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Abstract 

We study the dynamical assembly of weighted bipartite networks to understand 
the hidden mechanisms of pollination, expanding the Bianconi–Barabási model 
where nodes have intrinsic properties. Allowing for a non-linear interaction rate, which 
represents the seasonality of flowers and pollinators, our analysis reveals similarity 
of this extended Bianconi–Barabási model with field observations. While our current 
approach may not fully account for the diverse range of interaction accretion slopes 
observed in the real world, we regard it as an important step towards enriching theo-
retical models with biological realism.

Keywords: Statistical mechanics, Ecological networks, Dynamical system, Plant–
pollinator network

Introduction
The main patterns of natural ecosystems are determined by the physical environment, 
with the interactions among the community of species responding to these drivers 
(Odum 1969). However, human activity impacts the structure, composition, and func-
tioning of ecosystems, leading to direct and indirect effects on environmental health, 
biodiversity, and overall ecosystem well-being. To understand the influence of human 
activities on ecosystems, we study the dynamics of species interactions that are the driv-
ers of ecosystem functioning. Currently, theoretical work tries to describe the time-evo-
lution, and indeed the evolutionary dynamics of networks, using differential equations 
(Bascompte and Jordano 2013; Bastolla et al. 2009; Metz et al. 2023). Alternatively, one 
can try to extract patterns from observed time-evolution of interaction networks in field 
data, and describe network dynamics based on generalisations from such observations. 
This is the topic of the present study.

In ecosystems, species engage in diverse interactions (Diamond and Case 1986). 
Mutualism describes a relationship in which the organisms involved derive reciprocal 
benefit from each other. Mutualistic interactions play an important role in the function-
ing and stability of ecosystems, contributing to overall biodiversity and health of trophic 
levels along the food web. Animal pollination (here referred to simply as pollination) is 
a mutualistic relationship where flowering plants provide nectar and pollen as a food 
source for the pollinators (e.g., insects, birds and bats), while the pollinators transfer 
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pollen (the male reproductive cells) from the male part of a flower (anther) to the female 
part (stigma) of the same or another flower (Waser and Ollerton 2006).

In the quantitative description of mutualistic interactions, accounting for their interre-
lated and interdependent components is challenging (San Miguel et al. 2012; Dormann 
et  al. 2017). The most studied factors causing pattern within pollination networks are 
the morphology of the interacting species (particularly the match of species functional 
traits, e.g. proboscis size to corolla flower size), and phenology (the temporal overlap in 
occurrence due to biological life cycles) (Diamond and Case 1986; McCann and Gellner 
2020; Valdovinos 2019). In combination, these perspectives have led to the development 
of theoretical and empirical methods for learning about patterns and stability of pol-
lination network interactions (Bascompte and Jordano 2013; Boccaletti et al. 2006; Metz 
et al. 2023). However, current models so far fail to provide a clear mechanistic descrip-
tion of the dynamics of real bipartite networks. Instead, they rely on statistical analyses 
that use machine learning to identify patterns within datasets (Pichler et al. 2019; Terry 
and Lewis 2020).

Here we extend a theoretical statistical mechanics model to describe a real ecologi-
cal complex system. In this adaptation, the functional traits and phenology of plant and 
pollinator species are incorporated in the model to describe the dynamical assembly of 
a mutualistic interaction network. To do so, we first describe our study system, a plant–
pollinator interaction network, and its relevant properties. Subsequently, we outline the 
theoretical framework employed in this study, aimed at developing the Bianconi–Bara-
bási model (Bianconi and Barabási 2001) into a simple yet effective non-random network 
assembly model that encapsulates the principal mechanisms influencing the temporal 
evolution of the network. As result, this model is based on simple assumptions, yet pro-
duces an improvement on the original model. It allows us to describe the overall dynam-
ical behaviour of the community of interacting species. However, our assumptions also 
introduce limitations that can be explored and addressed in future research.

Database: pollination network interactions
Burkle et al. (2019, 2022) investigated the effects of wildfire severity on ecological driv-
ers of interaction in plant–bee communities, considering the role of bees as pollina-
tors. These studies provides an opportunity to investigate the temporal evolution of real 
weighted bipartite networks, where nodes possess intrinsic properties such as functional 
traits. In the experiment, interspecific biotic interactions (hereafter referred to as ‘inter-
actions’) were quantified by observing floral visitors at open flowers within a 25-m diam-
eter plot (491  m2 ) during peak activity periods (sunny, calm conditions between 9:00 
and 16:00 in 2014). Pollinators, defined as floral visitors that contacted the reproductive 
parts of flowers and moved among them, were captured using hand nets, collected, and 
euthanized for species identification. Plant species with flowers that were never visited 
were excluded from consideration.

In this study, we recorded the time each bee visited a flower, allowing the creation of 
a time series where each step represents a state in the assembly process of a plant–pol-
lination interaction network (Fig. 1). A total of 2589 biotic interactions are distributed 
over 53 time steps with an average interval of 1.7 days and an average of approximately 
49 interactions per day (Fig.  2). We observed a notable increase in the number of 
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interactions over time, peaking towards the end of the season. We attribute this trend 
to the phenology of both plant and bee species and incorporated it into our model 
(described in “Method” section). A more comprehensive understanding of this phenom-
enon is provided in Fig. 3a, where the illustrated plant species initiate their interactions 
at a later stage than the illustrated bee species.

Fig. 1 Dynamic assembly of a weighted bipartite network of bee and plant species. This dataset was 
collected in the Northern Rocky Mountains of Montana, USA. The top/bottom boxes represent bee/plant 
species. The size of these boxes represents the number of observed interactions for each species in the 
dataset (Burkle et al. 2022)

Time step

N
um

be
r o

f i
nt

er
ac

tio
ns

0 2 4 6 8 12 16 20 24 28 32 36 40 44 48 52
0

25

50

75

100

125 m = 48.85
m(t2) ~ P(t2)

Fig. 2 Total number of plant–pollinator interactions recorded at each time step over a period of 53 steps 
in summer 2014. The yellow line illustrates the average number of interactions. Meanwhile, the green line 
represents the variation in interaction numbers over time, modeled by a second-degree polynomial, m(t2) . 
The observation period started on May 20, 2014



Page 4 of 12Castillo et al. Applied Network Science            (2024) 9:26 

From an ecological perspective, our interest lies in the dynamics of biotic interac-
tions at the species level. In this context, the two disjoint sets of nodes in the bipartite 
network represent two trophic levels in a food chain. Specifically, there are 191 bee 
species and 116 plant species connected with links indicating mutualistic relation-
ships between these trophic levels (Fig. 1). While the degree to which a flower visit 
represents a pollination event remains a topic of research and discussion (Alarcón 
2010; King et al. 2013; Young et al. 2021), we assume that mutualism within this net-
work assembly begins with the first recorded interaction. Furthermore, the weight 
assigned to each link denotes the number of interactions between each pair of nodes 
(Fig. 1).

Within this dataset, the functional traits of bees (intertegular distance, bee size) 
and plant species (plant height, number of flowers, and flower head dimensions) was 
meticulously documented (Burkle et al. 2019). We think that these node-traits are the 
intrinsic properties crucial for shaping interactions and competition dynamics. Con-
sequently, we hypothesize that the process governing the assembly of weighted bipar-
tite network of ecological interactions can be effectively represented by an extension 
or modification of the method developed by Bianconi and Barabási (2001) (described 
below).

Before proceeding, it is important to note that the process of collecting data on 
pollination network interactions raises several methodological issues that affect data 
analysis. Firstly, the number of nodes of these networks is substantially lower than 
those in the theoretical models upon which our analysis is based. We work in a sys-
tem where the limits of some assumptions are explored. Secondly, the non-uniform 
time intervals between data collection rounds deviate from the assumption of con-
stant intervals in our models. Finally, with time resolution of days, the number of 
interaction between species at each step becomes a stochastic variable. In our simple 

Fig. 3 a Time evolution of node’s strength for plant (filled square and filled circle) and bee species (filled 
trianlge and filled diamond). The lines, with coefficients of determination of 0.93, 0.94, 0.98 and 0.97 
respectively, represent the linear extrapolation of the dynamic evolution of each species. b Cumulative node’s 
degree distribution ( Pk = pk ), representing the probability that a node’s degree is greater than or equal 
to k. Lines denote the best fit, with slopes − 1.616 and − 1.886 for plant and bee species, respectively. c 
Cumulative strength distribution strength distribution, with the best fit lines having slopes of − 1.0281 and 
− 0.8910 for plant and bee species, respectively
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model, we represent the number of interactions, m(t2) , as a second-degree polyno-
mial dependent on time (Fig.  2). This approach allows us to refine the model while 
still producing an analytical solution, as described below.

Method
The Barabási-Albert model describes the dynamic assembly of networks by analyzing 
the number of links connected to nodes, denoted as ki or degree of node i. This model 
characterizes networks where most nodes have few links, but some nodes have a large 
number of links (Barabási and Albert 1999). For a better representation of real networks, 
several authors have proposed modifications and generalisations (Dorogovtsev et  al. 
2000; Krapivsky et  al. 2001; Tadic 2001). Among them, Bianconi and Barabási (2001) 
proposed a model that associates the dynamics of node degrees with an intrinsic attrib-
ute of each node.

In the Bianconi–Barabási model (BB model), the network assembly starts with a set 
of m0 connected nodes. At each time step, a new node with links to m (≤ m0) different 
nodes that are already present in the network is added. The probability, �(ki) , of a node 
receiving a new link is described by a fitness factor, ηi (where {ηi}i∈N has distribution 
ρ(η) ), which represents the ability of such a node in the competition for new links:

BB show that the dynamics of a node with fitness factor ηi introduced at time t0 can be 
described by multiscaling power law functions,

where the value of C is given by:

with ηmax is the maximum value of {ηi}i∈N.
To mathematically describe the number of interactions between bee and plant species, 

we introduce the concept of strength of a node, si . It is defined as the sum of the weights 
of the links, wij , connecting it to its neighbouring nodes, expressed as

where Ni represents the set of neighbours of node i, or the interacting species of the 
other trophic level. If, in our model, the fitness factor represents the functional traits of 
bee and plant species, then even a relatively new species with few links can acquire inter-
actions at a high rate as long as it has a large trait value.

Similar to the Bianconi–Barabási model (Bianconi and Barabási 2001), our network 
assembly begins with an initial set of species, m0 , interconnected through interactions. With 
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each subsequent time step a new random species is introduced to the system. However, 
unlike the BB model, the already connected species will increase their interactions (node’s 
strength). Throughout this process, representing the phenology of species, the dynamics of 
interactions follow a second-degree polynomial, m(t2) , with parameters derived from the 
total number of interactions per time step (see Fig. 2),

This representation of the phenology, with a coefficient of determination of 0.21, provide 
a better approximation of the dynamical evolution of the real bipartite network, while 
still allowing for an analytical solution of the equations. Third-degree polynomials do 
not yield better results, and piece-wise polynomials (splines) preclude an analytical solu-
tion. Additionally, due to the relatively low coefficient of determination, the parameters 
of Eq. (4) can be modified to better describe a specific species of interest without altering 
the outcomes for the species community, thereby enhancing the model’s flexibility and 
adaptability.

The likelihood that a species establishes new interactions, �(si) , has a functional form 
similar to that described in the BB model (Eq. 1). This mathematical relationship is effec-
tive, as demonstrated by the fact that 93.3% and 96.9% of the tested plant and bee species, 
respectively, exhibit interaction dynamics that change over time with a coefficient of deter-
mination greater than 0.7 (Fig. 3a). Additionally, the node degree probability distribution 
( pk ) of the final stage of the network follows a power law distribution for both bee and plant 
species, a phenomenon extensively documented in the literature (Boccaletti et  al. 2006; 
Dorogovtsev and Mendes 2003; Pastor-Satorras and Vespignani 2004). This distribution 
calculates the probability that a randomly chosen node from a network has degree k. For 
enhanced clarity regarding these findings, Fig. 3b and c present the cumulative degree and 
strength distribution, respectively.

Due to the definition of links and weights in the network assembly (in “Database: pollina-
tion network interactions” section), the relationship between the degree and the strength 
of the nodes is linear, si ∝ ki (also called “class I network” in Bianconi 2005). In addition, it 
is proved analytically that the degree distribution follows a power law (Fig. 3b) if and only 
if the probability of a new link is linearly proportional to the degree of the node (Krapivsky 
et al. 2000). Therefore, we expect that the probability of a species to get a new interaction 
due to the introduction of a new node has a functional form similar to the Eq. (1):

On the other hand, the likelihood of acquiring a new interaction with a mutualistic part-
ner depends on the individual’s ability to compete for interactions. In other words, the 
probability that the weight of a link between two nodes increases depends on the capac-
ity of the neighbours to increase such weight:

(4)m(t2) = m2t
2 +m1t +m0.
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Here, the ratio wij/sj defines the importance of this mutualistic relationship over all the 
links that the species j has already.

In consequence, using a continuum theory in an approach similar to Barabási et  al. 
(2002), Barrat et al. (2004) and Bianconi (2005), the dynamical growth of our bipartite 
interaction network is described by the contribution made by a new species to the net-
work (Eq. 5) and the contributions of the existing species in the system (Eq. 6) as follows:

To solve this equation, we employ the assumptions of the dynamical assembly described 
above. Then, we note that �

∑
j ηjsj� ≈ m(t2)tC (for details check Bianconi and Barabási 

2001), and 
∑

j∈Ni
ηjwij ≈ ηmaxsi . Lastly, with initial conditions si(t0) = ki , we have that 

the model that takes into account the influence of functional traits in the competition 
for interaction between species, as well as the effect of the phenology in the assembly 
process is approximately:

Results and discussion
The dynamic exponent of Eq. (8), β(ηi) = 2ηi+ηmax

C  , is influenced by species’ trait ηi , the 
maximum trait value among species at the same trophic level ηmax , and the constant 
C, which is shaped by the density distribution of the functional traits (Eq. 3). Then we 
expect that the dynamics of a species interacting depends on the community of spe-
cies at the same tropic level and their ability to interact. Additionally, the representation 
of plant and bee species phenology (Eq. 4) also depends on the community of species 
that comprise the network (Fig. 2). This second-degree polynomial improves the fit and 
provides flexibility and adaptability to the model. The initial conditions for the dynamic 
evolution of a species of interest can always be adjusted with a proper selection of the 
parameters of such a polynomial (Fig. 4a).

As mentioned before (in “Database: pollination network interactions” section), our 
interest lies in the dynamics of biotic interactions at the species level. To assess the 
model, our attention will be directed towards the dynamic exponents β(ηi) of the power 
law function (Eq. 8). For each plant and bee species, we compare the exponent of the 
power law fitted from the empirical data (the number of interactions over time) with the 
exponent of the power law predicted by their respective theoretical model. On a loga-
rithmic plot (Fig. 4), we thus compare the slope of the power law curve (represented by 
black dashed lines) fitted from the empirical data (depicted as black dots) with the slopes 
of the power laws produced by the theoretical models (depicted by solid lines).

We can extend the BB model from simple links to weighted links because the interac-
tions are integers, and we can consider the weighted bipartite network as a multigraph 
(network in which nodes can be connected by multiple links). Therefore, with a constant 
rate of interactions per step ( m = 49 ), we can compare the results of applying the BB 
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model (Eq.  2) with those of our proposed model (Eq.  8). In addition, we do not con-
sider the intercept with the axis of the model in the logarithmic plot. This is because, in 
our model, it can be fitted by an appropriate selection of the parameters of the second-
degree polynomial (Eq. 4).

In our model evaluation, we selected three functional traits for bee and plant spe-
cies, characterized by an approximate density distribution. Conversely, the BB model 
employed random numbers with density distributions similar to those of the chosen 
traits. The log-normal density distribution fitted the data best, but exponential and nor-
mal also sometimes were suitable (Table 1). Moreover, for each trophic level, the traits 
of the entire community of bee and plant species were taken into account to compute 
the dynamic exponents. The model was applied to all species that occurred at least two 
times in the network assembly. As a result, the model was applied to 75 plant species and 
133 bee species, respectively.

For plant species, we chose three traits that describe different mechanisms of the plant 
to compete for interactions. These traits include the plant height from the soil surface 
to the top of the canopy, the number of flowers arranged on a stem (number of flowers 
per inflorescence), and the width of the flower head (capitula’s width) (Fig. 5a). For the 
bee species case, we used intertegular distance (ITD) and body length, two traits used in 
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Fig. 4 Interaction dynamics of Melilotus officinalis. This plant species was introduced to the network at t = 9 . 
Characterized by a plant height of 56.92 cm, this plant species has a coefficient of determination for the 
empirical slope of 0.93. We compare the empirical exponent with the dynamic exponent of a the model we 
propose, and b Bianconi–Barabási model. The inserted figures represent the density distribution ρ(η) of the 
trait that yields the optimal fit for the data

Table 1 Functional trait information for the bee and plant species included in our analysis

Traits of flowers and pollinators used in our analysis. ρ(ηi) refers to the distribution best describing the trait distribution, 
and hence employed in the Bianconi–Barabási model; minimal and maximal slope estimates as well as error statistics 
(residual sum of squares: RSS; root mean squared error: RMSE) are provided for each trait

Level Trait ρ(ηi) min(β(ηi)) max(β(ηi)) RSS RMSE

Plant species Plant height Log-normal 1.62 3.64 344.70 2.14

N. Flower Inf. Exponential 1.55 3.55 388.70 2.28

Capitula width Log-normal 1.62 3.72 385.93 2.27

Bee species ITD Normal 1.75 3.17 2113.34 3.99

Body size Log-normal 1.62 3.53 2141.95 4.01

Abundance Exponential 1.52 3.70 2219.18 4.08



Page 9 of 12Castillo et al. Applied Network Science            (2024) 9:26  

entomology as morphological characteristics related to flight ability and hence foraging 
range, as well as size. Additionally, to test if the functional traits are correlated with the 
number of interactions observed in the dataset, or if simply the most abundant species 
are the ones with the highest number of interactions, we use bee species abundance in 
the final network assembly as traits ( {ηi}i∈N ) to evaluate such correlation (Fig. 5b).

In both trophic levels, our model approximately reproduces the dynamics of the spe-
cies community (Fig. 5). For each trait, the set of dynamic exponents produced by our 
model has a mean value that closely matches the exponents from the empirical analysis. 
In contrast, the dynamic exponents produced by the BB model do not reproduce the 
dynamics of either trophic level for each trait. As depicted in Fig. 4b, the underestima-
tion is due to the fact that the BB model adds a fixed amount of links per step, ignor-
ing the ability of already connected nodes to alter the propensity for links. Overall, our 
model improves upon the base model at both the species level (Fig. 4) and the commu-
nity level (Fig. 5).

The range of values of the empirical exponents of the whole community is larger than 
the range of dynamic exponents produced by the two models within each functional 
trait (Fig.  5). This discrepancy arises from differences between the assembly process 

Fig. 5 Distribution of dynamic exponents for a flowers and b pollinators with three functional traits each. 
The empirical exponent corresponds to the slope of the best fit of the data in a logarithmic plot. For each 
functional trait, we compute the dynamic interaction of the species with our model and the BB model, which 
is our base model
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of the real bipartite network and the mechanism we assume to generate our model, as 
described in “Method” section. Particularly, the stochastic number of new species per 
time step in the network deviates from our assumption of adding just one species to the 
system per time step. Additionally, the relatively small size of the network produces devi-
ations in the expected behaviour described in the theory, known as edge effect. Here, in 
particular, the steep decline in interaction rate at the end of season is not matched well 
by the quadratic function, leading to what appears to be a saturation.

In our model, we note that the values of the dynamic exponents for each trait typically 
range between 1.61 and 3.55 (Table  1). This range closely aligns with the range com-
monly reported in the literature, approximately between 2 and 3. Moreover, we observe 
that the model’s fit, for all tested traits, improves as we include more traits in comput-
ing the dynamic exponents, underscoring the significance of the final network size. This 
observation aligns with our earlier discussion where we emphasized that species dynam-
ics are shaped by the interaction within the community at the same trophic level. Addi-
tionally, the exponents are sensitive to the density distribution of such traits.

From this analysis alone, we cannot establish a trait that performs significantly better 
for both trophic levels. The trait that best describes the dynamic interactions of the spe-
cies depends on each individual species (Fig. 4). The sum of square residual (RSS) and 
root-mean-square error (RMSE) of the model for each trait are similar between models 
of the same level in the food chain (Table 1).

Conclusions
Despite the relatively small size of the system we are studying, the model proposed in this 
paper demonstrates the applicability of complex network theory to ecological networks. 
Building upon the Bianconi–Barabási model, our approach reveals that a new species in 
the network with few interactions, such as Melilotus officinalis (in Fig. 4a), can acquire 
interactions at a high rate if it has a large trait value. This highlights the model’s ability to 
potentially capture the dynamics of species interactions by integrating morphology and 
phenology. Its simplicity allows for an approximate reproduction of community dynam-
ics across both trophic levels. However, it is worth noting that the constraints imposed 
by the assumed mechanism for generating the model introduce limitations, preventing a 
precise fit. Nevertheless, this model approach may be a valuable tool for understanding 
and simulating complex ecological systems.

Throughout the development of the model, we thoroughly explored various topologi-
cal features of bipartite networks and alternative assumptions regarding the mechanics 
of the assembly process. However, none of these models yielded superior results com-
pared to those presented in this work. Moving forward, further development of the 
model would benefit from datasets representing larger networks with even higher sam-
pling intensities throughout the seasons. Additionally, datasets collected in non-seasonal 
environments, such as the tropics, would provide valuable insights for enhancing the 
model’s robustness and applicability.
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