
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Dopater et al. Applied Network Science            (2024) 9:28  
https://doi.org/10.1007/s41109-024-00639-x

Applied Network Science

Network embedding based on DepDist 
contraction
Emanuel Dopater1†, Eliska Ochodkova1*† and Milos Kudelka1† 

Abstract 

Networks provide an understandable and, in the case of small size, visualizable 
representation of data, which allows us to obtain essential information about the rela-
tionships between pairs of nodes, e.g., their distances. In visualization, networks have 
an alternative two-dimensional vector representation to which various machine-learn-
ing methods can be applied. More generally, networks can be transformed into a low-
dimensional space using so-called embedding methods, which bridge the gap 
between network analysis and traditional machine learning by creating numerical 
representations that capture the essence of the network structure. In this article, we 
present a new embedding method that uses non-symmetric dependency to find 
the distance between nodes and applies an iterative procedure to find a satisfactory 
distribution of nodes in space. For dimension 2 and the visualization of the result, we 
demonstrate the method’s effectiveness on small networks. For higher dimensions 
and several larger networks, we present the results of two experiments comparing 
our results with two well-established methods in the research community, namely 
node2vec and DeepWalk. The first experiment focuses on a qualitative comparison 
of the methods, while the second focuses on applying and comparing the classifica-
tion results to embeddings in a higher dimension. Although the presented method 
does not outperform the two chosen methods, its results are still comparable. There-
fore, we also explain the limitations of our method and a possible way to overcome 
them.
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Introduction
Finding an efficient representation of network data is crucial for effective network data 
processing, as traditional representations of network data can be computationally inten-
sive, have low parallelizability, or can be difficult, if not impossible, to use machine learn-
ing methods (Cui et al. 2018). Traditional network representations, for example, need to 
store information about the relationships between pairs of nodes in addition to nodes, 
which can be a problem, especially in dense, large-scale networks.

Therefore, much attention is now being paid to developing new methods for net-
work embedding, i.e., transforming the original network space into a low-dimensional 
vector space. Network embedding supports network processing and analysis, such as 
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community (cluster) detection, network visualization, or link prediction, and it allows us 
to make general machine-learning techniques applicable to networks.

The basic problem is to find a mapping function between these two spaces. In the net-
work embedding space, the relationships between nodes are captured by the distances 
between nodes in the vector space, and the structural properties of a node are encoded 
in its embedding vector. For the embedding space, there are two requirements for net-
work embedding. The first is that the original network can be reconstructed from the 
learned embedding space. If there is an edge between two nodes, then to preserve the 
relationships in the network, their distance in the embedding space must be relatively 
small. Second, the learned embedding space should effectively support network infer-
ence, such as predicting unseen links or identifying important nodes (Cui et al. 2018).

In this article, we introduce a novel network embedding method DepDist Contraction 
based on calculating the distance between pairs of network nodes based on their struc-
turally non-symmetric relationship. Our goal is to show that this non-symmetry can 
be successfully exploited for visualization and network embedding and that symmetric 
node distances can be found by gradually balancing their non-symmetric relations. After 
reviewing the methods relevant to our research, we provide background information on 
a previously published analysis of non-symmetric relationships between pairs of network 
nodes. Our DepDist Contraction method utilizes this relationship, which is described in 
the next section. It is an iterative procedure that generates a network embedding and 
quickly reveals the community structure using the distance defined by the non-symmet-
ric dependency. We then perform experiments on four well-known small networks and 
show and visually evaluate the results of applying our method to dimension 2. Next, we 
perform two experiments on several larger networks to compare our method with two 
well-known network embedding methods. Finally, we discuss the limitations of the Dep-
Dist Contraction method and explain possible future improvements. This article is an 
extended version of a paper presented at the Complex Networks and Their Applications 
2023 (Dopater et al. 2023).

Related work
Different models can be used to transform networks from the original network space 
to the embedding one, working with different types of information or addressing differ-
ent goals. Commonly used models include matrix factorization, deep learning with and 
without random walks, graph kernels, and others.

As a pioneering result, we can mention the locally linear embedding (LLE) method 
(Roweis and Saul 2000) based on the factorization of the neighborhood matrix, which 
preserves the similarity between nodes. Method (Ahmed et  al. 2013) directly factor-
izes the proximity matrices with respect to the presence of each edge. Singular Value 
Decomposition is used due to its optimality for the low-rank approximation of the adja-
cency matrix (Qiu et al. 2018) and non-negative matrix factorization is often used due to 
its advantages as an additive model (Wang et al. 2017a).

Existing random walk-based embedding methods attempt to learn node embedding 
that preserves either structural similarity or node proximity information. By perform-
ing a truncated random walk, the network is transformed into sequences of nodes, i.e., 
paths that preserve the structural proximity of the network. If a node is considered as 
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a word, the random walk can be considered as a sentence, and the neighborhood of 
the node can be identified using a measure of co-occurrence. SkipGram (Mikolov et al. 
2013) is a famous deep model for neuro-linguistic programming that embeds words in 
a low-dimensional space by incorporating the context of words in sentences. The Skip-
Gram-inspired method DeepWalk (Perozzi et  al. 2014) treats paths as sentences and 
implements SkipGram to learn the embedding of each node.

With a design principle similar to DeepWalk the node2vec (Perozzi et al. 2014) method 
is proposed. However, it proposes more flexible random walk strategy, It improves the 
random walk generation in DeepWalk and mirrors the depth and breadth sampling 
properties to enhance the network embedding effect.

Finally, let us mention deep neural networks and their variants because they are a 
suitable choice if we are looking for an efficient model for learning nonlinear functions 
(Berahmand et al. 2024). Representative methods include SDNE (Wang et al. 2016) or, 
e.g., SiNE (Wang et al. 2017b). To capture the highly nonlinear structure of the network, 
SDNE works with a semi-supervised deep model that has multiple layers of nonlinear 
functions. The model jointly uses first-order and second-order proximity to characterize 
the local and global structure of the network. Other approaches to network embedding 
may include (Sulyok and Palla 2023), Salha-Galvan et al. (2022), Park et al. (2020) or e.g. 
the Yoo et al. (2022) approach, in which the authors deal with embedding methods in 
directed networks.

One of the important applications for network embedding is the visualization of a 
network in two-dimensional space. We can find a comparison of visualization results 
with different embedding approaches in Liao et  al. (2018). Classes of graph drawing 
algorithms, including multi-level and dimensionality reduction-based techniques, are 
described in detail in a review (Gibson et al. 2013). In network analysis fields, interpreta-
tion and understanding of network structure may be based on calculating local or global 
measures. Visual representation of network structure can help detect, understand, and 
identify unexpected patterns or outliers in networks.

The layout and arrangement of nodes affect how the user perceives relationships in the 
network. There is no one best way; the layout of a network depends on which network 
features are important to us. These may be, for example, specific measures of central-
ity or important properties of nodes or edges. Criteria for evaluating a network layout 
include the algorithm’s computational complexity, the network’s size, the algorithm’s 
ability to follow certain layout rules or aesthetics, clustering, etc.

Many of the methods used are based on the force-directed network paradigm, a para-
digm of modeling the network as a physical object system where nodes attract and repel 
according to some force. Other network drawing algorithms are methods using multi-
level and dimensionality reduction-based techniques.

There are two approaches to force-directed layouts: those based on spring embedding 
and those that solve optimization problems. A very often used method of this type is the 
method of Fruchterman and Reingold (1991), the connected nodes attract each other 
while all other nodes, modeled as electrical charges, repel each other.

The second approach considers the layout problem as an optimization problem that 
minimizes an energy function designed concerning the properties of the network being 
visualized. Important energy-based techniques are Noack’s LinLog (Noack 2007) and 
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ForceAtlas (Jacomy et al. 2014) layouts. Noack’s edge repulsion model removes the bias 
of the node model towards attraction by ensuring that nodes that are strongly attract-
ing are also strongly repelling, similarly for nodes with weak attraction. Therefore, nodes 
with a high degree are less likely to be clustered in the center of the network, and it is 
able to show any underlying clustering structure in the network. ForceAtlas is strongly 
associated with Noack’s LinLog. Its advantage is that all nodes are subject to at least 
some repulsive force, and poorly connected nodes are thus approximated by well-con-
nected nodes, reducing visual clutter. The forces in the algorithm vary between Noack’s 
edge repulsion model and the Fruchterman and Reingold distributions.

Multilevel algorithms are one of the options that can be used to streamline force-
directed techniques. Their idea is to find a sequence of coarser representations of the 
network, optimize the drawing in the coarsest representation, and propagate this distri-
bution back to the original network. The coarser representations are created by compos-
ing connected nodes whose edges become the union of the edges of all the nodes (Hu 
2005).

Other options for drawing networks are dimension reduction techniques, includ-
ing multidimensional scaling, linear dimension reduction (Civril et  al. 2006), or spec-
tral graph drawing approaches. The challenge is to preserve the information in a 
high-dimensional space and capture it in a lower-dimensional representation. Most 
dimension reduction techniques used for network layout use the graph-theoretical dis-
tance between nodes, Freeman (2005), as the information to be preserved.

As mentioned above, the most common use cases of node embedding are visualiza-
tion, clustering, and link prediction. The problem of visualizing networks in 2D, with its 
long history, and network drawing algorithms are probably the most well-known embed-
ding techniques commonly used to visualize networks in 2D space. Data-driven network 
layouts, such as spring embedding, are unsupervised methods of arranging nodes based 
on their connectivity and are de facto dimensionality reduction techniques. Despite the 
great potential, layouts are rarely the basis of systematic network visualization.

Therefore, node embedding offers a powerful new paradigm for network visualization: 
because nodes are mapped to real-valued vectors, researchers can easily leverage gen-
eral techniques for visualizing high-dimensional data. For example, node embedding can 
be combined with well-known techniques such as t-SNE (Van der Maaten and Hinton 
2008) to create 2D network visualizations (Tang et al. 2015) that can be useful for reveal-
ing communities and other hidden structures.

Non‑symmetric structural dependency
Structural dependency (hereafter referred to as dependency) is a non-symmetric rela-
tionship between pairs of nodes that applies to both weighted and unweighted networks 
(Kudelka et al. 2019). In our experiments, we work with both types of networks; how-
ever, these are always undirected. For this article, we formulate the dependency in a 
slightly different way. First, let us establish a way to determine the weight w(A, B, X) of 
the relation between two nodes of the network A, B given their common neighbor X. 
Let w(A, X) be the weight of the edge between nodes A, X and similarly w(B, X) be the 
weight of the edge between nodes B, X. Then:



Page 5 of 22Dopater et al. Applied Network Science            (2024) 9:28 	

The weight defined in this way is half of the harmonic mean, i.e. if the values w(A, X) and 
w(B, X) are balanced, then the weight w(A, B, X) is around half of w(A, X) and w(B, X) 
respectively. If, on the other hand, they are not balanced and at least one of the weights 
w(A, X), w(B, X) is close to zero, then the weight w(A, B, X) is also close to zero.

Now, let us define the strength of the relation between the nodes A, B. If a pair of nodes 
A,  B has multiple common neighbors Xi , then the strength of the relationship between 
them (the dependency of one on the other) is affected not only by the weights of the 
edge between these nodes but also by the weights w(A,B,Xi) . Therefore, let us define the 
dependency D(A, B) of a node A on a node B as follows:

where Ŵ(A,B) is the set of common neighbors of nodes A, B and N(A) is the neighbor-
hood (set of all neighbors) of node A.

If there is an edge between nodes A, B, then w(A, B) is the weight of this edge; otherwise, 
w(A,B) = 0 . Thus, the dependency is non-zero if and only if the nodes A, B have an edge 
or at least one common neighbor. A dependency defined in this way is non-symmetric, so 
D(A,B) = D(B,A) generally does not hold. While the value of the numerator is the same in 
both directions of the dependency, the value of the denominator may be different. There-
fore, it may be true that the dependencies between the nodes of A, B may be substantially 
different.

Informally speaking, dependency is high if a node is significantly connected to its neigh-
bor through common neighbors compared to the rest of its neighbors. This property 
provides information about the network’s community structure since nodes in a com-
munity should have stronger dependencies with each other than with nodes outside the 
community.

Distance based on non‑symmetric dependency

The unanswered question is what distance the two nodes of the network should be if we 
want to start from the exact dependencies. Two situations can arise: (1) nodes have zero 
dependencies, and thus neither an edge nor a common neighbor, and (2) nodes have non-
zero, potentially non-symmetric dependencies. In the first case, we have no direct informa-
tion to determine the distance. In the second case, we have to convert the dependencies 
into Euclidean space, which is, by definition, symmetric. For further considerations, let us 
start with a simple interpretation of the dependency, which can be described as a relation 
that attracts two nodes together. To express this relation, we define the mutual dependency 
coefficient qS(A,B) as the product of the partial dependencies of the nodes A, B with their 
arithmetic mean, i.e:

The coefficient q takes into account both dependencies and, thanks to the average, infor-
mation about their balance. The coefficient qs can also be further used to determine the 

(1)w(A,B,X) = w(B,A,X) = w(A,X) · w(B,X)
w(A,X) + w(B,X)

(2)D(A,B) =
w(A,B)+ Xi∈Ŵ(A,B)

w(A,B,Xi)

Xj∈N (A) w(A,Xj)
,

(3)qS(A,B) = D(A,B) · D(B,A) · D(A,B)+D(B,A)
2
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symmetric distance between nodes A, B. An alternative is to work with the non-sym-
metric distance and leave the determination of the symmetric distance to the iterative 
procedure described in Sect.  4. In this case, the assumed distance between the nodes 
may be non-symmetric at the input. For this case, let us define the coefficient qN (A,B):

The values of qS(A,B), qN (A,B) are from the interval [0, 1] and severely penalize situ-
ations where at least one of the dependencies is very low. Our experiments show that 
using both alternatives of the q coefficient provides the same result. However, the sym-
metric version is more effective in revealing communities, and on the other hand, the 
non-symmetric version stabilizes the resulting embedding better. Therefore, for the 
basic version of the algorithm, q(A,B) = qN (A,B) will hold for the following.

Now we can define the maximum distance maxDepDist between pairs of network 
nodes, from which we can derive the distance of node A from node B with non-zero 
dependencies as follows:

Note that we cannot determine this distance based on non-symmetric dependency (Dep-
Dist for short) between absolutely independent nodes. In the following, we will show 
that we can still use such an incompletely formulated distance for network embedding.

DepDist contraction
As mentioned above, the essence of network embedding is to find a network represen-
tation in low-dimensional space in which the relationships between network nodes are 
highly preserved. We next present an iterative procedure based on a straightforward use 
of DepDist that provides such a representation. We refer to this procedure as DepDist 
Contraction,1 and this is because its essence is to bring pairs of nodes closer together so 
that the result is close to the distance based on their mutual dependencies.

Even though we are concerned with network embedding and the presented procedure 
is independent of the chosen dimension, we focus our experiments only on dimension 
2. This allows us to visualize the result of the DepDist Contraction and, at least, assess it 
visually.
Remark In the following, we will use the term node A to mean both a node of the net-

work and a point representing that node in n-dimensional space.

Algorithm

The first step of the algorithm to find the representation of the network in n-dimensional 
space is to randomly distribute the points representing each network node into a cube 
of dimension n with edge length a. Next, we set the value of maxDepDist to be much 
smaller than the edge length a (so there is enough space for contraction). We then iterate 
so that in one iteration, each node A moves in space to some node B (we will return to 

(4)qN (A,B) = D(A,B)2 · D(B,A)

(5)DepDist(A,B) = (1− q(A,B)) ·maxDepDist

1  Non-parallel Python implementation used for the experiments with small networks is at https://​github.​com/​emanu​
eldop​ater/​DepDi​stCon​tract​ion/​tree/​confe​rence.

https://github.com/emanueldopater/DepDistContraction/tree/conference
https://github.com/emanueldopater/DepDistContraction/tree/conference
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the selection of node B later). For the move, the step length corresponds to the distance 
between A and B and their coefficient q(A, B). The iteration ends, as we will show later, 
either after a fixed number of steps or after the contraction has stabilized.

One step of iteration

Let us consider a node A, a node B selected for it, their coefficient q(A,  B), and their 
expected DepDist(A, B). By one iteration step, we mean moving node A to node B so that 
their distance approaches DepDist(A, B). Let û be a unit vector in the direction of the 
vector B− A . The new position A′ of node A is:

The function acc(q(A, B)) changes the effect of the coefficient q(A, B) on the length of 
the move. The function is designed to increase the move length significantly when the 
distance between nodes A,  B is too large (above some defined threshold), i.e., when 
� B− A � is significantly greater than DepDist(A, B). On the other hand, the move length 
decreases with decreasing distance of nodes, which gradually stabilizes node positions in 
space when node positions change negligibly. Therefore, we define a maximum thresh-
old distance for acceleration maxAccDist > maxDepDist . Next, for each pair of nodes 
A, B, we determine the threshold distance for acceleration:

Based on this threshold distance for acceleration, we then define the acceleration coef-
ficient accCoef to be equal to one for accDist(A,B) =� B− A �:

The acc function is then defined as:

Thus, in general, pairs of nodes that are weakly dependent on each other are farther 
apart than strongly dependent nodes, slowly converging to the expected distances 
DepDist(A, B) and DepDist(B, A), respectively. For example, two high-degree nodes that 
share a common edge but have very few common neighbors compared to their other 
neighbors will hardly change their position during an iteration. In contrast, for example, 
nodes that are part of a large and almost disjoint clique have strong dependencies and, 
thus, small distances to neighbors will move very quickly.

More interesting is the situation where node A is strongly dependent on node B, but 
the reverse is not true, e.g., node B is a hub, and node A has degree 1. Using the non-
symmetric alternative qN (A,B) , node A will approach node B very quickly, and node B 
will move slowly towards node A.

Selecting node to move

In an iteration, for each node A, a different node B is selected, to which node A is moved 
according to the procedure described above; it is, therefore, necessary to determine 
how node B can be selected. As described above, non-zero dependency can only be 

(6)A′ = A+ acc(A,B) · (� B− A � −DepDist(A,B)) · û

(7)accDist(A,B) = (1− q(A,B)) ·maxAccDist

(8)accCoef (A,B) = 0.5+ 0.5 · �B−A�
accDist(A,B)

(9)acc(A,B) = q(A,B)
1

accCoef (A,B)
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computed for nodes with a common edge or at least one common neighbor; therefore, 
this assumption limits the selection. For DepDist Contraction, we use a strategy based 
on the assumption that the fewer neighbors a node has, the less information we have 
about its neighborhood, and we should “look further.” For node A, we therefore set the 
probability of randomly selecting its neighbor B to be related to the degree of node A:

where k(A) is the degree of node A; with complementary probability 1− p(A) , a neighbor 
of the neighbors of A is then chosen at random. Thus, if a node has a very high degree, 
its neighbor is chosen with near certainty, and conversely, if a node has degree k(A) = 1 , 
then its neighbor is chosen with probability 0.5.

When to stop iterating

The algorithm depends on only three parameters: (1) the edge length a of the n-dimen-
sional cube into which the nodes of the network are randomly distributed at the begin-
ning, (2) the maximum expected distance maxDepDist of the nodes in the embedding 
from which the distances between each pair of nodes are derived, and (3) the maximum 
distance maxAccDist for the acceleration of the move from which the distance above 
which the move accelerates and below which it decreases is derived for each pair of 
nodes. Thus, from the perspective of the whole network, it is a contraction that leads to 
a distribution of nodes in a small part of the input n-dimensional cube where the nodes 
almost stop moving. Our experiments show that, regardless of the size of the network, 
after 20–50 iterations, the community structure emerges (strongly dependent groups 
of nodes), and after 200–500 iterations, the distribution changes very little; groups of 
strongly dependent nodes move (relatively) away from each other, and the distribution 
stabilizes. Thus, the number of iterations needed is not much affected by the network 
size because the algorithm efficiently separates locally strongly connected substructures 
from the rest of the network. The strength of the DepDist Contraction algorithm is, 
therefore, most evident when applied to networks with significant community structure, 
and its discovery in embedding is only a side effect of the dependency distance.

Figure 1 visualizes the distribution of nodes after 50 iterations of the four networks we 
used in our experiments; it is a 2D embedding, which is complemented for better clarity 
by the edges between the nodes and the sizes of the nodes corresponding to their degree. 
As can be seen, even after a relatively small number of iterations, the community struc-
ture of the networks is obvious.

Scalability

Computing the dependency of one node on another is similar to computing the cluster-
ing coefficient and has time complexity O(k2) , where k is the average degree of the net-
work (we can compute the dependencies in both directions simultaneously). However, 
the computations for each pair of nodes are independent and can be computed in paral-
lel as needed. Within a single iteration, it is possible to store the current node positions 
at the beginning and compute the dependencies, including moving the nodes to their 
new positions in parallel. At the end of the iteration, the current positions are swapped 

(10)p(A) = 1− 1

1+k(A)
,
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with the new ones. Thus, during the algorithm, we work with two states of the network 
(current and new node positions); therefore, the spatial complexity is O(N), where N is 
the number of nodes in the network.

To estimate the time complexity, we assume a sparse network where the relationship 
between the number of edges and the number of nodes is O(N). If we want to optimize 
the computational complexity, we need to compute the dependencies continuously dur-
ing the iterative procedure (i.e., only when necessary) and store them for reuse. Thus, the 
estimate of the time complexity of computing all dependencies is based on the depend-
ency computation complexity and the total number of node pairs for which the depend-
ency needs to be computed. Given that we compute dependencies for neighbors and 
neighbors of neighbors based on random selection, we can estimate the time complexity 
of computing all required dependencies to be O(Nk4) ; however, this is the worst case, 
assuming that dependencies are computed for all neighbors and neighbors of neigh-
bors for all nodes in the network. Furthermore, for sparse networks, the spatial com-
plexity changes to O(Nk2) in the case of stored dependencies. Again, this is the worst 
case, which does not occur in practice since dependencies with neighbors of neighbors 
are rarely computed for higher degree nodes (see “Selecting node to move” section). In 
general, for sparse networks, we can expect a time and space complexity of O(Nk3) and 
O(Nk), respectively.

The random selection around the selected node depends on the representation of the 
network. If we use an adjacency list, then neighbor selection has complexity O(1). There-
fore, for the total complexity, we only need to consider the number of iterations r; the 
estimate of the total time complexity is then O(rN + Nk3) for sparse networks.

Example: 2D embedding and visualization

In order to demonstrate the effectiveness of the DepDist Contraction algorithm, we used 
four small networks; for these small networks, the quality of the embedding can be visu-
ally assessed in the form of a visualized network layout. We chose well-known networks 
from Mark E.J. Newman2: Zachary’s karate club (karate), Les Miserables (lesmis), Amer-
ican College football (football), giant component of Coauthorships in network science 
(netscience). In Table 1, we can see that each network has different properties (number 
of nodes and edges, average, minimum and maximum degree, average clustering coef-
ficient, Louvain modularity (Blondel et al. 2008).

In this example, we used dimension n = 2 for all four networks, the side size of the 
square for the random initial nodes distribution a = 1 , i.e., a square with a diagonal 

Table 1  Properties of the four small networks

Network N M k min_k max_k CC Q

Karate 34 78 4.588 1 17 0.588 0.415

Lesmis 77 254 6.597 1 36 0.736 0.551

Footbal 115 613 10.661 7 12 0.403 0.604

Netscience 379 914 4.823 1 34 0.798 0.845

2  http://​www-​perso​nal.​umich.​edu/​~mejn/​netda​ta/.

http://www-personal.umich.edu/%7emejn/netdata/
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Fig. 1  2D embedding for karate, lesmis, football, netscience (giant component) networks after 50 iterations

Fig. 2  2D embedding for karate, lesmis, football, netscience (giant component) networks after 500 iterations
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[0, 0], [1, 1], the maximum expected dependency distance maxDepDist = 0.002 , and the 
maximum acceleration distance maxAccDist = 0.01 . The result of applying the DepDist 
Contraction algorithm is shown for 50 and 500 iterations in Figs. 1 and 2; the difference 
between 200 and 500 iterations is visually negligible, and there is virtually no further 
movement. Figure 3 shows the changes in the positions of the network nodes expressed 
in terms of the mean squared error (MSE) between two consecutive iterations.

Although our goal is embedding (i.e., in this case, transforming the network into a 
vector representation of dimension 2), the result is comparable to layout-oriented algo-
rithms, which typically use balancing based on attractive and repulsive forces between 
pairs of nodes. However, compared to the force-directed layout in Fig. 4, there is a sig-
nificant difference in the karate layout. Namely, the dependency is much more related to 
the connectivity of the nodes to the neighborhood than to the edge weights. Therefore, 
the distance between pairs of nodes is only small when both dependencies are high. On 
the other hand, if at least one dependency goes to zero, the distance increases, regardless 
of the edge weights. In Fig. 2, this property in the karate network highlights (1) the sepa-
ration of the three groups of nodes in the center and at the boundaries and (2) the rela-
tively large distances between nodes that are weakly connected to their neighborhood.

The figures show how embedding is affected by other characteristics of each network. 
Zachary’s karate club contains no major cliques except triangles; Les Miserables con-
tains well-separated cliques, near-cliques, and star-like substructures; American college 
football contains several near-clique structures and no hubs; Coauthorships in network 
science contain many small, clearly separated cliques clustered around hubs of various 
sizes.

Observations and heuristics

While observing the progress of the embedding generation algorithm in small networks, 
we noticed four points that sometimes had a negative effect on the result. Four heuris-
tics that resulted from these observations are described below: 

Fig. 3  Evolution of MSE between two consecutive iterations for karate, lesmis, footbal, netscience (giant 
component) networks.is significantly larger
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1.	 Creation of a super-node that connects all nodes to avoid the problem of small com-
ponents.

2.	 Swap q-functions to quickly reveal communities.
3.	 Initialization of higher degree nodes near the sides of n-dimensional cubes.
4.	 Estimation of the parameters maxDepDist and maxAccDist.

Heuristics 1: super‑node

In our experiments, we encountered a problem where the network was disconnected, 
and small isolated components remained in the same place. For this case, we artificially 
added an extra super-node to the network when initializing the algorithm and connected 
every node in the network to this node with a small edge weight; this procedure ensured 
that the network was always connected. The super-node is placed exactly in the center of 
the n-dimensional cube.

Heuristics 2: q‑function swap

Observing the algorithm’s progress, it can be seen that the symmetric version of the 
function qS generally causes larger moves than the non-symmetric version qN . There-
fore, it is better to start with the symmetric version and use the non-symmetric version 
after the communities have separated, which causes only small moves of hubs and tunes 
the distances within the communities. In the experiments below, we swapped after one 
hundred iterations out of a total of five hundred.

Heuristics 3: random initialization

The basic version of the algorithm assumes a uniform random distribution of nodes at 
initialization. This is sufficient in most cases, but there may be situations where high-
degree nodes, i.e., hubs, are initialized close together at the beginning. This can nega-
tively affect the resulting embedding if the nodes remain very close during iterations. 
The heuristic more likely distributes hubs near the side of the n-dimensional cube. As a 
result, nodes with low degrees tend to be closer to the cube’s center and hubs vice versa. 
This solution significantly reduces this negative effect.

Fig. 4  Force-directed layout of karate club network
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Heuristics 4: maxDepDist and maxAccDist estimation

The estimation of the parameter maxDepDist is based on the expected size of the N  
dimensional space in which the points corresponding to the nodes of the network will 
be located after the embedding process. We use a cube of dimension n with side length 
one for the initial random placement of nodes. For simplicity, let’s assume that the points 
are uniformly distributed within this cube. The distance between adjacent pairs of points 
in this cube will then be approximately 1

N 1/n . Due to contraction, this distance must be 
much smaller in the resulting embedding. Experiments have shown that a good esti-
mate for maxDepDist is one-hundredth of this distance. The acceleration distance must 
then be proportionally larger; for all settings, we set maxAccDist = 10 ·maxDepDist in 
experiments.

Experiments
The comparison of network embedding methods is a generally formulated task related to 
the purpose for which the embedding is needed. In our case, the goal of embedding is to 
project the original network into a non-structural representation in a low-dimensional 
space while preserving structural properties. One possible solution is to apply machine 
learning methods for selected tasks (e.g. clustering and classification) to the resulting 
embeddings and compare their results with our knowledge about the network (e.g. com-
munities or node roles); these methods can also be combined. Comparing the quality of 
embeddings is a challenging and ambiguous task that is still under research.

In our experiments, we applied two approaches; the first uses a framework combining 
multi-factor evaluation described below, and the second is based on the classification 
of structurally detected roles. The experiments and their evaluation were performed in 
Python using the libraries sklearn3 a pytorch.4 We compared parallel C++ implementa-
tion of the DepDist Contraction method with two well-known methods that are based 
on slightly different approaches: 

DeepWalk	� This embedding method is based on random walks. The first step is to gen-
erate random walks, which can be thought of as sequences. The second step 
is the generation of the embedding; it uses the same logic as word2vec with 
sequences or words. Initially, the embedding of nodes is random, and dur-
ing training, the embedding is adjusted by back-propagation. The embed-
ding of nodes that are close together in a sequence is adjusted so that they 
are close together in the resulting embedding space.

node2vec	� Its logic is very similar to DeepWalk, but it uses 2 additional parameters, 
p and q. The parameter p (return parameter) controls the probability that 
the node will immediately visit the node from which it came. The param-
eter q (in-out parameter) controls whether the selection of nodes should 
be more breadth-first or depth-first. By setting these two parameters, it 
is possible to generate embeddings either for communities (nodes in the 
same communities will tend to have more similar embeddings) or for 
structural roles (nodes with similar roles in the network, e.g. hubs, will 

3  https://​scikit-​learn.​org/​stable/.
4  https://​pytor​ch.​org/.

https://scikit-learn.org/stable/
https://pytorch.org/
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tend to have similar embeddings). node2vec is generally considered to be 
the best embedding algorithm, but a drawback may be finding optimal 
parameter settings.

CGE framework

As mentioned above, evaluating the embedding quality is not an easy task, and the 
results may not be as expected; there are not many tools available. We have chosen  CGE 
framework in the version recommended by its authors (Dehghan-Kooshkghazi et  al. 
2022). This framework is suitable for unsupervised comparison of different network 
embedding methods and can compare network embeddings in any dimension.

The input to the evaluation algorithm is the network connectivity (in the form of 
an edge list or adjacency list) and the output is a “divergence” score. This divergence 
score indicates the embedding quality; a lower value indicates higher quality, but has 
no quantitative meaning. Thus, comparing embeddings only provides a ranking of the 
embeddings.

The CGE framework includes two main steps for embedding generation. First, it uses 
a graph clustering algorithm [specifically the ensemble clustering algorithm for graphs 
(Poulin and Théberge 2019)] based on the Louvain algorithm and consensus clustering. 
This first step identifies dense parts of the graph, creating stable clusters, meaning that 
more edges are captured inside than outside the communities. These clusters provide a 
good macroscopic view of the network. The second step computes the expected number 
of edges within each cluster found in the first step and also between them. The whole 
embedding is scored by calculating a divergence score between this expected number of 
edges and the actual number of edges present in the network.

Experimental networks

We performed the following two experiments with a total of eight networks of different 
types. Details are below, and their properties are listed in Table 2. 

Mouse Brain (Mouse)	� network represents a brain connectivity graph derived 
from the somatosensory cortex of a mouse. The nodes are 

Table 2  Properties of 8 networks used in experiments

Network Mouse Airport Email Ca Hep Ca Grqc FB Lastfm P2P

Nodes 1029 464 986 9875 5241 4039 7624 6301

Edges 1700 7595 16017 25996 14495 88234 27806 20777

Density 0.003 0.070 0.032 0.001 0.001 0.010 0.001 0.001

Max degree 153 175 342 65 81 1045 216 97

Min degree 1 1 1 1 1 1 1 1

Avg degree 3.304 32.737 32.489 5.265 5.531 43.691 7.294 6.595

Assortat. −0.215 −0.055 −0.025 0.267 0.659 0.063 0.017 0.035

Clust. coeff 0 0.476 0.266 0.472 0.530 0.606 0.220 0.011

Triangles 0 100358 104395 28339 48260 1612010 40433 2383

Max k-core 5 50 34 31 43 115 20 10

Components 20 2 1 427 354 1 1 2
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individual neurons, and the edges represent synapses. Avail-
able at https://​netwo​rkrep​osito​ry.​com/​bn-​mouse-​kasth​uri-​
graph-​v4.​php

Airports	� networks represent information about flights between air-
ports based on a record of more than 3.5 million domestic 
US flights from 1990 to 2009. Nodes represent airports and 
edges connections between airports. We used it from CGE 
(Dehghan-Kooshkghazi et al. 2022) framework article. Avail-
able at https://​github.​com/​ftheb​erge/​Graph​Minin​gNote​
books/​tree/​master/​Datas​ets/​Airpo​rts

Emails (Email)	� networks represent email data from a large European 
research institution. Nodes are users, and edges represent 
the sent emails. Available at https://​snap.​stanf​ord.​edu/​data/​
email-​Eu-​core-​tempo​ral.​html

Ca-HepTh (Ca Hep)	� network is a collaboration network from arXiv’s High Energy 
Physics—Theory section. Nodes represent authors and edges 
are coauthorships between authors. Available at https://​
netwo​rkrep​osito​ry.​com/​ca-​HepTh.​php

Ca-GrQq (Ca Grqq)	� network is similar to Ca-HepTh network, but it captures the 
research section of general relativity and quantum cosmol-
ogy. Available at https://​netwo​rkrep​osito​ry.​com/​ca-​GrQc.​
php

Facebook combined (FB)	� network represents circles of users (nodes) and their friends 
(edges). Available at https://​snap.​stanf​ord.​edu/​data/​ego-​
Faceb​ook.​html

LastFM Asia (Lastfm)	� network is part of a dataset from the music streaming service 
LastFM, particularly focusing on user interactions within 
Asia. Nodes represent users, and edges indicate mutual fol-
lower relationships. Available at https://​snap.​stanf​ord.​edu/​
data/​index.​html#​socne​ts

Gnutella P2P (P2P)	� network maps the topology of connections in the Gnutella 
peer-to-peer file-sharing network as of August 2008. Nodes 
represent hosts in the network and edges are the connec-
tions between them. Available at: https://​snap.​stanf​ord.​
edu/​data/​p2p-​Gnute​lla08.​html

 

Comparison using CGE framework
The comparison was performed for all eight networks, three algorithms (DepDist Con-
traction, neode2vec, DeepWalk), and a total of six embedding dimensions (4, 6, 8, 16, 32, 
64, 128). For each network-method-dimension combination, we generated embeddings 
in thirty independent runs; the settings for DeepWalk and node2vec were taken from the 
CGE article (Dehghan-Kooshkghazi et  al. 2022). We evaluated each embedding using 

https://networkrepository.com/bn-mouse-kasthuri-graph-v4.php
https://networkrepository.com/bn-mouse-kasthuri-graph-v4.php
https://github.com/ftheberge/GraphMiningNotebooks/tree/master/Datasets/Airports
https://github.com/ftheberge/GraphMiningNotebooks/tree/master/Datasets/Airports
https://snap.stanford.edu/data/email-Eu-core-temporal.html
https://snap.stanford.edu/data/email-Eu-core-temporal.html
https://networkrepository.com/ca-HepTh.php
https://networkrepository.com/ca-HepTh.php
https://networkrepository.com/ca-GrQc.php
https://networkrepository.com/ca-GrQc.php
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/index.html#socnets
https://snap.stanford.edu/data/index.html#socnets
https://snap.stanford.edu/data/p2p-Gnutella08.html
https://snap.stanford.edu/data/p2p-Gnutella08.html
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the CGE framework5 and obtained results showing the divergence score of the methods, 
including their stability, in Figs. 5, 6, 7 and 8 with boxplots.

In all eight network-method combinations, node2vec was predictably the most suc-
cessful. However, the four figures show different cases. For Lastfm, the results for all 
three methods are comparable. For the Email network, these methods are the least 
stable, with DeepWalk and node2vec having the best results for dimensions 8 and 16, 

Fig. 5  Divergence scores for Lastfm_ASIA network

Fig. 6  Divergence scores for Emails network

5  https://​github.​com/​Krain​skiL/​CGE.​jl.

https://github.com/KrainskiL/CGE.jl
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while for DepDist Contraction, it is dimension 128. In the remaining two cases, the 
results are the most stable, with DepDisp Contraction for FB network being compa-
rable to node2vec, unlike DeepWalk. For Mouse, our method is the worst, but Deep-
Walk does not have good results either.

The quality of embedding is obviously affected by the nature of the network. For 
example, some networks tend to have multiple connected components or well-sepa-
rated communities, while other types of networks do not; it may also depend on other 

Fig. 7  Divergence scores for Mouse Brain network

Fig. 8  Divergence scores for Facebook combined network
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properties, such as density or assortativity. All of these factors can affect embedding 
algorithms in different ways.

Table 3 shows the medians of rankings for all eight networks under examination. It can 
be observed that DeepWalk and our method were not successful in the Ca Hep and Ca 
grqc networks. Table 2 indicates that the cause of this outcome is likely due to the high 
assortativity and the large number of isolated connected components present in these 
networks. DeepWalk was unsuccessful in FB network, which is related to the high aver-
age degree and the specific connectivity with a large number of triangles. In contrast, the 
low success rate of our method in the Mouse network is attributable to the absence of 
triangles in this network.

Classification of roles
Several aspects were considered when comparing the quality of embedding in the previ-
ous section. In this section, we focus on a typical machine learning task, classification. 
Note that the result of applying any of the network embedding methods is a vector data-
set to which classification can be applied in a straightforward manner. However, to do 
this, we need to partition the individual vectors representing the network nodes into 
classes and assign a label to each network node. For this task, we used the approach of 
Kudelka et al. (2019), which defines three types of structurally detected roles based on 
the analysis of the dependencies around a given node.

First, we need to binarize the dependency relationship so that node (A) is dependent 
on node (B) if (D(A,B) ≥ 0.5). Then the roles are defined as follows: 

A strongly prominent node	� is not dependent on any of its neighbors, and at least one 
of its neighbors is dependent on it.

A weakly prominent node	� has at least one neighbor that is dependent on it, and the 
node itself is not dependent on that neighbor.

A non-prominent node	� is a node that is neither strongly nor weakly prominent.

Note that roles defined in this way require a fairly detailed analysis of the node 
surroundings to capture the information needed for their detection. Some of this 

Table 3  Comparison of rankings (medians) for the eight networks studied
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information is necessarily lost during embedding generation. It is, therefore, useful to 
compare how the three methods deal with this loss. Furthermore, the occurrence of 
individual roles is highly unbalanced, and the relative frequency of their occurrence also 
varies considerably depending on the type of network.

In Dopater and Kudělka (2022), we applied graph neural networks for the role clas-
sification task, which also worked with structural information. The roles served as labels 
for the nodes and were used to fit the classifier. Classification accuracy was very high in 
this case.

We first determined structural roles for all eight networks to assess whether and how 
the embeddings generated by each method could be used for classification. The fre-
quency of occurrence of roles in each of the networks studied is highly unbalanced as 
can be seen in Table 4. Strongly prominent nodes are hubs that usually connect com-
munities, weakly prominent nodes are important nodes in communities, and non-prom-
inent nodes are all other nodes in the networks.

We then worked only with 128-dimensional embeddings, so our classifier was a sim-
ple linear neural network with an input layer of 128 dimensions, a next layer of 256 and 
512 dimensions, and an output layer of 3 (because of the 3 output classes). The activa-
tion function was ReLU, except for the softmax output layer. There was a 20% dropout 
layer between each layer to avoid overfitting. We used a learning rate of 0.001 and mul-
tiple training epochs of 25. We then performed an independent classification with 5-fold 
cross-validation for each combination of network-method. We used the F1 score with 
macro-averaging (because of the multiple classes) as a metric.

The results are shown in Fig.  9 and vary due to an unbalanced number of node 
role classes. The best classification is for the Mouse and P2P networks (although 
stability is lower). Weakly prominent nodes are (almost) absent in both networks, 
and apparently, the structural difference between roles that needs to be detected in 
classification disappears after embedding. However, the results were expected to be 
quite disappointing; the differences between the methods are insignificant, and nei-
ther captures the structural roles of the nodes very well. The cause is, therefore, gen-
eral and related to the fact that the distances and locally dense groups of nodes in 
the embedding space do not provide enough information to analyze local structural 
relationships in depth.

Table 4  Frequency of roles in the 8 networks studied

Network Sum Strongly 
prominent

Strongly 
prominent
(%)

Weakly 
prominent

Weakly 
prominent
(%)

Non prominent Non prominent
(%)

Mouse 1029 134 13.0 0 0.0 895 87.0

Airports 464 123 26.5 40 8.6 301 64.9

Email 986 308 31.2 15 1.5 663 67.2

Ca Hep 9875 2421 24.5 741 7.5 6713 68.0

Ca Grqc 5241 1023 19.5 445 8.5 3773 72.0

FB 4039 61 1.5 1242 30.8 2736 67.7

Lastfm 7624 2246 29.5 366 4.8 5012 65.7

P2P 6301 1577 25.0 1 0.0 4723 75.0
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Limitations
The main reason why the DepDist Contraction method gives slightly worse results 
than the two methods compared is the calculation of the distances between the net-
work nodes. Unlike the relatively long random walks in both algorithms, our method 
only computes distances between neighboring nodes and nodes within distance 2 due 
to the use of non-symmetric dependency. Interestingly (and this can be seen even 
when visualizing small networks), it still reveals the community structure and hubs 
very well and quickly. However, the problem grows as the density increases and the 
network’s community structure weakens. This problem can be addressed by modify-
ing the dependency computation even for distances greater than two. Such a modifi-
cation is relatively straightforward but beyond the scope of this article.

The problem associated with dense networks is the complexity of the dependency 
computation, which limits the application of our method in the setting of dense large-
scale networks with very high-degree nodes. A modification of the computation can 
be based on dependency estimation, where it is not necessary to examine the entire 
neighborhood of the pair of nodes (e.g., sampling and random walks can be used); 
this modification is also beyond the scope of this article. It is necessary to add that in 
the case of our experiments with C++ parallel implementation, the embedding com-
putation time is maximum in seconds.

We have not yet been able to estimate the number of iterations needed to stabi-
lize the embedding. We assumed that it is possible to define the relationship between 
a sufficiently stable embedding, its parameters (dimension n, cube edge length a, 
maxDepDist), and the network size. Experiments, while not confirming this, have 
shown that for small networks, lower hundreds of iterations are sufficient for embed-
ding stabilization (see Fig. 3). For all experiments, we set the number of iterations to 
500.

Conclusion
This article introduces a novel method of network embedding. The DepDist Contrac-
tion algorithm presented in this work is based on a simple iterative procedure and 
utilizes a previously published non-symmetric dependency between pairs of nodes. 
This method’s application provides embedding results that are comparable to two 

Fig. 9  Results of role classification in the 8 networks studied
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well-known methods in most experiments performed, including experiments with 
small, straightforwardly visualizable networks. It should be noted that the method has 
certain limitations, which are primarily due to the computation of distances between 
nodes in the resulting embedding space. This is based on the analysis of only small 
distances in the network. Another related technical limitation is the complexity of 
computing the non-symmetric dependency. Consequently, the presented method is 
currently unsuitable for networks with high-density and frequent nodes with degrees 
close to the network’s number of nodes. Nevertheless, we posit that the DepDist Con-
traction method has considerable potential and that the two mentioned limitations 
can be addressed without compromising the fundamental nature of the algorithm. 
Both of these will be the subject of future research.
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