts2net. For
example, the Euclidean distance (diss.EUCL from TSclust) can be used to construct
the distance matrix:

It is important to remember that the parameter dist_func receives a function, so no
parenthesis is necessary (dist_func=diss.EUCL() is an error).

Another possibility is to implement specific functions and apply them. For example,
the following code snippet implements a distance function that compares the mean val-
ues of each time series and applies it to calculate the distance matrix D:

Network construction methods

Multiple time series into a network:

•	 net_knn: Constructs a k-NN network from a distance matrix D.
•	 net_knn_approx: Creates an approximated k-NN network from a distance matrix

D. This implementation may omit some actual nearest neighbors, but it is consider-
ably faster than net_knn. It uses the kNN function from the dbscan package.

•	 net_enn: Constructs a ǫ-NN network from a distance matrix D.
•	 net_enn_approx: Creates an approximated ǫ-NN network from a distance matrix

D. This implementation may omit some actual nearest neighbors, but it is consider-
ably faster than net_enn. It uses the frNN function from the dbscan package.

•	 net_weighted: Creates a full weighted network from a distance matrix D. In this
case, D should be in the interval [0, 1] (see dist_matrix_normalize). The link
weights in the resulting network are wij = 1− dij.

•	 net_significant_links: Construct a network with significant links.

A single time series into a network:

•	 ts_to_windows: Extract time windows from a time series. This function can be
used to construct a network from time windows. It returns a list of windows that can
be used as input for ts_dist to construct a distance matrix D.

•	 tsnet_qn: Creates transition (quantile) networks.

Page 16 of 22Ferreira ﻿Applied Network Science (2024) 9:32

•	 tsnet_vg: Creates natural and horizontal visibility graphs. This function can be
run in parallel.

•	 tsnet_rn: Creates a recurrence network from a time series. This function uses
the rqa function from the nonlinearTseries package to obtain the recurrence
matrix.

Useful functions

•	 dist_matrix_normalize: normalizes (min-max) a distance matrix D between
zero and one.

•	 dist_percentile: Returns the distance value that corresponds to the desired
percentile. This function is useful when the user wants to generate networks with dif-
ferent distance functions but with the same link density.

•	 ts_dist_dirs_merge: ts_dist_dir and ts_dist_dir calculate parts of
the distance matrix D. This function merges the results and constructs a distance
matrix D.

•	 tsdist_file_parts_merge: Merges the distance parts as ts_dist_dirs_
merge, but reading them from files.

•	 events_from_ts: Function to extract events from a time series. For example, it
can return the desired percentile of highest or lowest values. This function is particu-
larly useful for event-based distance functions.

Data

•	 dataset_sincos_generate: Generates a data set with sine and cosine time
series with arbitrary noise.

•	 random_ets: Creates random event time series with uniform probability.
•	 us_cities_temperature_df: A data set containing the temperature in 27 US

cities between 2012 and 2017. This data set was adapted from the original (Beniaguev
2017) for simplicity reasons. Different from the original, this data set comprehends
only cities in the US, grouped by month (mean value) temperature and without days
with missing data. The data set is stored in a data frame with 61 rows and 28 vari-
ables where each column (except date), corresponds to the mean temperature values
(°C) for each city.

•	 us_cities_temperature_list: Similar to us_cities_temperature_
df, but in a list, which is the required format for distance calculations (e.g. ts_
dist).

Source code

The ts2net is open-source and free to use according to the MIT License (https://​
github.​com/​lnfer​reira/​ts2net/​blob/​main/​LICEN​SE.​md). All the code is available on
Github at https://​github.​com/​lnfer​reira/​ts2net.

https://github.com/lnferreira/ts2net/blob/main/LICENSE
https://github.com/lnferreira/ts2net/blob/main/LICENSE
https://github.com/lnferreira/ts2net

Page 17 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

Applications
This section presents how the ts2net package can be used to transform a set or a sin-
gle time series into networks. Two real data sets were used as examples. The goal here
is not to present complicated applications and deep analyses but straightforward and
didactic examples of how to use networks to model time series.

Transforming a set of time series into a network

This section presents a network modeling example using real data. The data set is com-
posed of monthly temperature data from 27 cities in the US between 2012 and 2017,
illustrated in Fig. 7a. The version presented here was extracted and adapted from Kaggle
(Beniaguev 2017) for simplicity reasons by taking the monthly averages and keeping only
US cities.

The following code calculates the distance matrix (Fig. 7b) using DTW, finds the ǫ
that corresponds to the 30% of the shortest distances, and constructs a ǫ-NN network
(Fig. 7c):

Figure 7c illustrates the resulting network where nodes are conveniently placed
according to their geographical position. Once the network is constructed, it can be ana-
lysed using measures and methods from network science, graph theory, and graph min-
ing Barabási and Pósfai (2016). The most common analysis methods and measures are
implemented in R packages such as igraph (Csardi and Nepusz 2006) and sna (Butts

−10

0

10

20

30

2013 2014 2015 2016 2017

ºC

Portland
San Francisco
Seattle
Los Angeles
San Diego

Las Vegas
Phoenix
Albuquerque
Denver
San Antonio

Dallas
Houston
Kansas City
Minneapolis
Saint Louis

Chicago
Nashville
Indianapolis
Atlanta
Detroit

Jacksonville
Charlotte
Miami
Pittsburgh
Philadelphia

New York
Boston

a

Portland
Seattle

Albuquerque
Denver

Kansas City
Minneapolis
Saint Louis

Chicago
Nashville

Indianapolis
Detroit

Charlotte
Pittsburgh

Philadelphia
New York

Boston
San Francisco

Los Angeles
San Diego
Las Vegas

Phoenix
San Antonio

Dallas
Houston

Atlanta
Jacksonville

Miami

Portland

Seattle

Albuquerque

Denver

Kansas City

Minneapolis

Saint Louis

Chicago

Nashville

Indianapolis

Detroit

Charlotte

Pittsburgh

Philadelphia

New York

Boston

San Francisco

Los Angeles

San Diego

Las Vegas

Phoenix

San Antonio

Dallas
Houston

Atlanta

Jacksonville

Miami

0.00

0.25

0.50

0.75

1.00

d

b

Portland

San Francisco

Seattle

Los Angeles

San Diego

Las Vegas

Phoenix

Albuquerque

Denver

San Antonio

Dallas

Houston

Kansas City

Minneapolis

Saint Louis

Chicago

Nashville

Indianapolis

Atlanta

Detroit

Jacksonville

Charlotte

Pittsburgh
Philadelphia

New York

Miami

Boston

c

Fig. 7  Transforming time series into a network using ts2net. (a) The historical temperature of 27 cities in
the US. (b) The distance matrix D (normalized DTW) for the data set. (c) The ǫ-NN network was constructed
using 30% of the shortest distances. Node colors represent communities (Girvan and Newman 2002)

Page 18 of 22Ferreira ﻿Applied Network Science (2024) 9:32

2020). A typical analysis consists of finding the most central and peripheral nodes in the
network using centrality measures (Barabási and Pósfai 2016). The closeness centrality is
one example that be calculated using the following code:

The closeness centrality shows that Minneapolis and Albuquerque are the least and
most central nodes, respectively. This means that the distance in the network from Albu-
querque to all the other cities is the smallest, while Minneapolis has the longest distance.
Considering that DTW was applied to construct the network, the closeness centrality
can be used to find the cities with the most and least different temperatures in terms
of yearly variation and scale. Albuquerque presents more similarities in its temperature
variation and scale to other cities than Minneapolis.

Another interesting network analysis is community detection, which consist of find-
ing groups of highly connected nodes Girvan and Newman (2002). This analysis can be
made using some community detection algorithms implemented in igraph. The fol-
lowing code exemplifies this process:

The result of community detection is also illustrated in Fig. 7c, where node colors rep-
resent the two communities in the network. In this simple context, the two communities

Page 19 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

represent groups of cities with similar temperatures. As expected, the two groups are
divided by a latitude that splits the nodes into cities with cold (north) and hot (south)
temperatures. This is a didactic example of how graph mining tools can be used to find
meaningful information from a set of time series.

Transforming a single time series into a network

This section presents how a time series extracted from real data can be modeled as net-
works. The time series with the monthly atmospheric concentration of carbon dioxide
(ppm) measured in the Mauna Loa Observatory between 1959 and 1997 (Keeling et al.
2005), illustrated in Fig. 8a. This data set was mainly chosen by its simplicity and acces-
sibility (available with the base installation of R).

The following code generates a time-window network (net_w) with width 12 and
one-value step, a visibility graph (net_vg), a recurrence network (net_rn) with ǫ = 5 ,
and a transition network (net_qn) using 100 equally spaced bins using the ts2net
package.

Figure 8b–e illustrates the networks resulting from the transformation of the CO2 time
series. From the topology of the resulting networks, it is possible to extract useful infor-
mation. For example, the time-window network (Fig. 8b) shows 12 groups represent-
ing each month (seasonality). These groups can be detected using community detection
algorithms. The visibility graph (Fig. 8c) presents many small-degree nodes that repre-
sent the values on valleys while a few hubs connect peak values of CO2 after 1990 to
many other nodes. These hubs appear due to the increasing trend of CO2 contraction
and some slightly higher peaks during the seasons after 1980. The recurrence (Fig. 8d)
and transition (Fig. 8e) networks present some local connections caused by the seasons,
and a line shape, which is a result of the increasing trend in the CO2 concentration over
the years.

Final considerations
This paper presents ts2net, a package to transform time series into networks. This
paper also presents a detailed revision of the main transformation methods in the litera-
ture. With ts2net, users can model one or multiple time series into networks and use
network science tools to extract information from spatio-temporal data. No other pack-
age in R provides all the necessary tools to make these transformations. This package is
useful for virtually any scientific domain dealing with temporal data.

Page 20 of 22Ferreira ﻿Applied Network Science (2024) 9:32

One important drawback when transforming a set of time series into a network is the
high computational cost required to construct a distance matrix (combinations of time
series), making it unfeasible for huge data sets. To minimize this problem, ts2net pro-
vides tools to run distance functions in parallel and in high-performance computers via
multiple jobs.

The examples presented in Sect. 4 were chosen for didactic reasons. The main goal is
to show how the transformation process occurs and provide some simple ideas on how
these methods can be used to extract information from time series. Each of these meth-
ods is by itself a subject for research, which makes the exploration of all these methods
unfeasible in this paper. This paper was thought to be a starting point for the interested
reader who can use all the references to explore each method in detail.

The ts2net’s goal is not to provide all transformation methods in the literature but
the most used ones. It does not mean that this package cannot be extended or custom-
ized. As explained in Sect. 3.2, this package accepts time series distance functions imple-
mented by other packages or the user. New distance functions can be incorporated into

320

330

340

350

360

1960 1970 1980 1990

C
O

2
co

nc
en

tra
tio

n
(p

pm
)

a

b c

d e

Fig. 8  Transforming a single time series into networks using ts2net. a The CO2 concentration time series.
b Proximity network with time window 12 and one-value step. c Natural visibility graph. d Recurrence
network ( ǫ = 5 ). e Transition (quantile) network (100 equally-spaced bins). Node colors represent temporal
order (yellow to blue), except in the transition network where colors represent the sequence of lower (yellow)
to higher (blue) bins

Page 21 of 22Ferreira ﻿Applied Network Science (2024) 9:32 	

the package. Additional network construction methods, visualization, and computa-
tional improvements can also be added to the package in the future.

Finally, I would like to remember that ts2net is an open-source package that accepts
contributions. I invite and encourage all interested users to contribute to this package.

Computational details
The ts2net package requires R version 4.1.0 or higher. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://​CRAN.R-​
proje​ct.​org/.

Author contribution
LNF implemented the package and wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declaration

Competing interests
The authors declare no competing interests.

Received: 26 July 2023 Accepted: 25 June 2024

References
Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C (2012) Minerva and minepy: a c engine for the

mine suite and its r, python and matlab wrappers. Bioinformatics 707
Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. J ACM 45(6):891–923. https://​doi.​org/​10.​1145/​293347.​293348
Asuero AG, Sayago A, González AG (2006) The correlation coefficient: an overview. Crit Rev Anal Chem 36(1):41–59.

https://​doi.​org/​10.​1080/​10408​34050​05267​66
Barabási A-L, Pósfai M (2016) Network science. Cambridge University Press, Cambridge
Bender-deMoll S, Morris M (2021) Tsna: tools for temporal social network analysis
Beniaguev D (2017) Historical Hourly Weather Data 2012–2017. https://​www.​kaggle.​com/​datas​ets/​selfi​shgene/​histo​rical-​

hourly-​weath​er-​data. Online; Accessed 01 June 2022
Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd interna-

tional conference on knowledge discovery and data mining. AAAIWS’94. AAAI Press, pp 359–370
Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J (2019) Complex networks reveal global pattern of

extreme-rainfall teleconnections. Nature 566(7744):373–377. https://​doi.​org/​10.​1038/​s41586-​018-​0872-x
Bondy JA, Murty USR (2008) Graph theory. Springer, New York, p 663
Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat

Rev Neurosci 10(3):186–198. https://​doi.​org/​10.​1038/​nrn25​75
Butts CT (2020) Sna: tools for social network analysis. R package version 2.6
Campanharo ASLO, Sirer MI, Malmgren RD, Ramos FM, Amaral LAN (2011) Duality between time series and networks.

PLoS ONE 6(8):1–13. https://​doi.​org/​10.​1371/​journ​al.​pone.​00233​78
Chen J, Fang H-R, Saad Y (2009) Fast approximate knn graph construction for high dimensional data via recursive Lanczos

bisection. J Mach Learn Res 10:1989–2012
Csardi G, Nepusz T (2006) The igraph software package for complex network research. I J Comp Syst 1695
De Domenico M, Porter MA, Arenas A (2014) MuxViz: a tool for multilayer analysis and visualization of networks. J Comp

Netw 3(2):159–176. https://​doi.​org/​10.​1093/​comnet/​cnu038
Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer, New York, pp 1–583
Donner RV, Zou Y, Donges JF, Marwan N, Kurths J (2010) Recurrence networks—A novel paradigm for nonlinear time

series analysis. New J Phys 12(3):033025. https://​doi.​org/​10.​1088/​1367-​2630/​12/3/​033025
Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv. https://​doi.​org/​10.​1145/​23797​76.​23797​88
Ferreira LN, Ferreira NCR, Macau EEN, Donner RV (2021) The effect of time series distance functions on functional climate

networks. Eur Phys J Spec Top 230(14):2973–2998. https://​doi.​org/​10.​1140/​epjs/​s11734-​021-​00274-y
Ferreira LN, Hong I, Rutherford A, Cebrian M (2021) The small-world network of global protests. Sci Rep 11(1):19215.

https://​doi.​org/​10.​1038/​s41598-​021-​98628-y
Giorgino T (2009) Computing and visualizing dynamic time warping alignments in r: The dtw package. J Stat Softw

31(7):1–24. https://​doi.​org/​10.​18637/​jss.​v031.​i07

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://doi.org/10.1145/293347.293348
https://doi.org/10.1080/10408340500526766
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/nrn2575
https://doi.org/10.1371/journal.pone.0023378
https://doi.org/10.1093/comnet/cnu038
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1145/2379776.2379788
https://doi.org/10.1140/epjs/s11734-021-00274-y
https://doi.org/10.1038/s41598-021-98628-y
https://doi.org/10.18637/jss.v031.i07

Page 22 of 22Ferreira ﻿Applied Network Science (2024) 9:32

Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–
7826. https://​doi.​org/​10.​1073/​pnas.​12265​3799

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000)
Physiobank, physiotoolkit, and physionet. Circulation 101(23):215–220. https://​doi.​org/​10.​1161/​01.​CIR.​101.​23.​e215

Hino H, Takano K, Murata N (2015) mmpp: A package for calculating similarity and distance metrics for simple and
marked temporal point processes. R J 7(2):237–248. https://​doi.​org/​10.​32614/​RJ-​2015-​033

Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. https://​doi.​org/​10.​1016/j.​physr​ep.​2012.​03.​001
Hyndman RJ, Athanasopoulos G (2021) Forecasting: principles and practice, 3rd edn. OTexts. https://​books.​google.​com.​

br/​books?​id=​gZB-​zgEAC​AAJ
Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) In: Baldwin IT, Caldwell MM, Held-

maier G, Jackson RB, Lange OL, Mooney HA, Schulze E-D, Sommer U, Ehleringer JR, Denise Dearing M, Cerling TE
(eds) Atmospheric CO2 and 13CO2 Exchange with the Terrestrial Biosphere and Oceans from 1978 to 2000: obser-
vations and carbon cycle implications. Springer, New York, NY , pp 83–113. https://​doi.​org/​10.​1007/0-​387-​27048-5_5

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Comp Netw 2(3):203–
271. https://​doi.​org/​10.​1093/​comnet/​cnu016

Lacasa L, Luque B, Ballesteros F, Luque J, Nuño JC (2008) From time series to complex networks: the visibility graph. Proc
Natl Acad Sci 105(13):4972–4975. https://​doi.​org/​10.​1073/​pnas.​07092​47105

Lan X, Mo H, Chen S, Liu Q, Deng Y (2015) Fast transformation from time series to visibility graphs. Chaos: Interdiscip J
Nonlinear Sci 25(8):083105. https://​doi.​org/​10.​1063/1.​49278​35

Liu C, Springer D, Li Q, Moody B, Juan RA, Chorro FJ, Castells F, Roig JM, Silva I, Johnson AEW, Syed Z, Schmidt SE,
Papadaniil CD, Hadjileontiadis L, Naseri H, Moukadem A, Dieterlen A, Brandt C, Tang H, Samieinasab M, Samieinasab
MR, Sameni R, Mark RG, Clifford GD (2016) An open access database for the evaluation of heart sound algorithms.
Physiol Meas 37(12):2181–2213. https://​doi.​org/​10.​1088/​0967-​3334/​37/​12/​2181

Luque B, Lacasa L, Ballesteros F, Luque J (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev
E 80:046103. https://​doi.​org/​10.​1103/​PhysR​evE.​80.​046103

MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge
Meyer PE (2014) Infotheo: information-theoretic measures. R package version 1.2.0
Mitchell M (2006) Complex systems: network thinking. Artif Intell 170(18):1194–1212. https://​doi.​org/​10.​1016/j.​artint.​

2006.​10.​002
Montero P, Vilar JA (2014) Tsclust: An r package for time series clustering. J Stat Softw 62(1):1–43. https://​doi.​org/​10.​

18637/​jss.​v062.​i01
Mori U, Mendiburu A, Lozano JA (2016) Distance measures for time series in R: the TSdist package. R J 8(2):451–459.

https://​doi.​org/​10.​32614/​RJ-​2016-​058
Qiao L, Zhang L, Chen S, Shen D (2018) Data-driven graph construction and graph learning: a review. Neurocomputing

312:336–351. https://​doi.​org/​10.​1016/j.​neucom.​2018.​05.​084
Quian Quiroga R, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronic-

ity and time delay patterns. Phys Rev E 66:041904. https://​doi.​org/​10.​1103/​PhysR​evE.​66.​041904
Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011)

Detecting novel associations in large data sets. Science 334(6062):1518–1524. https://​doi.​org/​10.​1126/​scien​ce.​
12054​38

Rossum MCW (2001) A novel spike distance. Neural Comput 13(4):751–763. https://​doi.​org/​10.​1162/​08997​66013​00014​
321

Shumway RH, Stoffer DS (2017) Time series analysis and its applications: with R examples. Springer Texts in Statistics.
Springer. https://​books.​google.​com.​br/​books?​id=​sfFdD​wAAQB​AJ

Silva TC, Zhao L (2018) Machine learning in complex networks. Springer, New York
Silva VF, Silva ME, Ribeiro P, Silva F (2021) Time series analysis via network science: concepts and algorithms. WIREs Data

Min Knowl Disc 11(3):1404. https://​doi.​org/​10.​1002/​widm.​1404
Ting-Ting Z, Ning-De J, Zhong-Ke G, Yue-Bin L (2012) Limited penetrable visibility graph for establishing complex net-

work from time series. Acta Physica Sinica 61(3):030506. https://​doi.​org/​10.​7498/​aps.​61.​030506
Tumminello M, Lillo F, Mantegna RN (2010) Correlation, hierarchies, and networks in financial markets. J Econ Behav

Organn 75(1):40–58. https://​doi.​org/​10.​1016/j.​jebo.​2010.​01.​004. Transdisciplinary Perspectives on Economic
Complexity

Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normali-
zation and correction for chance. J Mach Learn Res 11(95):2837–2854

Wand MP (1997) Data-based choice of histogram bin width. Am Stat 51(1):59–64. https://​doi.​org/​10.​1080/​00031​305.​
1997.​10473​591

Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation
methods and distance measures for time series data. Data Min Knowl Disc 26(2):275–309. https://​doi.​org/​10.​1007/​
s10618-​012-​0250-5

Zou Y, Donner RV, Marwan N, Donges JF, Kurths J (2019) Complex network approaches to nonlinear time series analysis.
Phys Rep 787:1–97. https://​doi.​org/​10.​1016/j.​physr​ep.​2018.​10.​005

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.32614/RJ-2015-033
https://doi.org/10.1016/j.physrep.2012.03.001
https://books.google.com.br/books?id=gZB-zgEACAAJ
https://books.google.com.br/books?id=gZB-zgEACAAJ
https://doi.org/10.1007/0-387-27048-5_5
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1063/1.4927835
https://doi.org/10.1088/0967-3334/37/12/2181
https://doi.org/10.1103/PhysRevE.80.046103
https://doi.org/10.1016/j.artint.2006.10.002
https://doi.org/10.1016/j.artint.2006.10.002
https://doi.org/10.18637/jss.v062.i01
https://doi.org/10.18637/jss.v062.i01
https://doi.org/10.32614/RJ-2016-058
https://doi.org/10.1016/j.neucom.2018.05.084
https://doi.org/10.1103/PhysRevE.66.041904
https://doi.org/10.1126/science.1205438
https://doi.org/10.1126/science.1205438
https://doi.org/10.1162/089976601300014321
https://doi.org/10.1162/089976601300014321
https://books.google.com.br/books?id=sfFdDwAAQBAJ
https://doi.org/10.1002/widm.1404
https://doi.org/10.7498/aps.61.030506
https://doi.org/10.1016/j.jebo.2010.01.004
https://doi.org/10.1080/00031305.1997.10473591
https://doi.org/10.1080/00031305.1997.10473591
https://doi.org/10.1007/s10618-012-0250-5
https://doi.org/10.1007/s10618-012-0250-5
https://doi.org/10.1016/j.physrep.2018.10.005

	From time series to networks in R with the ts2net package
	Abstract
	Introduction
	Background Concepts
	Distance functions
	Correlation-based distances
	Distances based on information theory
	Dynamic time warping
	Event-based distances

	Transforming a set of time series into a network
	Transforming a single time series into a network
	Proximity networks
	Transition networks
	Visibility graphs
	Recurrence networks

	The ts2net Package
	Implementation aspects
	Distance calculation
	Network construction methods
	Useful functions
	Data
	Source code

	Applications
	Transforming a set of time series into a network
	Transforming a single time series into a network

	Final considerations
	Computational details
	References

