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Abstract 

Online social networks have become indispensable in modern life, facilitating knowl-
edge sharing, social communication, and business marketing. To gain a deeper under-
standing of individuals’ behavior within social networks, researchers have undertaken 
essential analytical tasks such as change point detection. Recently, nonparametric 
change point detection methods have attracted researchers’ attention due to their 
generality and flexibility. However, existing methods exhibit limitations, including over-
looking network structure, reliance on case-based network attributes, and neglecting 
the dynamic nature of data, which may have correlations in evolving social networks. In 
this study, we propose a novel multivariate mixed-effects nonparametric profile control 
(MENPC) algorithm to address these limitations. The advantage of MENPC relies on its 
unique point of view in approaching network data, where it incorporates the dynamic 
nature of data into the monitoring process without assuming internal independ-
ence of networks over time. Additionally, it takes into account the network structure 
by considering both nodal and network-level attributes. Furthermore, by introducing 
an updating trick formula, the proposed algorithm simplifies computations, effectively 
balancing memory and speed for online monitoring. We evaluate the effectiveness 
of MENPC through comprehensive numerical experiments using the degree correlated 
stochastic block model to simulate interactions in evolving online social networks. The 
results demonstrate MENPC’s superior performance in terms of expected detection 
delay, showcasing its accuracy and efficiency in comparison to competing approaches 
including Wilson, and eigenvalue methods. Applying MENPC to the Enron email 
network dataset further confirms its significant progress in social network monitoring, 
expanding its potential for various applications.

Keywords: Social network monitoring, Non-parametric profiles, Multivariate mixed 
effects nonparametric profile control, Network measures

Introduction
In today’s digital age, extensive use of information technology enables diverse enti-
ties and individuals to communicate, resulting in the formation of intricate networks. 
Various types of networks have emerged, each serving distinct purposes across numer-
ous applications in the field of applied network science, such as the Internet of Things 
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(IoT), protein–protein interaction networks, transportation networks, and social net-
works. Social networks play a fundamental role in knowledge dissemination, social 
communications, and business marketing. However, the massive volume and complex-
ity of data generated on these platforms present challenges for social networks analy-
sis (Sterchi et al. 2021; He and Wang 2023). Given the increasing trend of using social 
network applications across various aspects of human life, researchers have increasingly 
focused on social network analysis, particularly social network monitoring. Social net-
work monitoring involves observing and analyzing activities, interactions, and trends 
within a social network platform. It encompasses tracking and gathering data related to 
user behavior, content sharing, engagement, and other relevant metrics. The primary 
goal of social network monitoring is to gain insights into the network’s dynamics, user 
preferences, sentiment, and overall performance (Stevens et al. 2021a). Notably, social 
network change point detection finds applications in user behavioral analysis on online 
platforms, spammer detection, and community analysis. The ability to detect change 
points in social networks holds significant potential for understanding and improving 
user experiences, identifying anomalous behaviors, and enhancing network security. As 
social networks continue to evolve and influence various aspects of our lives, effective 
monitoring and analysis become imperative for making informed decisions and ensur-
ing positive outcomes for users and businesses alike (Kumar et al. 2023; Dey et al. 2023).

Furthermore, there have been significant advancements in network systems, particu-
larly in social science, shifting away from traditional approaches that treated networks 
as either static or dynamic entities. Instead, emerging models now allow networks to 
exhibit various changes over time. Efforts to model time-varying processes in social 
networks, such as information diffusion, reciprocity, and leadership, have led to a 
diverse range of modeling techniques. Consequently, there is a growing need to develop 
approaches for change point detection tasks in social networks (Camacho et al. 2020). 
Numerous researchers have emphasized the importance of change-point detection in 
social networks (Wilson et  al. 2019; Salmasnia et  al. 2020). Identifying and analyzing 
change points in social networks hold immense significance, as they can reveal crucial 
transitions and shifts in network dynamics, shedding light on evolving patterns of inter-
actions and behaviors. By uncovering such changes, researchers can better understand 
the underlying mechanisms that drive network evolution and improve predictive mode-
ling and decision-making processes. The exploration of change point detection methods 
in social networks continues to captivate researchers in the fields of statistical process 
control, network monitoring, and social science, as they strive to unravel the complexi-
ties and nuances of these dynamic and interconnected systems.

Traditionally, change detection and monitoring have been prevalent in manufactur-
ing processes, aiming to recognize deviations from normal operating conditions. Two 
significant kinds of change points can occur in in-control processes: changes in the sta-
tistical distribution and changes in the distribution’s parameters (Reis and Gins 2017). 
For example, changes may occur in the distribution of a variable of interest in a water 
treatment process. In addition, monitoring parameters like mean or variance can detect 
various changes, such as single-step shifts, multiple-step changes, sporadic changes, 
monotonic changes, and linear or nonlinear trend changes in the process distribution. 
The problem of change-point detection in social networks has garnered significant 
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attention from researchers (P Peixoto and Gauvin 2018). They have recognized the com-
mon categorization of change point detection methods in social networks, leading to 
two distinct methodologies: model-based approaches focusing on changes in the net-
work model, and free-model approaches targeting changes in the network structure 
(Stevens et al. 2021a).

In model-based approaches there is the assumption that the static or streaming net-
work data is generated from a specified network model. Thus, the network model is a 
prespecified information in the network monitoring task. Therefore, the data should be 
tested for its randomness to judge whether it’s generated from the prespecified network 
model or a change point is recognized. Additionally, the network’s structure is of interest 
in the free-model approaches, in which there are time series of network-related variables, 
i.e., nodes and edges, which might be used for change point detection. Researchers have 
adapted industrial process monitoring methods, including the Shewhart control chart, 
cumulative sum chart (CUSUM), exponentially weighted moving average (EWMA), and 
the Bayesian approaches in social network monitoring (Noorossana et al. 2011). While 
there are various methods for change point detection in industrial processes, a com-
monly accepted procedure for social network change point detection tasks has not yet 
been established. In this regard, researchers continue to propose various methods for 
change point detection tasks in social networks, leveraging network characteristics and 
conducting case studies. The ongoing efforts in this field indicate its growth and poten-
tial for further advancements.

Reviewing the related works in social network change point detection reveals a sig-
nificant research gap characterized by the following issues: (1) neglecting the network 
structure, where the state of the network is summarized into a vector based on node 
states, leading to the loss of some information (Wang et al. 2023). (2) overreliance on 
case-based attributes, wherein certain network-level measures such as centrality meas-
ures are considered according to the case study, while features of nodes are neglected 
(Salmasnia et al. 2020). Furthermore, most research often disregards the dynamic nature 
of online social networks, resulting in: (3) the unrealistic assumption of independence 
among network snapshots over time, despite real social networks exhibiting correla-
tion in their evolution (Wilson et  al. 2019). These limitations extend to (4) high com-
putational costs and poor scalability with large networks, resulting in low sensitivity 
for detecting fast change points (Hazrati-Marangaloo and Noorossana 2021). Address-
ing the four mentioned challenges is crucial for advancing the state-of-the-art in social 
network change point detection and fostering more accurate and efficient monitoring 
capabilities. To tackle these challenges, this study proposes a novel multivariate mixed-
effects nonparametric profile control (MENPC) algorithm for change point detec-
tion in online social networks. MENPC tackles these limitations through the following 
approaches: (1) It considers both a function for capturing the effects of network struc-
ture and another function for node effects within the multivariate mixed-effects model. 
(2) As a multivariate approach, it utilizes both nodal and network topological measures 
over time, including node degrees, vertex count, edge count, network centrality degree, 
network density, triangle count, and network betweenness, which can also be supple-
mented by other user-defined network measures. (3) MENPC seamlessly integrates the 
dynamic nature of data into constructing the multivariate Mixed-Effects model, without 
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assuming internal network independence across time frames. (4) Additionally, MENPC 
benefits from recursive equations to simplify computations and improve efficiency.

The main contributions of this study are as follows: (1) Monitoring by using both nodal 
and network attributes to consider the features of social networks, allowing for broad 
applicability in varying applications. (2) Scalability of the proposed algorithm for large 
social networks achieved through a novel updating trick formula, ensuring both mem-
ory and time efficiency. (3) Accuracy in fast detection of change points, as evidenced 
by the ARL and EDD criteria. These contributions pave the way for more effective and 
comprehensive social network change point detection and monitoring.

The rest of the paper is organized as follows: section "Literature review" reviews the 
related works in statistical change point detection. Section "Problem definition" speci-
fies the scope of the change points detection problem and introduces the assumptions 
that are used for profile monitoring. Section  "Methodology" provides the methodol-
ogy proposed in this paper for change point detection in social networks. Additionally, 
experimental results on both synthetic and real-world datasets are presented in sec-
tion "Experiments". Finally, the conclusion and suggestions for further research avenues 
are outlined in section "Practical implications and insights".

Literature review
In the realm of social network analysis (SNA), human activities can be modeled by nodes 
and edges where the nodes represent individuals and the edges present communications 
among them. In this regard, networks are potent means for representing human behav-
iors and making it possible for researchers to study, analyze, and predict varying events, 
which might indicate occurrences in the real world. Moreover, in other domains such 
as information technology, biology, sensors network, transportation, and supply chain 
network, it has shown its capabilities, which made network analysis a growing interdisci-
plinary field of science for the last decades (Khalilzadeh et al. 2020; Hazrati-Marangaloo 
and Noorossana 2021). The scope of the problem and contextual constraints inspires 
the network type and its characteristics, for which there are different types: directed or 
undirected, weighted or unweighted, static or dynamic, and deterministic or random.

Recently, the problem of social network change point detection has attracted the 
attention of many researchers in both network science and statistical process control 
areas (Stevens et al. 2021a). There are primarily two approaches to addressing this prob-
lem: model-based and free-model approaches.

The model-based approach treats the network model as a fixed entity for network 
change point detection. In this approach, the edges between nodes represent an unob-
served conditional relationship between some network variables. Testing the obtained 
data can show whether there is a change point and if so, detect changes based on the 
model’s deviation or the network data distribution. Such a method is similar to the tra-
ditional ways used for change point detection in time series such as the likelihood ratio 
test. In this regard, (Rajabi et  al. 2020) developed a method for monitoring changes 
in social networks through the application of the exponential random graph model 
(ERGM) and statistical process control techniques. This method addresses the inher-
ent complexity of social network data by utilizing the flexible framework provided by 
ERGM to capture the intricate dependencies among tie variables. However, the reliance 
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on the ERGM model poses a potential limitation, as its assumptions may not fully 
encapsulate the complexity of real-world social networks. Moreover, while the results 
indicate the superiority of exponentially weighted moving average (EWMA) charts over 
Hotelling’s T2, they are suitable for univariate models. The incorporation of multivari-
ate vectors necessitates theoretical development. Additionally, the lack of utilization of 
nodal attributes in this method limits its generality for application in various social net-
works. Furthermore, the proposed method is suitable for static cases, and for dynamic 
social networks, it is preferable to use temporal ERGM (TERGM). Focusing on dynamic 
networks, (Ghoshal et  al. 2022) developed a parallel algorithm for computing a newly 
defined anomaly score to detect change points in weighted graphs, adapted from the 
mixed membership stochastic block model (MSBM), where the weights represent the 
level of interactions among individuals. They integrated the overlapping community 
structure into their change point detection algorithm and demonstrated that focusing 
solely on nodes with multiple community memberships is sufficient for effective change 
detection. Experimental results on both synthetic data and real-world network data (spe-
cifically, the Enron Email dataset) indicate both the computational cost and precision 
superiority of their proposed method over existing methods like SpotLight (Eswaran 
et  al. 2018) and AnomRank (Yoon et  al. 2019). However, the method may face chal-
lenges in scenarios where the network structure is highly dynamic or noisy, potentially 
leading to false positives or missed anomalies. There is a need to extend the method to 
consider the correlated nature of social networks. Additionally, while the parallel imple-
mentation enhances computational efficiency, it may require substantial computational 
resources, limiting its applicability in resource-constrained environments. Moreover, 
not utilizing nodal features in the change point analysis constrains the application of the 
proposed method. Framing the changepoint detection problem as a composite hypoth-
esis testing task, (Sharpnack et al. 2013) proposed a spectral scan statistic (SSS) that uti-
lizes the combinatorial Laplacian of the graph to detect anomalies efficiently. They have 
demonstrated that the SSS outperforms existing methods such as χ2 testing and naive 
testing based on edge thresholding, particularly when the signal-to-noise ratio is low. 
However, scalability could be a challenge for the SSS when applied to extremely large 
graphs. Moreover, the evaluation of the SSS primarily relies on simulated data from bal-
anced binary trees, the two-dimensional lattice and the Kronecker graphs, which may 
not fully capture the complexities of real-world scenarios. Real-world graph-structured 
data often exhibit additional noise, heterogeneity, correlation and dynamic behavior that 
may not be adequately addressed by theoretical assumptions or simulated experiments. 
Adapting techniques from industrial process monitoring, (Salmasnia et  al. 2020) pro-
posed a multivariate exponentially weighted moving average (MEWMA) chart for social 
network monitoring. This method considers four correlated network attributes: density, 
degree centrality, betweenness, and closeness. In addition, their experimental results 
demonstrate the superiority of their proposed method against univariate control charts. 
However, limitation of their work lies in the assumption of a static network, where the 
number of members (nodes) remains constant throughout the monitoring cycle. This 
assumption may not hold in dynamic social networks, where nodes may join or leave 
over time, thereby altering the network structure. Moreover, the research assumes 
an undirected and unweighted network, which may oversimplify the complexity of 
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real-world social interactions where relationships can be directional and carry varying 
degrees of importance. Additionally, the evaluation of the proposed method relies solely 
on simulated data, potentially limiting its ability to capture the nuanced dynamics of real 
social networks.

Alongside with the first stream of model-based approaches, the second stream of free-
model approaches attracted the researchers’ attention due to their generalization capa-
bilities. In the free-model approach, there is no assumption for the network model, and 
the changes in the network structure are of interest. For example, the monitoring may 
occur by observing time series of variables such as the number of nodes, edges, or some 
network-related attributes, e.g., centrality measures for the network. Farahani et  al. 
(2017) developed both MEWMA and multivariate cumulative sum (MCUSUM) charts 
to monitor interactions in networks following Poisson distribution. They considered the 
correlations among network measures, the effect of node attributes for establishing con-
nections, and the number of relationships between nodes in their proposed method. The 
experimental evaluation illustrated that the MEWMA chart is more efficient than the 
MCUSUM chart, for their proposed monitoring statistic. However, the assumption of a 
Poisson distribution for the number of interactions in social networks limits the appli-
cation of the proposed method, as many social networks exhibit reciprocity behavior 
among their members. Additionally, although the researchers attempted to account for 
the correlation of network measures, the model they used for generation independently 
generates network interactions.

Additionally, considering the applications of attributed social networks, Fotuhi et al. 
(2023) investigated attributed social networks based on categorical data analysis using 
the generalized estimating equations (GEE) approach. They incorporated the autocor-
relation of social networks into their proposed method, and after applying the GEE 
approach, the obtained model parameters were monitored through the MEWMA 
method and Hotelling’s T2 control chart. Although the conducted experiments showed 
that the MEWMA method has better performance, the proposed method relies heavily 
on simulated studies, which may not fully capture the complexity and variability present 
in real-world social networks. Additionally, the proposed method focuses on monitoring 
social networks based on categorical attributes and contingency tables, which may not 
fully capture the richness of interactions present in real social networks. This limitation 
suggests that the method may not be suitable for all types of social networks.

Moreover, Anastasiou et  al. (2022) presented the cross-covariate isolate detection 
(CCID) method for change point detection in functional connectivity (FC) networks. 
It can detect change points in the second-order structure of multivariate time series. 
The CCID algorithm uses the scaled CUSUM statistic in an aggregated form consider-
ing only those CUSUM statistics over multivariate time series which pass a prespecified 
threshold. The experiments demonstrated the superiority and novelty of the proposed 
algorithm over methods such as sparsified binary segmentation (SBS) (Cho and Fryzle-
wicz 2015) and Factor with common components (Factor com) (Barigozzi et al. 2018), 
typically used in detecting change points in biological data, in terms of computational 
costs and sensitivity to small signals. However, while simulated data may offer insights 
into the performance of the CCID method, it may not fully capture the complexities 
and variability present in real-world fMRI or other neuroimaging data. Additionally, the 
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comparison with existing methods may not encompass all possible change scenarios, 
potentially limiting the generalizability of the findings. Moreover, it requires significant 
computational resources, particularly with high-dimensional data or numerous regions 
of interest (ROIs), which could present challenges in real-world scenarios with extensive 
datasets or limited computational resources.

Industrial process monitoring using profiles has garnered significant attention due 
to its various applications (Noorossana et al. 2011). One of the early efforts for moni-
toring social networks through profiles dates backs to (Wasserman and Pattison 1996), 
which proposed logistic regression for social network modeling. Continuing in this way, 
(Azarnoush et al. 2016) developed a new approach based on logistic regression and node 
attributes for social network monitoring purposes. It should be noted that detecting 
changes in logistic regression models falls into the profile monitoring methods. Addi-
tionally, profile monitoring consists of two phases: Phase I involves analyzing in-control 
data to estimate the profile parameters and design the control chart, while Phase II aims 
to rapidly detect changes in the process using the designed control chart. While the pro-
posed approach offers flexibility in detecting anomalies arising from different network 
edge-formation mechanisms, it also assumes that the relationships between entities can 
be fully captured by vertex attributes. However, in real-world scenarios, the formation 
of network edges may be influenced by various other factors, including the autocorrela-
tion of networks. Hazrati-Marangaloo and Noorossana (2021) proposed a nonparamet-
ric change detection approach based on eigenvalues of adjacency matrices to monitor 
network streams, offering advantages over parametric methods by avoiding strict distri-
butional assumptions. By utilizing a sliding window of reference networks and compar-
ing distributions of eigenvalues, the method can detect structural changes in network 
connectivity, including changes in communication rates and community structure, with-
out relying on predefined models or assumptions about network dynamics. However, 
while the proposed method offers flexibility and robustness, it may come with certain 
limitations. One potential disadvantage is computational complexity, especially when 
dealing with large-scale networks or high-dimensional data for calculating eigenvalues. 
Additionally, the effectiveness of nonparametric methods may depend on the choice of 
hyperparameters, such as the window size or divergence threshold, which could intro-
duce subjectivity and require careful tuning for optimal performance. In addition, the 
lack of utilization of nodal attributes in this method limits its generality for application 
in various social networks.

Wilson et  al. (2019) proposed an approach to detect structural changes in dynamic 
networks. By utilizing degree corrected stochastic block model (DCSBM), which 
accounts for heterogeneous connectivity and community structure, the proposed moni-
toring method demonstrates flexibility in handling complex network dynamics. The 
proposed set of statistics, Shewhart control charts and exponentially weighted moving 
average (EWMA) control charts used for change point detection. The study demon-
strates the utility of this framework through its application to real-world datasets. More-
over, experiments show that the proposed method effectively detects local and global 
structural changes in dynamic networks, providing valuable insights into the behavior of 
system. While the proposed methodology presents advantages such as its flexibility and 
ability to detect significant changes accurately, it has limitations such as computational 
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complexity associated with calculation of monitoring statistics in large-scale network 
data. Furthermore, the effectiveness of the surveillance strategy may depend on the 
choice of monitoring statistic, requiring careful tuning for optimal performance.

Recently, researchers have proposed nonparametric models for change point analysis 
which have the capability to capture interdependency of evolving networks over time 
while considering common features of social networks (Qiu et  al. 2010; Klyushin and 
Martynenko 2021; Yeganeh et  al. 2022; Wang et  al. 2022). While traditional paramet-
ric profile approaches are widely used for monitoring, they may be inadequate when 
the relationship is too complex to be accurately described by a parametric model. In 
such cases, nonparametric profile monitoring offers a promising alternative. Qiu et al. 
(2010) developed a novel approach to nonparametric profile monitoring by incorporat-
ing mixed-effects modeling and local linear kernel smoothing into the exponentially 
weighted moving average (EWMA) control scheme. The proposed method allows for 
the detection of structural changes or shifts in nonparametric profiles while accounting 
for within-profile correlations. Through numerical studies and application examples, the 
proposed control chart demonstrates its effectiveness in detecting step shifts and cer-
tain profile drifts in various scenarios. However, the proposed method is developed for 
univariate cases, and the nodal attributes are not considered in the model, limiting the 
generalization of the method.

The two streams of model-based and free-model approaches for change point analy-
sis in social networks, have experienced fluctuations. However, tools for network moni-
toring, change point detection, and data analysis have consistently prevailed and found 
application across a wide range of domains (Schweinberger et al. 2021). Upon reviewing 
the existing literature on social network change point detection, a significant research 
gap emerges, marked by several key issues. Firstly, there is a tendency to overlook the 
network structure, wherein the network’s state is condensed into a vector based on node 
states, consequently losing valuable information. Secondly, there is an overreliance on 
case-based attributes, where certain network-level metrics such as centrality measures 
are selectively considered, leaving out crucial node features. Additionally, many stud-
ies tend to ignore the dynamic nature of online social networks, making the unrealistic 
assumption of independence among network snapshots over time, despite real networks 
showing correlated evolution. These limitations are further compounded by the high 
computational costs and poor scalability observed with large networks, resulting in a 
diminished sensitivity for detecting rapid change points. Addressing these challenges is 
imperative for advancing the state-of-the-art in social network change point detection 
and enhancing monitoring capabilities.

Table 1 provides a comparison and summary of the literature methods, outlining their 
respective capabilities. As evident from the table, there exists a research gap for a mul-
tivariate nonparametric mixed-effects (NME) approach while also incorporating nodal 
attributes for social network monitoring.

To address the aforementioned issues and research gap, this study proposes a novel 
multivariate mixed-effects nonparametric profile control (MENPC) algorithm tailored 
for change point detection in online social networks. In other words, we contribute to 
the second stream, which is the model-free approach of change point detection. To this 
aim, this study proposes nonparametric profiles (NP) by considering common features 
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of social networks, including sparsity, heterogeneity, and reciprocity. In addition, in 
Phase I, we utilize NP profiles for modeling the data and the least squares (LS) method 
(Craven and Islam 2011) for parameter estimation. Subsequently, the profiles are utilized 
for monitoring purposes in Phase II.

In short, as there is no attempt accomplished for online monitoring of social networks 
through multivariate NP profiles, which are naturally dynamic and should be appropri-
ately incorporated into profiles, this paper contributes to both theoretical and practi-
cal aspects of social network monitoring. The novelty comes from the theory for which 
the profiles are constructed and its capability to consider social network features. In 
addition, the proposed tool can be used in industries and governments. Some potential 
applications of our proposed algorithm include monitoring communities in social net-
works for marketing and business insights, as well as tracking criminal activities, disease 
spread, etc. (Stevens et al. 2021b). The next section presents the problem of change point 
detection in dynamic social networks and provides its assumptions.

Problem definition
Statistical modeling and mathematical analysis of networks reveal many insights regard-
ing complex systems. In this article, the data changes over the network are the subject 
of interest. There are different frameworks for presenting graphs, including exchange-
able random measures on a plane, point processes, and adjacency lists (Todeschini et al. 
2020). In this study, a discrete structure like an adjacency matrix, commonly used for 
network analysis, is employed. Table 2 provides the notation and parameter definition.

The following equations characterize the dynamic social network:

Table 1 Comparison of literature methods for social network monitoring

Method Free of 
network 
model

Nonparametric 
profile 
approach

Not 
assuming 
i.i.d. 
conditions

Considering 
correlation 
in dynamic 
network 

Multivariate 
approach

Node 
features

Network 
attributes

ERGM 
based

× × × × × × ✓

Commu-
nity Based 
Approach 
for MSBM

× × × × × × ✓

SSS × × × × × × ✓
Salmasnia 
Method

× × × × ✓ × ✓

Farahani 
method 
for Poisson 
Networks

× × × ✓ ✓ ✓ ✓

GEE × × × ✓ ✓ ✓ ✓
CCID ✓ × ✓ ✓ × × ✓
Azarnoush 
method

✓ × × × ✓ ✓ ×

Eigenvalue ✓ × ✓ × × × ×

Wilson ✓ × × × ✓ × ✓
NME ✓ ✓ ✓ ✓ × × ✓
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where V (t) and E(t) represent nodes and edges in the graph at period t , respectively. In 
addition, the relationship among nodes can be in the form of any communication facili-
ties such as emails, messages, comments, reshare, or likes available on the platform of 
which they are a member.

Figure 1 illustrates the evolution of a dynamic social network, denoted as G(t) , over 
time. It depicts a sample change point in time, where the network state undergoes 
a transition. The occurrence of changes in social networks and individual interac-
tions can be influenced by a wide range of factors, both external and internal. Among 
external factors, technological advancements, demographic shifts, and social trends 
can contribute to altering the dynamics of social networks (Stevens et al. 2021a). For 
example, technological advancements, like the emergence of new competing social 
platforms, can influence user preferences and behaviors, such as transitioning to a 
new platform or reducing daily usage. These changes often reflect in the network’s 
topological measures over time. Similarly, demographic shifts, such as alterations 

(1)G(t) = (V (t),E(t)) t = 1,2, ..,T

(2)V (t) = v1, v2, . . . , vp

(3)E(t) =
(
e12t , . . . , eijt , . . . , ep(p−1)t

)

Table 2 Social network change point detection problem notation

Notation Definition

G(t) The network state at time t

V(t) The set of network individuals at time t

E(t) The set of network edges at time t

T The number of periods

p The number of nodes

eijt The number of interactions between 
node i  and node j  at time t

Fig. 1 Change point in a dynamic social network
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in the age demographics or geographic distribution of users, can impact the struc-
ture and dynamics of social communities within the network. For instance, individu-
als with distinct local dialects may be less inclined to form new communities within 
the social network. Moreover, social trends like viral challenges or trending top-
ics that garner widespread attention and participation within a social network can 
swiftly shape the type of content shared and the conversations taking place. These 
trends often spark a surge in user-generated content related to the trend, leading to 
increased engagement and alterations in interactions within the social network.

Moreover, internal factors, such as changes in platform algorithms, community 
management features, privacy concerns, and the influence of key users like influenc-
ers and celebrities play roles in driving changes within social networks (Jeske et  al. 
2018). Social platforms frequently update their algorithms to enhance user experi-
ence and personalize content. These algorithmic changes have a significant impact 
on the content users encounter, how it is prioritized, and its dissemination within the 
network. Consequently, these changes manifest in various aspects of the network, 
including nodes, edges, and network-level measures. Changes in community man-
agement features on social platforms, such as group functionalities, can also shape 
user behavior and interaction patterns within social networks. These alterations may 
influence the nature of discussions, practices regarding content sharing, and the over-
all dynamics of the community. Similarly, modifications to privacy settings can influ-
ence user trust and engagement on social platforms. These adjustments might lead to 
shifts in user behavior, resulting in changes in interaction patterns and content shar-
ing practices. Furthermore, influencers and celebrities wield considerable influence 
over social network dynamics through their content, endorsements, and interactions. 
Their actions and endorsements have the power to set trends, amplify messages, and 
drive user engagement, thus shaping the overall tone and direction of conversations 
within the social network.

Adapting and responding to changes is crucial for social platforms to provide a pos-
itive and engaging user experience. Understanding the complexity and interconnect-
edness of these factors is essential for ensuring the continued growth and success of 
social networks.

This research endeavors to introduce a novel charting statistic for tackling the prob-
lem of detecting change points in dynamic social networks, considering the following 
challenges:

1. Incorporating both nodal and network-level attributes of the social network for 
change point detection.

2. The necessity of considering the interdependency among consecutive network states 
over time.

3. Ensuring scalability and accuracy in rapidly detecting change points over time.

Methodology
In this section, we begin by providing some contextual background. Then, a novel 
charting statistic for online monitoring of social networks is proposed.
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Preliminaries in profile monitoring

Historically, quality engineers proposed profile monitoring techniques to monitor indus-
trial processes in which one or more response variables have functional relation to some 
explanatory variables known as quality variables (Noorossana et al. 2011). The following 
equation represents the general form of profiles

where yi is the vector of measured values, f (.) presents the functional relationship,xi is 
the vector of explanatory variables, εi is the vector of error term usually assumed white 
noise. Additionally, profiles can take on different functional forms, either parametric 
or nonparametric, including simple linear, multiple linear, polynomial profile, binary 
response, parametric nonlinear, and nonparametric nonlinear. Note that Eq.  4 can be 
reduced to a parametric form by considering β̃  as the vector of parameters. The follow-
ing equation presents the reduced form.

In parametric profiles, based on the type of profile, there are varying methods such 
as maximum likelihood estimator (MLE) (Meeker and Escobar 1994), ordinary least 
squares (OLS) (Craven and Islam 2011), and weighted least square (WLS) (Cohen and 
Migliorati 2017) methods to estimate the parameters. Furthermore, the literature on 
profile monitoring commonly addresses issues related to the dependency of profiles over 
time or the dependency between explanatory variables (Noorossana et  al. 2011). The 
profiles exhibit dependency in two forms: either through between-profile correlation 
(BPC), indicating dependence between the profiles, or through within-profile autocor-
relation (WPA), indicating that the measurements within a profile are not independent 
of each other. Note that BPC and WPA refer to the data and error term, not the pro-
file parameters (Zhang et al. 2015). As a result, researchers often assume independence 
among profiles or variables in many cases (Noorossana et al. 2011; Salmasnia et al. 2020). 
In the context of online social network monitoring, the issue of dependency is crucial, 
as individuals’ interactions naturally depend on previous connections. The section "The 
proposed method for online monitoring of social networks" proposes our method for 
tackling this issue.

Online profile monitoring

Generally, process monitoring is divided into two phases. In Phase I, the goal is to 
achieve stability and estimate model parameters. Once the parameters and baselines 
are established, Phase II involves monitoring online data to detect deviations from 
these baselines. To ensure desirable efficiency, it is essential to minimize the probabil-
ity of type I and II errors for unstable points in Phase I. Additionally, quick detection 
of anomalies in Phase II is another critical factor for effective monitoring (Nooros-
sana et  al. 2011). Although it is true to say that Phase II conducts online monitor-
ing due to the dynamic nature of processes, most research efforts do not address the 
dynamic nature of data in Phase I. In fact, one could argue that a method monitors 

(4)yi = f (xi)+ εi i = 1,2, . . . , n.

(5)yi = f
(
xi, β̃

)
+ εi i = 1,2, . . . , n.
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online processes while the technique itself possesses a dynamic nature. Therefore, it is 
crucial to update baselines periodically, a consideration incorporated in the proposed 
method outlined in this article.

The proposed method for online monitoring of social networks

In the literature on profile monitoring, it is common to assume i.i.d random errors 
in the model, although this assumption is not always accurate. Similarly, in networks 
such as social networks, there are often evident correlations among data, where the 
connections between nodes depend on the network’s previous state or structure, as 
well as on the attribute values of certain nodes. This correlation within profile data 
poses a challenging issue in profile setup. To address this, researchers have proposed 
various methods (Noorossana et al. 2011; Zhang et al. 2015). One notable method is 
the nonparametric mixed effects (NME) model (Qiu et al. 2010), which is well-suited 
for longitudinal datasets. Importantly, the proposed NME model enables monitoring 
of social networks without imposing parameters, thereby increasing its applicability.

Assuming xtij ∈ [0,1] , Eq. 6 presents a multivariate NME model (Qiu et al. 2010)

where ytij is the weight of the connection between nodes i and j at time point t , g(.) is 
the profile function for connections in the network, ft(.) is the random effect term to 
characterize the variation of the profile from g(.) , and εtij is the white noise. In addition, 
the assumption behind the proposed model is the independency of ft(.) and εtij , and the 
ft(.) is a realization of a zero-mean process with the following covariance function.

Because of NME model flexibility, it requires a relatively large amount of train-
ing data in model estimation. As mostly there is a large amount of in-control data 
available in social networks as well as industrial processes, the proposed model can 
effectively be used in these applications. Moreover, to construct a Phase-II control 
chart statistic, it is essential to have g(.) , ft(.) or γ (.) , and σ 2 based on in-control data. 
In this regard, according to Wu and Zhang (2002) the combination of Linear Mixed 
Effects modeling and the Local Linear Kernel Smoothing method provides an efficient 
estimation of g(.) , and by the same approach, leading to consistent estimates of ft(.) 
and σ 2 . These estimations facilitate the proposal of the charting statistic.

Linear Mixed Effects modeling is a statistical technique used in nonparametric 
approaches for analyzing data that has both fixed and random effects. It is an exten-
sion of linear regression that is particularly useful when dealing with data that exhibit 
correlation or grouping structures (West et al. 2022). In addition, Local Linear Kernel 
smoothing is a non-parametric statistical technique used for estimating the under-
lying relationship between variables, when it is not assumed to be strictly linear 
and when there might be local variations in data. Implementing local linear kernel 
Smoothing involves selecting an appropriate kernel function and bandwidth, and 
then computing the weighted linear regression estimates for each target point (Zara 
et al. 2022).

(6)ytij = g
(
xtij

)
+ ft

(
xtij

)
+ εtij

(7)γ (x1, x2) = E(ft(x1) ∗ ft(x2))
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With the inspiration of Wu and Zhang method (Wu and Zhang 2002) and extending 
it for the multivariate case, for eachς ∈ [0,1] , assuming ĝ(ς) = eT1 β̂(ς) , f̂t(ς) = eT1 α̂t(ς) 
the Local Linear Mixed Effects model forg(ς) , and ft(ς) can be obtained by minimizing 
Eq. 8.

where xtij is a p dimensional vector of explanatory variables, K  is a symmetric kernel 
function,h is the bandwidth, e1 = (1,0)T and Kh(.) = K (./h)/h . Additionally, αt ∼ (0,D) 
is a random variable with mean 0 and variance D , and β is a two-dimensional vector of 
coefficients for obtaining g(.) . Algorithm 1 proposes an iterative procedure for obtaining 
g(.) and ft(.) of Eq. 6.

Algorithm 1. An iterative procedure to obtain g(.) and ft(.)

1 Set the initial values of D and σ 2 from the following formulae, and consider an 
arbitrary p dimensional s and D(0) = I2

σ
2
(0) =

1
T

∑T
i=1

1

v2

∑v
i=1

∑v
j=1

[
ytij − ĝ(P)(xtij)

]2

Where ĝ(P)(.) is standard LLKE constructed from the data

2 Estimate β and αt at iteration k ≥ 0 by the following formulae:

β̂
(k) = {

∑T
t=1 Z

T
t �tZt}

−1
{
∑T

t=1 Z
T
t �t yt}

α̂
(k)
t =

{
ZTt KtZt + σ

2
(k)

[
D(k)

]−1
}−1{

ZTt Kt(yt − Zt β̂
(k)
)

}

WhereZt = (zt11, . . . , ztvv)
T , yt = (yt11, . . . , ytvv)

T , �t = (ZtD(k)Z
T
t + σ

2
(k)K

−1
t )

−1
 , 

and Kt = diag{Kh(xt11 − s), . . . , Kh(xtvv − s)}.

3 Update D and σ 2 based on β̂(k) and α̂(k)
t

D(k+1) =
1
T

∑T
t=1 α̂

(k)
t [α̂

(k)
t ]

T

σ
2
(k+1)

= 1
T

∑T
t=1

1

v2

[
yt − Zt(β̂

(k) + α̂
(k)
t )

]T
Kt [yt − Zt(β̂

(k) + α̂
(k)
t )]

4 Repeat Steps 2 and 3 until the following condition is satisfied
�D(l)−D(l−1)�1

�D(l−1)�1
≤ ǫ

Where ǫ is a small positive value, i.e., ǫ = 10−4

5 After obtaining the estimates of β and αt through Steps 1 to 4, the following equa-
tions can be defined for g(.) ,ft(.) and γ (.)
ĝ(ς) = eT1 β̂(ς)

f̂t(ς) = eT1 α̂t(ς)

γ̂ (ς1, ς2) =
1
T

∑T
t=1 f̂t(ς1 )̂ft(ς2), ς1, ς2 ∈ [0,1]

After implementing the proposed procedure for multivariate data on in-control data-
set, we can obtain an estimation of g(.) and ft(.) in the NME model (Eq. 6) for the desired 
social network interaction data. The remaining task is to pave the way for Phase II moni-
toring through proposing the charting statistic.

Phase II monitoring using the charting statistic based on the proposed NME model

In Phase II, we assume that variance function v2(.) , g(.) , and f (.) for the in-control data-
set are known, and obtained from Algorithm  1. In this phase, online monitoring is a 
challenging task mainly for two reasons. The first is that correlations between profiles 
and within profiles increase computational time since the model considers historical 
data to tackle the correlation issue, in this regard we are proposing a computational trick 

(8)
T∑

t=1

1

σ 2

v∑

i=1

v∑

j=1

[
ytij − zTtij(β + αt)

]2
Kh

(
xtij − s

)
+ α

T
t D

−1
αt + ln|D| + nt ln(σ

2
)
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for the recursive computation of charting statistic. The second is related to the applica-
bility of the GLR test in which the variation of design points is necessary, thus instead 
of that here according to Qiu et al. (2010) and extending it for the multivariate case the 
local weighted negative log  likelihood function minimization is used to overcome the 
mentioned issue.

where xtij is a p dimensional vector of explanatory variables, � is a weighting parameter 
such as the scheme of weights in the EWMA method and v2(ς) = γ (ς , ς)+ σ

2 is the 
variance function. According to the local  weighted negative log  likelihood function, it 
combines the weighting scheme of EWMA through the term (1− �)

τ−t and a local lin-
ear kernel estimator, simultaneously. In addition, in phase II of monitoring, the popula-
tion profile g(.) can be defined through the minimization of WL. The following equation 
presents the g(.) for phase II.

where the following equations are established.

Considering that v2(.) function and g0(.) both known from the in-control dataset (Phase 
I), replacing the transformation of Eq. 13 in Eq. 10 leads to Eq. 14. Clearly, in this case, the 
distribution of ξ̂τ ,h,�(ς) would not depend on g0(.).

If the process is in control, 
∣∣∣ξ̂τ ,h,�(ς)

∣∣∣ should be small values. Finally, the following Tτ ,h,� is 

the novel statistic for the multivariate MENPC which can be used for monitoring purposes.

(9)WL(a, b; s, �, τ ) =

τ∑

t=1

v∑

i=1

v∑

j=1

[
ytij − a− b

(
xtij − s

)]2
Kh(xtij − s)(1− �)

τ−t

v2(xtij)

(10)ĝτ ,h,�(ς) =

∑
τ

t=1

∑v
i=1

∑v
j=1

U
(τ ,h,�)
tij (ς)ytij

∑
τ

t=1

∑v
i=1

∑v
j=1

U
(τ ,h,�)
tij (ς)

(11)U
(τ ,h,�)
tij (ς) =

(1− �)
τ−tKh

(
xtij − s

)

v2
(
xtij

) {m
(τ ,h,�)
2

(ς)−
(
xtij − s

)
m

(τ ,h,�)
1

(ς)}

(12)m
(τ ,h,�)
l (ς) =

τ∑

t=1

(1− �)
τ−t

v∑

i=1

v∑

j=1

(
xtij − s

)l
Kh(xtij − s)v−2

(xtij) l = 0,1, 2

(13)ξtij = ytij − g0(xtij)

(14)ξ̂τ ,h,�(ς) =

∑
τ

t=1

∑v
i=1

∑v
j=1U

(τ ,h,�)
tij (ς)ξtij

∑
τ

t=1

∑v
i=1

∑v
j=1U

(τ ,h,�)
tij (ς)

(15)Tτ ,h,� = c0,τ ,�

∫
[
ξ̂τ ,h,�(ς)

]2

v2(ς)
Ŵ1(ς)dς
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where Ŵ1 is a prespecified density function. Moreover, practically the discretized version 
of the statistic Tτ ,h,� is in the form of the following equation.

where 
{
ϕk , k = 1, . . . , n0

}
 are some prespecified design points fromŴ1 . Then, by setting a 

proper control limit L to achieve a specific ARL0 the proposed multivariate mixed-effect 
nonparametric profile control (MENPC) chart can be used for social network monitor-
ing. The Block Bootstrap resampling procedures (Galvao et  al. 2024) are used here to 
obtain the limit L . If the Tτ ,h,� ≥ L it demonstrates a change point in the social network.

A computational trick for online monitoring of social networks

In general, online social network monitoring consists of many profiles, where fast imple-
mentation is essential. Therefore, since computing the test statistic is time-consuming as it 
uses past social network data, the implementation of the following updating formulae sim-
plifies the computation.

Then, the following recursive equations are obtained.

where m(0,h,�)
l (s) = 0 for l = 0,1, 2 . Additionally, let

where q(0,h,�)l (s) = 0 for l = 0,1 . Moreover, we can obtain ĝτ ,h,�(ς)

(16)ct0,t1,� =
a2t0,t1,�

bt0,t1,�

(17)at0,t1,� =

t1∑

i=t0+1

(1− �)
t1−ini

(18)bt0,t1,� =

t1∑

i=t0+1

(1− �)
2(t1−i)ni

(19)Tτ ,h,� =
c0,τ ,�

n0

n0∑

k=1

[
ξ̂τ ,h,�(ϕk)

]2

v2(ϕk)

(20)m̃
(τ ,h)
l (s) =

v∑

i=1

v∑

j=1

(
xtij − s

)l
Kh(xtij − s)

v2(xtij)
l = 0,1, 2

(21)q̃
(τ ,h)
l (s) =

v∑

i=1

v∑

j=1

(
xtij − s

)l
Kh(xtij − s)ytij

v2(xtij)
l = 0,1

(22)m
(τ ,h,�)
l (s) = (1− �)m

(τ−1,h,�)
l (s)+ m̃

(τ ,h)
l (s) l = 0,1, 2

(23)q
(τ ,h,�)
l (s) = (1− �)q

(τ−1,h,�)
l (s)+ q̃

(τ ,h)
l (s) l = 0,1
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where M(τ ,h,�) is as follows.

Therefore, using the proposed updating formulae, the multivariate Mixed-Effect 
Nonparametric Profile Control (MENPC) chart can be constructed through the pro-
cedure shown in Algorithm 2.

Algorithm 2. Online Social Network Monitoring

1 Specify L, h, � , and compute the quantities m̃(τ ,h)
l (s) for l = 0,1, 2 and q̃(τ ,h)l (s) 

for l = 0,1 by the historical data, based on Eqs. 20 and 21

2 Update m(τ ,h,�)
l (s) for l = 0,1, 2 and q(τ ,h,�)l (s) for l = 0,1 through Eqs. 22 and 23

3 Compute ĝτ ,h,�(s) from Eq. 24

4 Compute the test statistic Tτ ,h,� from Eq. 19, by ξtij = ytij − g0
(
xtij

)
, and com-

pare it to the control limit L

5 If Tτ ,h,� ≥ L alert that a change point is detected

The following flowchart illustrates the workflow of the proposed MENPC method.
Figure 2 illustrates the workflow of MENPC. Initially, parameters such as the con-

trol limit L , window size h , and decay factor � , are specified. Then, historical data is 
used to compute m(τ ,h,�)

l (s) and q(τ ,h,�)l (s) for different levels l  using Eqs.  20 and 21, 

respectively. Following this, m(τ ,h,�)
l (s) and q(τ ,h,�)l (s) are updated using Eqs. 22 and 23. 

It should be noted that the temporary variables are proposed for the efficient calcula-
tion of population profile g(.) , obtained by minimizing the multivariate local weighted 
negative log likelihood function presented in Eq. 9. Subsequently, the estimated func-
tion ĝτ ,h,�(s) is calculated using Eq. 24. The test statistic Tτ ,h,� is then computed from 
Eq.  19. Finally, if the test statistic exceeds the control limit L , an alert is raised to 
indicate the detection of a change point; otherwise, normal network data at time τ is 
observed. It is assumed that the user can set conditions for updating the control limit; 
for example, it can be updated periodically. Additionally, after detecting a change 
point and informing the user, a decision based on the user’s utility is made regard-
ing whether to continue the monitoring process or stop it for further consideration. 
This systematic process facilitates effective monitoring of online social networks for 
potential changes.

MENPC chart parameters

The MENPC chart requires some parameters before implementing the control limits, 
similar to different change point detection approaches. Therefore, the bandwidth h , 
the smoothing weight � , the Kernel function K (.) , and the determination of the control 
limit L should be specified by the user. Additionally, there are some guidelines based 
on the methods in the literature and the obtained results of conducted experiments. 

ĝτ ,h,�(ς) =
[
M(τ ,h,�)

]−1

{(1− �)
2M(τ−1,h,�)ĝτ−1,h,�(ς)+

[
q̃
(τ ,h)
0 m

(τ ,h,�)
2 − q̃

(τ ,h)
1 m

(τ ,h,�)
1

]
+

(24)(1− �)[q
(τ−1,h,�)
0 m̃

(τ ,h)
2 − q

(τ−1,h,�)
1 m̃

(τ ,h)
1 ]}

(25)M(τ ,h,�) = m
(τ ,h,�)
2 m

(τ ,h,�)
0 − [m

(τ ,h,�)
0 ]

2
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Similar to univariate cases, we followed (Qiu et al. 2010) to specify Kernel, smoothing 
weight, and bandwidth. Usually, in Phase II SPC, the distribution of in-control data is 
assumed known, then the control limit can be obtained by simulation. However, in prac-
tice, the distribution of in-control data is unknown. Instead, a large number of in-control 
data can be used by a resampling procedure to obtain the control limit. Here, we use 
the Block Bootstrap resampling procedures (Sroka 2022) to set the control limit L . In 
this method, for each run, the in-control dataset is resampled by randomly choosing a 
sequence of profiles from blocks, until a signal of shift is alerted. Then, an estimated 

Fig. 2 Workflow of the proposed MENPC
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 ARL0 value is computed based on the simulation runs and L is adjusted based on a com-
parison to the nominal value (e.g., 500). In this study, we use B = 10,000 as the number 
of simulations runs.

Experiments
This section will investigate the problem of change point detection in real-world social 
data and synthetic data using the proposed method. We use the number of vertices, 
the number of edges, the degree of centrality, network density, the number of triangles, 
betweenness, indegree, outdegree, and total connections as our p dimensional vector of 
explanatory variables in xtij for constructing the profiles.

Datasets

Two types of datasets are used in this section to evaluate the applicability and perfor-
mance of the proposed control chart; synthetic and real-world datasets.

Synthetic data

Although there are varying real-world datasets in the literature for experiments, in this 
subsection, we are experimenting with generated datasets to show the applicability of 
the proposed method. The decision to use synthetically generated datasets in our study 
was primarily driven by the following reasons:

Ground Truth Availability: Synthetically generated datasets allow us to have com-
plete control over the ground truth, which is crucial for evaluating the performance 
of change point detection methods. This control enables us to precisely define the 
locations of change points, facilitating a thorough assessment of the method’s accu-
racy.
Evaluation of Methodology under various scenarios: Synthetic datasets provide a 
standardized and reproducible means of evaluating the performance of the MENPC 
method under various scenarios and conditions. By systematically varying param-
eters through varying scenarios, we can assess the performance of the method across 
different settings.
Comparison with existing Methods: Synthetic datasets allow for a fair comparison 
with existing approaches in the literature. By employing the same set of synthetic 
datasets, we can evaluate the relative performance of MENPC against alternative 
methods.

To generate sample networks, here the proposed DCSBM procedure by Wilson et al. 
(2019) is implemented. This procedure provides flexibility for analyzing shift changes in 
communication rates among nodes and changes in community structures. The following 
equation presents the probability function:

P(.|θ ,π ,P) ∼
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where n and k show the number of network nodes and communities, respectively. In 
addition, θ = (θ1, . . . , θn) is the nonnegative connection tendency for nodes, which is 
analogous to the node’s degree vector representing the intensity of all nodes for hav-
ing connections, π = (π1, . . . ,πk) is the nonnegative probability vector representing the 
probability of community members for a node, in which the summation over all com-
munities equals 1. Also, Pk×k is a nonnegative matrix showing the intensity of connec-
tion between communities. Moreover, c = (c1, . . . , cn) is a random community label 
vector assigned to nodes, identically and independently distributed from a multinomial 
distribution.

Additionally, nr is the number of nodes in the community r which follows from the fol-
lowing equation:

And mr,s shows the total weight of edges for communications between community r 
and s . It can be obtained from Eq. 29.

In the simulation, it is common to specify node memberships deterministically. Thus, 
given c,P , and θ the edge weights should be sampled according to the following Poisson 
distribution.

Here, similar to Wilson et al. (2019) the dynamic network is simulated according to the 
above explanations with n = 100, k = 2 , and T = 50 time points. In addition, the node’s 
connection tendency θ0 is randomly generated from the following uniform distribution.

(26)
�

c∈all permutation




�

r∈[k]

π
nr
r

�

u∈[n]

θ
du
u

�

u<v∈[n]

1

wu,v!

�

r,s∈[k]

P
mr,s
2

r,s e−
nrnsPr,s

2




(27)c ∼ Multinomial(1,π)

(28)
∑

u:cu=r

θu = nr

(29)mr,s =
∑

u,v

wu,vI(cu = r, cv = s)

(30)wu,v ∼ Poisson(θuθvPcu,cv )

Fig. 3 DCSBM generated dynamic social network with a consistent evolving pattern
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Furthermore, similar to Wilson et  al. (2019), we set P0 =

[
0.2 0.1

0.1 0.2

]
, δ0cu = 0.5 . Fig-

ure  3. shows two snapshots of the generated dynamic social networks with the men-
tioned initial values for the DCSBM procedure, in time 40 and 45 with no changes over 
the time.

Enron email dataset

Enron Company, established in 1985, was an American corporation mainly working in 
the electricity and communication sectors till 2001. According to the Fortune report, 
the company had reached approximately 101 billion USD in revenue in 2000 and was 
named the most innovative corporation in the US. Enron’s bankruptcy occurred in 2001 
because of accounting fraud by Arthur Andersen LLP firm. After the dissolution of the 
company, the Enron email dataset was collected in the CALO (A Cognitive Assistant 
that Learns and Organizes) project. Federal Energy Regulatory Commission made the 
data publicly available, especially for social network researchers for analysis purposes 
and developing the research for earlier detection of such frauds in the future. There are 
different versions of the dataset publicly available on the web. The first one is the March 
2, 2004 version, and after that 2009 version and 2011 versions were distributed through 
the web (William W. Cohen 2015). These versions have problems in data integration and 
differences in some special messages that are removed from the datasets due to privacy 

(31)θ
0
u ∼ Uniform(1− δ

0
cu
, 1+ δ

0
cu
)

Fig. 4 A snapshot of the evolving Enron email network



Page 22 of 34Karami and Niaki  Applied Network Science            (2024) 9:29 

concerns. The last version of the dataset we are using in this research is the May 7, 2015 
version. It contains the emails between 184 employees of the Enron corporation from 
1979 to 2002, including sender and receiver email addresses, sent and received date and 
time, subject of emails, and email body. Figure 4 shows a snapshot of the interactions 
in Enron email network, wherein the weight of edges is proportional to the number of 
interactions.

Performance evaluation

In this section, experimental analysis is carried out using synthetic and real-world data-
sets to show the superiority of the proposed online social network monitoring tool. We 
have constructed two proposed control charts in the literature on each dataset and com-
pared them to the MENPC method for online monitoring.

Synthetic dataset

To evaluate the performance of the proposed MENPC on a synthetic dataset, three 
types of changes through six scenarios in the simulated stream of networks are con-
sidered. These are changes in the community structure of the networks, changes in 
the communications rates, and simultaneous changes in both. We generated the net-
work stream of 100 nodes using a DCSBM procedure, where the DCSBM parameters 
are similar to Wilson et  al. (2019) and drawn from the Poisson distribution, using 
Eq. (31). Table 3 shows six different scenarios.

Figure  5 illustrates examples of small networks representing six distinct changing 
scenarios: (a) Global outbreak, (b) Local outbreak in a community, (c) Global vari-
ability increase, (d) Local variability increase, (e) Merge communities, and (f ) Split a 
community. Simulations 1–2 relate to changes in the global and local mean interac-
tion rates. We simulate networks based on three different values for ∈= 0.01, 0.05, and 
0.1 . These scenarios will show the power of the proposed method to identify small 
and large changes in the interaction rates of the communities and the whole network. 
Similarly, simulations 3–4 depict scenarios where global and local changes occur in 
the variance of the interaction rates. In addition, the scenario when θ percent of indi-
viduals in the network are involved in the outbreak and they change their communi-
cation rates by δ in positive or negative directions is conducted in these simulations. 
Lastly, simulations 5–6 capture changes in the community structures. In the merg-
ing scenario, we set the connection probability value to the average of communities, 

Table 3 Synthetic dataset change scenarios

Simulation Change Description

1 P∗ij = P0ij+ ∈ Global outbreak ( i = 1,2, j = 1,2)

2 P∗11 = P011+ ∈ A local outbreak in a community

3 δ
∗
i = δ

0
i + τ Global variability increase

4 δ
∗
1 = δ

0
1 + τ Local variability increase

5 C0 = {c1, c2} → C∗ = {c1} Merge communities

6 C0 = {c1, c2} → C∗ = {c1, c2, c3} Split a community
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Fig. 5 Sample networks for the changing scenarios
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P∗ = 0.15 . In these two scenarios, comparisons occurred on two equally sized 
communities.

For comparison, we also applied the EWMA monitoring scheme introduced by 
(2019) Wilson et  al. (2019) and Hazrati-Marangaloo and Noorossana (2021) called 
Wilson’s method and the Eigenvalue method hereafter, respectively. In Eq. 13, xtij is 
a nine-dimensional vector consists of the topological measures of the networks over 
time including, the number of vertices, the number of edges, the degree of centrality, 
network density, the number of triangles, and network betweenness are considered. 
Also, as the characteristics of each node in network interactions, we considered node 
indegree, node outdegree, and node total connections in our explanatory variables. 
Table 4 shows the obtained results over 100 runs for each row, in terms of expected 
detection delay (EDD) (average run length  (ARL1) in the process control terminology) 
and standard deviation of run length (SDRL) (Figs. 6, 7, 8, 9).

Enron email dataset

In this experiment, the MENPC algorithm is applied for change point detection in the 
Enron Email dataset. Although we can improve the precision of results by consider-
ing daily or hourly data, the weekly intervals can reveal interesting events that had 

Table 4 Comparison results for the synthetic dataset

Sim Change Values Wilson Method Eigenvalue Method MENPC Method

ARL SDRL ARL SDRL ARL SDRL

0 None – 501.91 23.39 504.72 11.67 503.77 16.74

1 P∗ij = P0ij+ ∈ ∈= 0.01 81.04 18.18 86.47 8.1 34.92 6.32

∈= 0.05 83.04 26.54 58.27 9.96 28.28 5.92

∈= 0.10 73.72 25.78 54.97 4.87 19.39 7.09

2 P∗11 = P011+ ∈ ∈= 0.01 88.98 19.81 58.72 7.17 44.42 6.27

∈= 0.05 82.61 20.11 50.02 5.41 39.78 5.96

∈= 0.10 80.78 18.07 36.97 4.66 34.45 5.2

3 P∗12 = P012+ ∈

P∗21 = P021+ ∈

∈= 0.01 93.98 23.43 53.02 5.06 42.08 5.64

∈= 0.05 87.06 22.27 45.52 6.11 35.51 5.85

∈= 0.10 74.69 17.37 43.73 4.64 24.59 6.43

4 δ
∗
i = δ

0
i + τ τ = 0.01 106.09 22.48 45.75 4.39 35.46 5.49

τ = 0.05 102.96 20.96 45.11 5.64 27.71 5.74

τ = 0.10 95.98 21.16 41.25 5.55 18.92 3.9

5 δ
∗
1 = δ

0
1 + τ τ = 0.01 98.72 21.89 60.52 6.23 33.55 6.8

τ = 0.05 95.31 21.31 57.97 5.61 16.26 6.11

τ = 0.10 78.87 23.8 38.25 4.5 14.76 3.67

6 δ
∗
i = δ

0
i + τ

θ% of individuals

in outbreak

25% 100.61 24.27 53.02 7.62 49.06 6.57

50% 96.65 22.96 44.25 4.71 35.32 5.67

75% 89.02 24.44 34.5 4.26 35.21 6.26

7 C0 = {c1, c2} →
C∗ = {c1}

n = 50 49.85 23.88 47.25 6.01 42.12 6.88

n = 100 43.48 23.76 44.18 5.89 38.25 6.69

n = 250 41.21 23.11 39.62 5.94 34.13 6.75

8 C0 = {c1, c2} →
C∗ = {c1, c2, c3}

n = 50 72.22 22.68 51.22 7.19 50.17 6.74

n = 100 68.16 23.14 48.27 7.92 47.34 7.01

n = 250 56.28 23.74 47.11 6.89 45.39 6.58
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Fig. 6 Analyzing  ARL1 across various scenarios

Fig. 7 Boxplot analysis of change scenarios 1 to 3
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influences on Enron’s lifetime. Figure 10 shows the obtained statistics in 187 weeks, 
from 13 November 1998 to 21 Jun 2002. According to the control limit, the points 
in weeks 96, 100 to 102, 135, and 136 are recognized as change points. Those weeks 
are related to early September and October 2000, and Jun 2001. Our investigation of 
these intervals shows that point 96 is around of hitting Enron Stock to an all-time 
high of $90.56, while then Enron used "aggressive" accounting to declare $53 million 
in earnings on a collapsing deal that hadn’t earned anything at all in profit. In addition, 
FERC (the Federal Energy Regulatory Commission) orders an investigation into strat-
egies designed to drive electricity prices up in California. After that, change points in 

Fig. 8 Boxplot analysis of change scenarios 4 to 6

Fig. 9 Boxplot analysis of change scenarios 7 and 8
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weeks 100 to 102, are related to the period that Enron attorney Richard Sanders trav-
els to Portland to discuss Timothy Belden’s strategies. Also, the FERC investigation 
exonerates Enron for any wrongdoing in California. In addition, the change point in 
weeks 135, and 136 are in Jun 2001, in which FERC finally institutes price caps across 
the western states, and the California energy crisis ends.

Ask Ubuntu dataset

Ask Ubuntu functions as a collaborative platform within the broader Stack Exchange 
Network, where members of the Ubuntu community can share knowledge, seek assis-
tance, and provide solutions. It serves as a central hub for discussions, inquiries, and 

Fig. 10 The proposed chart statistics in 187 weeks on the Enron dataset

Fig. 11 The proposed control chart for Ask Ubuntu dataset
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responses pertaining to Ubuntu operating systems. Utilizing a voting mechanism, the 
platform evaluates the quality of content, thereby fostering active engagement from 
users. In this analysis, our focus is on the Ask Ubuntu event datasets spanning from 
July 2010 to March 2016. Specifically, we narrow our scope to the interactions that 
transpired within the final 18 months, from October 2014 to March 2016, segment-
ing the data into daily intervals, which offer insights into evolving trends and notable 
shifts over time. Each edge in the dataset, denoted as (u, v, t) , signifies an interaction 
event at time t between user u and user v on Ask Ubuntu. These interactions encom-
pass various forms, including responding to queries, commenting on questions, and 
engaging in discussions by commenting on responses. To construct the network for 
analysis, we aggregate all observed interactions within a given day. The accompanying 
chart displays the obtained control chart, illustrating the dynamics of user interac-
tions over time on Ask Ubuntu.

The obtained control chart for the observed events on the Ask Ubuntu website is 
shown in Fig. 11. After a thorough analysis of the found change points, it was discov-
ered that they were in line with the release of new version modifications that came in 
September, and October 2015 of Ubuntu (Miller and Mokryn 2020). The suggested 
chart, which is based on the MENPC technique, shows how effective it is at detecting 
changes.

Discussion

The results obtained from running MENPC and competing algorithms on both syn-
thetic and real-world datasets yield three significant insights into nonparametric profile 
monitoring and social network change point analysis. Firstly, according to the simula-
tion results in Fig. 6, MENPC demonstrates superior performance across various change 
scenarios, consistently achieving lower  ARL1 values, indicative of higher accuracy. Sec-
ondly, MENPC proves to be scalable, effectively handling increasingly larger dynamic 
network datasets. Even when processing thousands of interactions in a network, it main-
tains consistent performance, thanks to the innovative trick of updating formulas. This 
capability makes it well-suited for real-world applications where datasets are often large 
and complex. Thirdly, as a multivariate approach, MENPC uses both nodal and network 
topological measures over time without assuming internal network independence across 
time frames. This versatility highlights MENPC’s ability to address change point detec-
tion in dynamic social networks effectively. Furthermore, its generality for network data 
is evident through the development of a multivariate Mixed Effect model, coupled with 
the capability to utilize both nodal and network-level attributes.

However, it is important to note some limitations of MENPC. Firstly, the performance 
of the algorithm may be influenced by the choice of hyperparameters h and � , necessitat-
ing further optimization to fine-tune these parameters for specific applications. Addi-
tionally, while our algorithm achieved high overall accuracy rates, there was an instance 
where the Wilson method exhibited a slightly lower  ARL1 due to partial changes in node 
connection tendencies δ∗i  in scenario 6. This can be attributed to the fact that the Wil-
son method relies on myopic estimation of maximum likelihood and computing a set 
of monitoring statistics, leading to faster alerts even when the outbreak involves 75% of 
individuals. Furthermore, this case highlights MENPC’s capability to avoid false alarms 
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by waiting a bit longer to gather more information and issue accurate alerts. However, 
it is important to emphasize that the  ARL1 difference between the Wilson method and 
MENPC was negligible.

In short, MENPC’s scalability, accuracy, and versatility make it a valuable tool for 
analyzing complex network data in various real-world applications. The following sub-
sections provide a more detailed discussion about the computational efficiency and 
robustness of MENPC.

Computational efficiency

When evaluating the computational efficiency of an algorithm, particularly for change 
point detection algorithms, it is crucial to consider several aspects. Specifically, factors 
such as the processing power of the hardware, available memory capacity, the allotted 
time resources deemed reasonable for real-world applications, and the level of preci-
sion accepted in the results play pivotal roles. Indeed, these factors are contingent upon 
user preferences and utilities, as users must weigh the costs associated with acquiring 
hardware, the patience required to achieve the desired level of accuracy, and the trade-
offs involved in waiting for results. Given the significance of the factors mentioned, the 
computational efficiency of MENPC can be evaluated from two perspectives: absolute 
and relative computational efficiency analysis. In absolute analysis, the focus is on inves-
tigating the time complexity of MENPC. In relative analysis, however, the algorithm’s 
accuracy and time cost are compared with those of competing methods, illustrating how 
MENPC performs relative to existing techniques addressing the same problem.

As an extension of the NME model for multivariate cases, the complexity analysis of 
MENPC demonstrates that the algorithm only requires O(n0phnt) operations for moni-
toring the t th profile (Qiu et  al. 2010). This complexity is comparable to the compu-
tation involved in conventional local linear kernel smoothing. In section  "Phase II 
monitoring using the charting statistic based on the proposed NME model", the pro-
cess involves computing temporary variables m̃(τ ,h)

l (s) and q(τ ,h,�)l (s) for different levels l 
using Eqs. 20 and 21. This computation is carried out for nt interactions in the observed 
network at time t , at n0 predetermined p-dimensional s points. Subsequently, m(τ ,h,�)

l (s) 
and q(τ ,h,�)l (s) are updated through the recursive Eqs. 22 and 23. Finally, the monitoring 
statistic can be obtained from Eq. 19. Using the proposed recursive updating formulas, 
it becomes clear that storage does not grow sequentially with time t , which helps in effi-
ciently monitoring a profile at time t.

Furthermore, as a nonparametric profile monitoring technique, MENPC demon-
strates superior performance compared to competing algorithms such as the Wilson 
and Eigenvalue method, as outlined in Table 3. MENPC exhibits lower  ARL1 (expected 
delay after the occurrence of a change point to detecting changes), indicating its effec-
tiveness in detecting changes more promptly. Additionally, it should be noted that the 
Wilson method is based on maximum likelihood estimation (Wilson et al. 2019), which 
requires the use of all historical interactions observed in the dynamic network, as the 
likelihood function lacks recursiveness. In this regard, the Wilson method utilizes only 
the observed data at time t , resulting in a myopic estimation that compromises accuracy. 
Furthermore, while the Wilson method proposes a set of monitoring statistics, selecting 
appropriate ones poses a challenge for efficient dynamic network monitoring. In short, 
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the Wilson method sacrifices accuracy to expedite the calculation of monitoring statis-
tics with linear time complexity by relying solely on the observed data at time t rather 
than historical data.

Furthermore, the eigenvalue method is based on computing the eigenvalues of adja-
cency matrices of observed social networks over time and subsequently calculating the 
energy distance between these matrices (Hazrati-Marangaloo and Noorossana 2021). 
These distances are then monitored using an exponentially weighted moving average 
(EWMA) weighting scheme. However, it is important to note that computing eigenval-
ues can be computationally demanding, particularly for large matrices. The computa-
tional expense is influenced by factors such as the matrix’s size, sparsity, and the specific 
algorithm employed for eigenvalue computation. For matrices of small to moderate 
sizes, algorithms typically exhibit a computational complexity of O(n3) , where n rep-
resents the matrix’s size (Lin et al. 2020). While manageable for smaller matrices, this 
complexity can become impractical for larger ones. To address this, iterative methods 
are often employed for large matrices, which are more scalable and memory-efficient, 
particularly for sparse matrices. Nonetheless, even these iterative methods can pose 
computational challenges, especially when high precision is necessary or when dealing 
with exceptionally large matrices.

Overall, MENPC offers favorable time complexity as it extends the NME model, aided 
by recursive updating formulas that maintain efficiency without a sequential increase in 
storage over time. In contrast, the Wilson method prioritizes speed over accuracy by 
relying solely on current data, while the eigenvalue method faces computational hurdles, 
particularly with large matrices. Thus, MENPC emerges as a promising approach for 
efficient and accurate change point detection in dynamic social networks.

Robustness and reliability

Figures 7, 8 and 9 depict boxplots illustrating the results of replications in each change 
scenario for the simulated networks. Concerning the central tendency of the results in 
each method, the figures consistently indicate that the median values in the boxplots for 
the MENPC method generally exhibit a lower central location for  ARL1, implying better 
performance in expected delay detection. Moreover, when assessing the spread or vari-
ability of data within each method, as portrayed by the interquartile range (IQR) in the 
boxplots, the MENPC method demonstrates a narrower IQR, suggesting a more robust 
performance. This underscores the MENPC method’s suitability in real-world scenarios 
where variations in network dynamics are prevalent.

Furthermore, due to the � parameter serving as a weighting parameter in Eq. 9, similar 
to the weighting scheme in the EWMA method (Noorossana et al. 2011), MENPC inher-
ently exhibits robustness akin to that of EWMA. In essence, it assigns exponentially 
decreasing weights to past observations, thereby placing greater emphasis on recent data 
points. This sensitivity enables the method to promptly adapt to changes or trends in 
the data, rendering it particularly adept at detecting shifts in process behavior. Thus, the 
derived equation for the population profile g(.) in Eq. 10 aligns with this notion. There-
fore, it is reasonable to conclude that the resulting statistic for nonparametric profile 
monitoring in Eq. 19 showcases robustness to variations in real-world applications.
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Additionally, it is worth noting that every change point detection method is prone 
to false alerts, which need to be addressed by adjusting the Type I error and selecting 
an appropriate  ARL0 to calculate the control threshold L . In this study, as observed in 
numerous research works in the literature and real-world applications (Noorossana et al. 
2011), the  ARL0 value is set to 500 for conducting the simulation runs, and L is adjusted 
accordingly based on this nominal value. Choosing a suitable value for  ARL0 and, conse-
quently, deriving an appropriate control limit L ensures the method’s resilience against 
false alarms triggered by fluctuations or noise in the recorded data when no genuine 
change is present in the real-world scenario. This capability enables the method to accu-
rately differentiate between actual changes in the network data and false alerts stemming 
from noise in the recorded data.

Practical implications and insights
MENPC is a flexible and effective tool for monitoring online social networks in various 
settings, including marketing campaigns, corporate operations, and public safety and 
emergency response plans. By addressing the limitations of existing change point detec-
tion methods in online social networks, MENPC enables a wide range of applications to 
access crucial information necessary for decision-making.

Businesses can utilize MENPC to track user patterns and behaviors in online social 
networks, identifying new trends, anomalies in user behavior, and optimizing advertis-
ing campaigns for maximum impact. Effective monitoring provides vital insights into 
customer preferences, sentiments, and interaction patterns through accurate change 
point detection. This information is essential for improving product development efforts, 
developing customer relationships, and fine-tuning marketing strategies. Additionally, 
MENPC aids in the early detection of criminal activities and cyber risks by identifying 
changes in user behaviors or network structures, benefiting law enforcement agencies 
and governmental entities (Dey et al. 2023).

Moreover, MENPC can play a critical role in managing public health emergencies and 
tracking the spread of diseases through online social networks. By closely examining 
changes in user behavior, information distribution patterns, and community dynamics, 
MENPC provides early warning signs of possible outbreaks or new public health issues. 
With this information, governmental organizations and healthcare facilities can prevent 
the spread of diseases and protect public health by taking prompt actions, allocating 
resources wisely, and developing efficient communication plans (Sterchi et al. 2021).

Conclusion and recommendations for future research
Recently, social network change point detection has attracted much attention among 
researchers. There are two streams of approaches for analysis; model-based and free-
model analysis leading to parametric and nonparametric methods. Although paramet-
ric methods are useful in many applications of change point detection, the adequacy 
of these methods’ assumptions and the unknown influence of misspecification on the 
performance of parametric profile monitoring always is questioning. For example, the 
assumption of i.i.d errors in social network modeling and the monitoring methods are 
often invalid in practice, since the social networks have the nature of dynamic and some 
sort of network autocorrelation during the time. This study proposes a novel approach 
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for social network monitoring through the design of a multivariate Mixed-Effects Non-
parametric Profile Control (MENPC) chart. The proposed charting statistic is based on 
nonparametric mixed-effects (NME) modeling, local linear kernel smoothing, and the 
EWMA process weighting scheme. We used local linear kernel smoothing of profile 
data, through mixed-effects modeling. The experimental results on simulated data and 
real-world datasets indicate that the proposed method has superiority over the Eigen-
value method and Wilson’s method. Industries can use the proposed tool in various 
applications ranging from obtaining business insights and marketing to criminal moni-
toring, and monitoring of disease spreads. Future studies can shed more light on the 
monitoring of online social networks by considering different categories of changes, 
nodal attributes, and types of connections among nodes.
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