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Abstract 

Network-based time series models have experienced a surge in popularity 
over the past years due to their ability to model temporal and spatial dependencies, 
arising from the spread of infectious disease. The generalised network autoregressive 
(GNAR) model conceptualises time series on the vertices of a network; it has an autore-
gressive component for temporal dependence and a spatial autoregressive compo-
nent for dependence between neighbouring vertices in the network. Consequently, 
the choice of underlying network is essential. This paper assesses the performance 
of GNAR models on different networks in predicting COVID-19 cases for the 26 
counties in the Republic of Ireland, over two distinct pandemic phases (restricted 
and unrestricted), characterised by inter-county movement restrictions. Ten static 
networks are constructed, in which vertices represent counties, and edges are built 
upon neighbourhood relations, such as railway lines. We find that a GNAR model based 
on the fairly sparse Economic hub network explains the data best for the restricted 
pandemic phase while the fairly dense 21-nearest neighbour network performs 
best for the unrestricted phase. Across phases, GNAR models have higher predictive 
accuracy than standard ARIMA models which ignore the network structure. For county-
specific predictions, in pandemic phases with more lenient or no COVID-19 regulation, 
the network effect is not quite as pronounced. The results indicate some robustness 
to the precise network architecture as long as the densities of the networks are similar. 
An analysis of the residuals justifies the model assumptions for the restricted phase 
but raises questions regarding their validity for the unrestricted phase. While generally 
performing better than ARIMA models which ignore network effects, there is scope 
for further development of the GNAR model to better model complex infectious dis-
eases, including COVID-19.
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Introduction
In recent years, statistical models which incorporate networks and thereby acknowledge 
spatial dependencies when predicting temporal data have experienced a surge in popu-
larity (e.g., Knight et al. 2019, 2016; Urrutia et al. 2022). Knight et al. (2016) developed 

*Correspondence:   
reinert@stats.ox.ac.uk

1 Department of Biostatistics, 
Harvard University, 655 
Huntington Avenue, Boston, MA 
02115, USA
2 Department of Statistics, 
University of Oxford, 24-29 St 
Giles, Oxford OX1 3LB, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-024-00634-2&domain=pdf


Page 2 of 21Armbruster and Reinert  Applied Network Science            (2024) 9:23 

a generalised network autoregressive (GNAR) time series model which incorporates a 
secondary dependence in addition to standard temporal dependence. The secondary 
dependence is captured in a network. In Knight et  al. (2016), the proposed network-
based time series model is leveraged to predict mumps incidence across English coun-
ties during the British mumps outbreak in 2005. As graph to be associated with the 
Mumps network time series, Knight et al. (2016) chose a “county town” for each county 
and connected all towns which were less than a radius of a fixed number of kilometers 
away from each other.

Similar to mumps, COVID-19 is a highly infectious disease spread by direct contact 
between people (Nouvellet 2021). Human movement networks have been extensively 
relied upon to explain COVID-19 patterns (e.g.  Jia 2020; Kraemer 2020; Li et al. 2021; 
Mo 2021; Nouvellet 2021; Sun et al. 2021; Wu et al. 2020). Therefore, it is a natural con-
jecture that such movement networks may help predict the spread of COVID-19. To 
investigate, this paper

• Fits GNAR models to predict the weekly COVID-19 incidence for all 26 counties in 
the Republic of Ireland, exploring different network constructions;

• Assesses the prevalence of a network effect in COVID-19 incidence in Ireland 
and the suitability of GNAR models to predict epidemic outbreaks as complex as 
COVID-19;

• Investigates the influence of changes in inter-county mobility, due to COVID-19 
restrictions, on the performance of GNAR models as well as on the model param-
eters and hyperparameters.

The GNAR model is chosen because multivariate time series are often modelled by vec-
tor autoregressive (VAR) models. General VAR models are very flexible but require a 
large number of parameters to be estimated. The GNAR model which we employ here 
is a special case of a VAR model. It reduces the number of parameters to be estimated 
by restricting attention to edges in a network; in the case of a complete graph, the VAR 
model and the GNAR model coincide. Our overview of network-based time series mod-
els, given in Supplementary Material B.2, concludes that many network-based time 
series models can be conceptualized as a special case of the GNAR model, or are more 
restrictive with respect to the temporal-spatial dependencies they can model. Moreover, 
as a VAR-type model, the GNAR model inherits the well-understood VAR model frame-
work, including parameter estimation via least squares, and model selection based on 
the BIC; for a survey see for example Lütkepohl (2005). These methods yield confidence 
sets for parameter estimation, which can inform analysis as well as policy development 
in a quantitative fashion. In contrast, deep learning approaches such as developed in 
Park et al. (2024) for predicting rental and return patters at bicycle stations do not come 
with such theoretical guarantees.

In addition to a distance-based network as chosen in Knight et al. (2016), in this paper 
we explore a collection of network models which are motivated by  potential move-
ments of individuals. The movement networks are constructed according to general 
approaches based on statistical definitions of neighbourhoods as well as approaches spe-
cific to the infectious spread of the COVID-19 virus. In abuse of notation, we call these 
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networks COVID-19 networks, although they are only meant to reflect possible trans-
mission routes of the disease. For each network, we select the best performing hyperpa-
rameter values, to predict COVID-19 incidence by a GNAR model, using the Bayesian 
Information Criterion (BIC). By splitting the available Irish data into two phases of the 
pandemic, restricted and unrestricted, we are able to investigate the potential change in 
the temporal and spatial dependencies in COVID-19 incidence between the two phases.

Overall, our findings are that while there is a clear network effect, the performance 
of the optimal GNAR model varies little across different network architectures of simi-
lar network density. GNAR models indicate higher predictive accuracy than ARIMA 
models on a country level, since they account for inter-county dependencies. On an 
individual county level, the variability of predictive performance is high, resulting in 
similar performance of ARIMA and GNAR models for some counties, while for others 
the GNAR model consistently outperforms the ARIMA model. The GNAR model seem 
better suited to predictive COVID-19 incidence in restricted pandemic phases than in 
unrestricted pandemic phases; the latter may be related to some of the model assump-
tions possibly requiring an adaptation as well as an increase in noise during unrestricted 
pandemic phases and high fluctuation of COVID-19 case numbers. Moreover, the clas-
sical VAR model, which is the GNAR model on the complete graph, does not perform as 
well as the GNAR model with an underlying network that has fewer edges, illustrating 
the value of using a GNAR model.

This paper is organised as follows. Section 2 introduces the data set. The methodol-
ogy for network construction and for network-based time series modeling is described 
in Sect. 3. Section 4 provides an exploratory data analysis, while the model fit is shown 
in Sect. 5.1. The conclusions for the different pandemic phases are found in Sect. 5.2. 
The results are discussed in Section 6. The Supplementary Material includes a literature 
review on alternative models for incorporating temporal and spatial dependencies, visu-
alisations of the COVID-19 networks, as well as details on the performance of GNAR 
models for predicting COVID-19 incidence.

The data and code are provided at https:// github. com/ steph anieA rmbru/ Case_ study_ 
GNAR_ COVID_ Irela nd. git.

The Irish COVID‑19 data set
By March 2023, the Republic of Ireland (abbreviated in this paper as Ireland) had 
recorded a total of 1.7 million confirmed COVID-19 cases and 8,719 deaths since the 
beginning of the pandemic (Health Protection Surveillance Centre 2022a). The Health 
Protection Surveillance Centre identified four main variants of concern for the COVID-
19 virus in Ireland (Health Protection Surveillance Centre 2022b), in addition to the orig-
inal variant: Alpha from 27.12.2020, Delta from 06.06.2021, Omicron I from 13.12.2021, 
and Omicron II from 13.03.2022 (Figure  1a in Health Protection Surveillance Centre 
(2022b)). The open data platform (Government of Ireland 2022; Ordnance Survey Ire-
land 2024) by the Irish Government provides weekly updated multivariate time series 
data on confirmed daily cumulative COVID-19 cases for all 26 Irish counties, starting 
from the beginning of the pandemic in February 2020. A COVID-19 case is attributed to 
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the county in which the patient has their primary residence.1 To our knowledge, spatially 
more detailed COVID-19 data is not available for Ireland. The limited granularity makes 
it difficult to implement fine-scale spatial models. The GNAR model was originally dem-
onstrated using county-level data, indicating its potential for modeling infectious dis-
eases at lower resolutions. The cumulative case count is given for 100,000 inhabitants. 
Age profiles vary across counties and COVID-19 infection rates are age dependent. 
Hence, the cumulative case count is adjusted for age distribution according to the 2016 
census of Ireland, to ensure inter-county comparability (Central Statistics Office 2016). 
In our dataset, the first COVID-19 case was registered in Dublin on 02.03.2020 and the 
last reported date is 23.01.2023, spanning a total of 152 weeks (Ordnance Survey Ireland 
2024). From 20.03.2020 onward, COVID-19 cases were recorded in every Irish county. 
The daily COVID-19 data is aggregated to a weekly level to avoid modelling artificial 
weekly effects (Kubiczek and Hadasik 2021; Sartor 2020). Due to delayed reporting dur-
ing winter 2021/22, the weekly COVID-19 incidences from 12.12.2021 to 27.02.2022 are 
averaged over a window of 4 weeks (Health Protection Surveillance Centre 2021, 2022c; 
Wei 2006).

The main COVID-19 regulations restricting physical movement and social interaction 
between Irish counties (Brennan 2022; Loughlin 2022; McQuinn et al. 2021) are used to 
naturally split the data into five sequential subsets, where the COVID-19 incidence is 
small at the beginning of the pandemic and shows a clear increasing trend over time. We 
denote by σ̄ the average standard deviation in COVID-19 incidence across the 26 Irish 
counties within the considered data subset. The splits are

(1) Start of the pandemic, with gradually stricter movement restrictions and lock-
downs (restricted phase), from 27.02.2020 for 25 weeks ( ̄σ = 19.17);

(2) County-specific movement restrictions (less restricted phase), from 18.08.2020 for 
18 weeks ( ̄σ = 35.05);

(3) Level-5 lockdown (restricted phase), with inter-county travel restrictions, from 
26.12.2020 for 20 weeks ( ̄σ = 148.79);

(4) Allowance of non-essential inter-county travel (less restricted phase), from 
10.05.2021 for 43 weeks ( ̄σ = 173.17);

(5) End of all restrictions (unrestricted phase), from 06.03.2022 for 46 weeks 
( ̄σ = 101.46).

The datasets are grouped to avoid small sample sizes. Time gaps in either dataset are 
inserted as missing data. The groups are

• Restricted dataset: dataset 1 and 3; representing pandemic situations with strict 
COVID-19 restrictions, including an inter-county travel ban (Brennan 2022); con-
tains 45 weeks of observation ( σr = 99.27)

1 This attribution is only partially reliable due to a lack of validation during infection surges (Health Protection Surveil-
lance Centre 2022a).
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• Unrestricted data set: dataset 2, 4 and 5; representing periods with fewer or no regula-
tions, in particular no inter-county travel limitations (McQuinn et al. 2021); contains 
107 weeks of observation ( σur = 129.62)

Methodology
Let G = {V , E} denote a fixed, simple, undirected, unweighted network with vertex set V 
containing N vertices and edge set E ; an edge between vertices i and j is denoted by i ∼ j . 
The neighbourhood of a subset of vertices A ⊂ V is defined as the set of neighbours outside 
of A to the vertices in A, N (A) = i∈A{j ∈ V\A : i ∼ j}. The set of r th-stage neighbours, or 
the r th-stage neighbourhood, for vertex i ∈ A is defined recursively as N (0)(i) = {i} and

COVID‑19 networks: constructions and properties

The key to the GNAR model is the network. The true network underlying the data gen-
erating process (in this case, who infected whom in the spread of the disease) is usually 
unknown. Ideally, expert knowledge can be leveraged to build a network that captures the 
relationship between vertices, representing the subjects of interest. Networks to model the 
spread of an infectious disease, such as COVID-19, are frequently modelled off of human 
mobility patterns, which are considered to have a shaping influence on disease spread (e.g. 
Colizza et al. 2006; Jia 2020; Li et al. 2021; Mo 2021; Sun et al. 2021). To our knowledge, 
detailed information on weekly population flow between Irish counties is unavailable. 
Hence, we construct implicit COVID-19 transmission networks (COVID-19 networks 
hereafter) based on geographical approaches, in line with Knight et al. (2016).

In the Railway-based network, an edge is established between two counties if there exists 
a direct train link between the respective county towns (without change of trains) and the 
county towns are closest to each other on this train connection. The Queen’s contiguity net-
work connects each county to the counties it shares a border with (Sawada 2022). The Eco-
nomic hub network adds an additional edge between each county and its nearest economic 
hub to the Queen’s contiguity network: Dublin, Cork, Limerick, Galway or Waterford 
(Gardham 2022). To measure the distance to the nearest economic hub we use the Great 
Circle distance dC(i, j) , the shortest distance between two points on the surface of a sphere 
(Weisstein 2002). For two points i,  j with latitude δi, δj and longitude �i, �j on a sphere of 
radius r > 0,

The K-nearest neighbours network (KNN) connects a vertex with its K nearest neigh-
bours with respect to dC (Bivand 2022; Eppstein et al. 1997). The distance-based neigh-
bour network (DNN) constructs an edge between counties if their Great Circle distance 
dC lies within a certain range [l, r]; this construction is similar to the one used in Knight 
et al. (2016). For the COVID-19 network, we set l = 0 and consider r a hyperparameter, 
chosen large enough to ensure that no vertex is isolated. The maximum value for r is 

N (r)(i) = N
(

N (r−1)(i)
)

\

r−1
⋃

q=1

N (q)(i) .

dC(i, j) = r · cos−1
(

cos(δi) · cos(δj) · cos(�i − �j)− sin(δi) · cos(δj)
)

.
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determined by the largest distance between any two vertices, for which it returns a fully 
connected network (Bivand et al. 2013).

In addition to these geographical networks, the Delaunay triangulation constructs 
geometric triangles between vertices such that no vertex lies within the circumsphere 
of any constructed triangle (Chen and Xu 2004), thus ensuring that there are no iso-
lated vertices. The Gabriel, Sphere of Influence network and Relative neighbourhood 
are obtained from the Delaunay triangulation network by omitting certain edges. In a 
Gabriel network, vertices x and y in Euclidean space are connected if they are Gabriel 
neighbours; that is,

where d(x, y) =
√
∑n

i=1(xi − yi)2 denotes the Euclidean distance. In a Sphere of Influ-
ence network (SOI), long distance edges in the Delaunay triangulation network are elimi-
nated and only edges between SOI neighbours are retained, as follows. For x ∈ V and 
dx the Euclidean distance between x and its nearest neighbour in V , let Cx denote the 
circle centred around x with radius dx . For y ∈ V , the quantities dy and Cy are defined 
analogously. Vertices x and y are SOI neighbours if and only if Cx and Cy intersect at 
least twice, preserving the symmetry property of the Delaunay triangulation (Bivand 
et  al. 2013). The Relative neighbourhood network only retains edges between relative 
neighbours,

The Relative neighbourhood network is contained in the Delaunay triangulation, SOI 
and Gabriel network, and is the sparsest of the four networks (Bivand et  al. 2013). 
Finally, the Complete network represents the homogeneous mixing assumption, where 
all countries are connected (Bansal et al. 2007).

Figure 1 shows the Economic hub network and the KNN network ( k = 11 and k = 21 ) 
for Ireland. Figures of the other networks are found in the Supplementary Material A; 
network summaries are provided in Table 1.

The networks are created based on the literature on spatial modelling; Bivand et  al. 
(2008, pp. 239–251) suggests the Delaunay network and its variants, Queen’s contigu-
ity network, distance-based networks, and K-nearest neighbour networks. In De Souza 
et al. (2021) it was found that infrastructure has an effect on the spread of COVID-19 in 
Brazil; here we use the railway network as infrastructure network. The Economic hub 
network is motivated by the idea of including a proxy of commuter flows in the network 
construction, as commuting to work has been shown in Mitze and Kosfeld (2022) to be 
related to the spread of COVID-19 in Germany.

Generalised network autoregressive models

Network-based time series models incorporate non-temporal dependencies in the 
form of networks in addition to temporal dependencies  commonly modeled in time 
series models (Knight et  al. 2019, 2016; Zhu et al. 2017). In contrast to standard time 
series methodology and spatial models (Box et  al. 2015; Hamilton 2020; Wei 2006), 

d(x, y) ≤ min

(

√

(d(x, z)2 + d(y, z)2)

∣

∣

∣

∣

z ∈ V

)

d(x, y) ≤ min
(

max(d(x, z), d(y, z))
∣

∣ z ∈ V
)

.



Page 7 of 21Armbruster and Reinert  Applied Network Science            (2024) 9:23  

network-based time series models are not limited to geographic relationships but can 
incorporate any generic network. As COVID-19 is an infectious disease with spatial 
spreading behaviour, warranting the construction of networks based on spatial infor-
mation, we use terms relating to spatial dependence in our exposition. Other types of 
dependence could easily be incorporated in the model through networks which reflect 
the hypothesised dependence.

The global α generalised network autoregressive models GNAR (p-s1, ..., sp) models the 
observation Xi,t for a vertex i at time t as the weighted linear combination of an autore-
gressive component of order p and a network neighbourhood autoregressive component 
of a certain order, also called neighbourhood stage; for i = 1, . . . , p , the entry si gives the 
largest neighbourhood stage considered for vertex i when regressing on up to p past val-
ues. In our analysis, Xi,t denotes the 1-lag difference in weekly COVID-19 incidence over 
time t for county i. The effect of neighbouring vertices depends on some weight ωi,q . A 
GNAR model GNAR(p-s1, . . . , sp ) has the following form,

where εi,t ∼ N (0, σ 2
i ) are uncorrelated.2 As weights ωi,q we choose the normalised 

inverse shortest path length  (SPL) weight, where di,q denotes the shortest path length 
(SPL) (Knight et al. 2016); in connected networks, 1 ≤ di,q < ∞ for i  = q . For i ∈ V and 
q ∈ N (r)(i) , we thus take, ωi,q = d−1

i,q /(
∑

k∈N (r)(i) d
−1
i,k ).  If the network is dynamic over 

time instead of static, the weights can be constructed to depend on time (Knight et al. 
2016). 

The general GNAR model relies on vertex specific coefficients αi,j , instead of vertex 
unspecific autoregressive coefficients, αj , indicating vertex specific temporal depend-
ence. This modification is comparable to including individual random effects in regres-
sion models.

(1)Xi,t =

p
�

j=1



αjXi,t−j +

sj
�

r=1

�

q∈N (r)(i)

βj,r ωi,q Xq,t−j



+ εi,t

Fig. 1 Map of Ireland and COVID-19 networks; economic hub towns marked in blue

2 We define 
∑0

r=1(.) := 0.
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To fit a GNAR model, we must choose two hyperparameters, the lag p, or α-order, 
and the vector of neighbourhood stages, s = (s1, ..., sp) , also called β-order. They can be 
determined either through expert knowledge, e.g. on the spread of infections, or through 
a criterion-based search (Knight et al. 2016). The model coefficients are computed via 
Estimated Generalised Least Squares (EGLS) estimation (Knight et  al. 2016; Leeming 
2019; Lütkepohl 1991).3

GNAR model selection and predictive accuracy

For our analysis of the Irish COVID-19 data, model selection, i.e. the choice of α - and β
-order, is performed by minimizing the Bayesian Information Criterion (BIC) (Knight 
et al. 2016). The BIC avoids overfitting by penalizing the observed likelihood L by the 
dimensionality of the required parameters (Schwarz 1978). For a sample X of size n and a 
parameter θ of dimension k, BIC(k , n) = klog(n)− 2 · log(L(X; θ)).

The GNAR package assumes Gaussian errors (R Package Documentation 2022); under 
this assumption, the BIC is consistent. This assumption could be weakened; it can be 
shown that the BIC is consistent for the GNAR model (1) if the error term is i.i.d. with 
bounded fourth moments (Leeming 2019; Lütkepohl 2005; Lv and Liu 2014).

The predictive accuracy of a GNAR model is measured by the mean absolute scaled 
error (MASE), due to its insensitivity towards outliers, its scale invariance and its robust-
ness (Hyndman and Koehler 2006). MASE is defined for each county i as the ratio of 
absolute forecasting error ε̂i,t = |Xi,t − X̂i,t | divided by the mean absolute error between 
true and a naive 1-lag random walk forecast for the entire observed time period [1, T] 
(Hyndman and Koehler 2006; Urrutia et al. 2022);

Data exploration
The weekly incidence differences

The GNAR model requires stationary data. Stationary data has no trend over time and 
is homogeneous, i.e. has time-independent variance (Knight et  al. 2016). The weekly 
COVID-19 count is clearly not stationary, as it shows an increasing trend in Fig. 2. To 
remove any linear trend, we perform 1-lag differencing on the weekly COVID-19 inci-
dence for the 26 Irish counties, resulting in the incidence difference, (1-lag) COVID-19 
ID, between two subsequent weeks (Montgomery et al. 2015). We assess the stationarity 
by applying a Box-Cox transformation to each data subset. Figure 12 in the Supplemen-
tary Material C, �   indicate that no further transformation is required.

Constructed networks

For the COVID-19 KNN network, neighbourhood sizes sequencing from k = 1 to the 
fully connected network, k = 25 , with step size 2, are considered. The minimal distance 

|qi,t | =
|Xi,t − X̂i,t |

1
T−1

∑T
l=2 |Xi,l − Xi,l−1|

.

3 Additional information in Supplementary Material B.3.
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for the COVID-19 DNN network measures 90.3 km, between Kerry and Cork, and the 
maximal value 338.5 km, between County Cork and Donegal. The KNN and DNN net-
work parameters are chosen to minimise the BIC of the associated GNAR model. For 
the restricted pandemic phase, the KNN network has k = 11 and the DNN network 
d = 325 . For the unrestricted pandemic phase, it is k = 21 and d = 325.

There is considerable variability in network characteristics, Table  1, in particular 
regarding the network density. The KNN and DNN networks for the abovementioned 
hyperparameters have much larger average degree than the other networks; the sparsest 
network is the Relative neighbourhood network. Consequently, the SPL is shortest in the 
denser DNN and KNN networks. The Railway-based network has the longest average 
SPL due to its vertex chains and the low number of shortcuts between counties. For the 
Economic hub network, the introduction of shortcuts to the economic hubs leads to a 
decrease in average SPL, i.e. the disease spreads quicker, compared to the Queen’s conti-
guity network. The Gabriel network is sparser than the SOI network, with slightly longer 
average SPL. Deleting long edges in the Delaunay triangulation network to obtain the 
SOI network decreases the average degree and the average local clustering coefficient, 
but increases the average SPL. The Queen’s network, the Economic hub network, the 
Delaunay network, the Gabriel network, and the SOI network show small world behav-
iour, i.e. high clustering with short SPL. To assess small world behaviour, the average 
SPL and average local clustering for a network is compared to a Bernoulli Random graph 
G(n, m) with identical size n and number of edges m as the network under investigation. 
The Railway network has much larger average SPL than G(n, m), while the dense KNN 
and DNN networks have almost the same average SPL and local clustering coefficient as 
the G(n, m) network.

Although there are differences in the detailed summary statistics, the networks can be 
clustered according to density and average local clustering coefficient; we use the k-means 
algorithm, running 10 randomisations to ensure robustness over a range of k = 1, . . . , 10 . 
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The corresponding elbow plot implies two clusters of COVID-19 networks. As evident in 
Fig. 3, one cluster has high density and high average local clustering coefficient, while the 
second cluster has low density and low to medium average local clustering coefficient.

Spatial effects

Intuitively, if spatial correlation is present in a network, the closer in SPL two vertices are, 
the more highly correlated their COVID-19 incidences. Moran’s I quantifies spatial correla-
tion by estimating the average weighted correlation across space (Cliff and Ord 1981; Moran 
1950; Zhou and Lin 2008). Let t ∈ T  and x(t)i  denote the COVID-19 ID for county i at time t,

where W0 =
∑N

i,j=1 wij for normalisation. For non-neighbours, the weights are zero, 
i.e. ∀r : j �∈ N (r)(i) : wij = 0 . Here we use weights wij = e−dij where dij denotes the SPL 
between vertex i and j (Coscia 2021). The spatial dependency between counties varies 
strongly over time for every network, see Fig. 4 and Figure 11 in Supplementary Material 
A.1. Peaks in Moran’s I coincide with peaks in the 1-lag COVID-19 ID at the beginning 
of the pandemic as well as during the winters 2020/21 and 2021/22. The introduction 
of restrictive regulations, e.g.  lockdowns, shows a decreasing trend in Moran’s I while 
the ease of restrictions from summer 2021 onward has lead to an increasing trend in 
Moran’s I. This indicates a network effect in the data, which is associated with the inter-
county mobility, and becomes particularly evident after the official end of pandemic 
restriction in March 2022. To further assess the presence of non-linear spatial correla-
tion, we also apply Moran’s I to the ranks of the COVID-19 ID at each time point t over 
the duration of data observation. The rank-based Moran’s I follows the same trajectory, 
with less extreme peaks, as evident in Fig. 5.

I t =

∑N
i=1

∑N
j=1,i �=j wij · (x

(t)
i − x̄(t))(xj − x̄(t))

W0 ·
1
N

∑

i(x
(t)
i − x̄(t))2

Fig. 3 Network density against average local clustering coefficient for all 10 considered COVID-19 networks; 
2 clusters detectable
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To statistically assess spatial dependence we perform a permutation test for the stand-
ard as well as the rank based Moran’s I by permuting the COVID-19 cases between 
counties R = 100 times and computing Moran’s I. A date-specific 95% credibility inter-
val ∀t = 1, . . . ,T : [mt,l ,mt,u] based on empirical quantiles ( q = 0.025, 0.5, 0.975 ) is 
constructed. Under the null hypothesis, assuming no correlation between network 
structure and COVID-19 incidence, 5% ( 0.05 · T ≈ 8 ) of observed Moran’s I values mt 
over time t = 1, . . . ,T  are expected to lie outside the time dependent 95% credibility 
interval, [mt,l ,mt,u] . If the proportion Nm = T−1

∑

t{I(mt > mt,u)+ I(mt < mt,l)} of 
rejected tests over time is greater than expected under the null, we conclude that the 
network distance has an effect on the correlation between COVID-19 incidence.4 With 
exponential SPL weights, the proportion of rejected tests for the restricted and unre-
stricted data set are: Railway-based network Nm = (0.25, 0.142) , Queen’s contigu-
ity network Nm = (0.227, 0.217) , Economic hub network Nm = (0.25, 0.179) , KNN 
network ( k = 11 for restricted, k = 21 for unrestricted phase) Nm = (0.159, 0.151) , 
DNN network ( d = 325 for both phases) Nm = (0.068, 0.094) , Delaunay triangula-
tion network Nm = (0.205, 0.189) , Gabriel network Nm = (0.114, 0.132) , SOI network 
Nm = (0.182, 0.198) , Relative neighbourhood network Nm = (0.159, 0.189) . The pro-
portions indicate a significant spatial correlation. Depending on the network, the pro-
portion for either the restricted or the unrestricted data set is larger. The rank-based 

Fig. 4 Moran’s I across time, with weights based on SPL; main COVID-19 regulations by the Irish Government 
indicated by vertical lines; in order: initial lockdown, county-specific restrictions, Level-5 lockdown, allowance 
of inter-county travel, official end of all restrictions; 95% credibility interval in grey dashed

Fig. 5 Rank-based Moran’s I across time for the optimal network for the restricted and unrestricted pandemic 
phase; main COVID-19 regulations by the Irish Government indicated by vertical lines; in order: initial 
lockdown, county-specific restrictions, Level-5 lockdown, allowance of inter-county travel, official end of all 
restrictions; 95% credibility interval in grey dashed

4 The constructed test is not a proper significance test in the statistical sense, given the dependence between tests over 
time. It rather provides a rough intuition regarding the spatial correlation in COVID-19 incidence assuming different 
underlying networks.
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Moran’s I permutation test obtains similar proportions of rejected tests, indicating a sig-
nificant nonlinear spatial correlation (data not shown).

Results
GNAR model fitting

To assess the benefit of accounting for network effects, the GNAR model is compared to 
a standard county-specific ARIMA model which is allowed to include seasonal effects.5 
The GNAR model allows for more flexible spatial-temporal dependencies than other 
network-based time series models as detailed in Supplementary Material B.2, including 
the ARIMA models, with a network specific selection of α - and β-order. The models are 
selected by choosing the model with the lowest BIC.

On average, the ARIMA model achieves a BIC = 1846.88 on the entire data set, 
BIC = 534.58 for the restricted data set and BIC = 670.27 for the unrestricted data set. 
Optimal6 GNAR models for each COVID-19 network achieve much lower BIC. For the 
restricted phase, the best phase-specific GNAR model yields BIC = 58.91 on the Eco-
nomic hub network, and for the unrestricted phase BIC = 190.07 on the KNN ( k = 21 ) 
network, see Table 2. When fitted on the entire data set, the GNAR-5-11110 model with 
the KNN network ( k = 21)7 achieves the lowest BIC = 193.95.8 All BICs are considera-
bly smaller than those obtained from the ARIMA fit, with the minimal BIC for the entire 
data set much larger than the BIC for the restricted phase, and also larger than the BIC 
for the unrestricted phase, thus justifying the use of GNAR models, as well as the split of 
the data.

The nature of the virus suggests that the transmission of COVID-19 between Irish 
counties may depend strongly on the population flow between counties (Lotfi et  al. 
2020). Protective COVID-19 restrictions taken by the Irish Government restricted 
and at times forbade inter-county travel in Level 3-5 lockdowns (Department of the 

Table 2 Overview over the best performing model and network for restricted and unrestricted 
pandemic phases

average residual ε̄ and average (av.) MASE indicated for the predicted 5 weeks at the end of the observed time period 
across all counties, 11.04.2021–09.05.2021 for the restricted dataset and 25.12.2022–23.01.2023 for the unrestricted dataset; 
standard deviation (sd) across counties in brackets

Data subset Network GNAR model BIC ε̄ (sd) Av. MASE (sd)

Restricted Eco. hub GNAR(7-3,1,1,0,0,0,0) 58.91 −1.60 (16.51) 0.90 (0.73)

Unrestricted KNN-21 GNAR(7-1,1,1,1,0,0,0) 190.07 −13.46 (14.67) 0.94 (0.74)

Restricted ARIMA 534.58 −0.78 (19.08) 1.22 (1.34)

Unrestricted ARIMA 670.27 −16.65 (18.50) 1.21 (0.96)

5 Fitted for each county individually, the ARIMA models might differ in orders and parameters.
6 Optimal describes the best performing combination of α - and β-order as well as global-α setting which obtain the 
minimal BIC value. The a-priori range of α-order spans {1, ..., 7} . The maximum lag to consider follows from Schwert’s 
rule (Ng and Perron 1995), applied to the minimum number of weeks across the individual five datasets ( w = 18 ). The 
possible choices for the β-order are listed in Supplementary Material B.4. The maximum neighbourhood stage that can 
be included in the GNAR model is determined by the smallest maximum SPL across most networks, which is 5. For the 
complete network, only 1st stage neighbourhood can be modelled, while for the Economic hub network the maximum 
neighbourhood stage is 4.
7 From hereon referred to as the KNN network.
8 For more detail on fitting a GNAR model to each COVID-19 network on the entire data set, see the Supplementary 
Material D.1.
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Taoiseach 2020; McQuinn et al. 2021). As supported by the positive and negative trends 
in Moran’s I, the spatial dependence of COVID-19 incidence across counties is likely to 
have decreased during lockdowns and increased during periods in which inter-county 
travel was allowed (Wang 2022). This provides additional subject specific motivation to 
train a pandemic phase specific GNAR model.

Pandemic phases

Table  2 summarises the optimal GNAR models and COVID-19 network for the 
restricted and unrestricted data set. For both phases, the best performing GNAR model 
select an autoregressive component of order 7. The average MASE are smaller for the 
restricted than the unrestricted pandemic phases, implying that GNAR models are 
more suited to predicting periods with strict regulations than periods with fewer or no 
restrictions. The variance for residuals and MASE is smaller for the GNAR model than 
the ARIMA model. The optimal network for the unrestricted pandemic phase is much 
denser than the optimal network for the restricted phase. As evident from Tables 3, 4 in 
Supplementary MaterialD.1, the BIC values for the optimal GNAR model lie within the 
range [58.91, 68.36] for the restricted data set and within the range [190.07, 192.56] for 
the unrestricted data set. Figure 13 in Supplementary Material D.1 illustrates that denser 
networks perform better for the unrestricted data set while sparse networks achieve 
lower BIC for the restricted data set, on average.

A decrease in inter-county dependence due to COVID-19 restrictions should result 
in decreasing values for the β-coefficients in the GNAR model. This hypothesis can 
only be partially verified, see Fig.  6. The absolute value of β-coefficients increases 
from the restricted to the unrestricted phase, implying increased spatial dependence 
after COVID-19 restrictions have been eased or lifted. We note that the GNAR model 
picks up a decrease in temporal dependence in COVID-19 ID. As a disease spreads 

Fig. 6 Development of GNAR model coefficients for the restricted and unrestricted pandemic phase; 
restricted phase with Economic hub network, unrestricted phase with KNN ( k = 21 ) network
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more freely due to lenient or no restrictions, it has been observed in other data stud-
ies that case numbers can grow more erratic and become less dependent on historic 
data (Firth 2020; Kraemer 2020). This effect, in addition to peaks and high volatility 
in COVID-19 ID observed during pandemic phases with less strict regulations, might 
contributed to the negative α-coefficient values for the unrestricted data set. In gen-
eral, an increase in noise during unrestricted pandemic phases might contribute to 
the decrease in predictive performance of the GNAR model.

Identical observations can be made when considering how the coefficients develop 
between the restricted and unrestricted phase for the GNAR model that is optimal for 
the entire data set, namely, GNAR(5-1,1,1,1,0) with the KNN ( k = 21 ) network; the 
β-coefficients increase in absolute value for the unrestricted phase compared to the 
restricted phase, see Fig. 14 in Supplementary Material D.2.

The predictive accuracy for both datasets is comparable and varies from county 
to county, see Figs. 7 and 8 for 9 example counties; MASE values for the remaining 
counties follow similar patterns.

For the restricted phase, GNAR models achieve lower MASE than the ARIMA mod-
els except for counties Cavan, Galway, Leitrim, Louth, Sligo, Tipperary, Roscommon, for 
which the ARIMA model performs equally well. For the unrestricted phase, the ARIMA 
model predicts particularly poorly for counties Carlow, Kilkenney, Louth and Waterford, 

Fig. 7 MASE values for the restricted pandemic phase, for 9 selected counties
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and for the restricted phase for counties Cavan, Clare, Limerick and Wexford. We note 
that Cavan, Leitrim and Sligo have a border with Northern Ireland, which could intro-
duce some confounding factors.

For the restricted phase, the predicted COVID-19 ID values differ more strongly 
between the GNAR model and the ARIMA model, see Figure 16 in Supplementary Mate-
rial D.3. For the unrestricted phase, the GNAR and ARIMA models estimate roughly the 
same trajectory while the former achieves smaller residuals for most counties.

Assessing the model assumptions

The above models assume that the observations follow a Gaussian i.i.d. error structure. 
To assess this assumption, we test whether the residuals ε̂i,t follow a normal distribu-
tion with a county-specific Kolmogorov-Smirnov test, aggregated over time. In contrast, 
we obtain a majority of significant p-values across counties for the unrestricted phase 
(the counts of p-values are #p ≤ 0.025 = 21 , #p > 0.025 = 5),9 raising doubts about the 
Gaussianity assumption in the unrestricted phase. We obtain primarily insignificant 

Fig. 8 MASE values for the unrestricted pandemic phase, for 9 selected counties

9 Insignificant p-values were established in counties Donegal, Dublin, Kilkenny, Laois, Offaly and Sligo.
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p-values across counties for the restricted phase ( #p ≤ 0.025 = 8 , #p > 0.025 = 18)10, so 
that the Gaussian assumption is not rejected.

Table 5 in Supplementary Material D.4 details the average MASE, average residual and 
p-value for each county, resulting for the two optimal GNAR models for the restricted 
and unrestricted data set. The Gaussian nature of residuals indicate suitability of the 
GNAR model to model restricted pandemic phases and ensure consistency in coefficient 
estimates. For the unrestricted phase, the Gaussianity in the model assumptions could 
not be statistically verified. These conclusions are supported by the county-specific QQ-
plots in Supplementary Material D.4. The hyperparameters α - and β-order were set 
data-adaptively to minimize the BIC criterion, which assumes Gaussian error. Under the 
assumption of Gaussian error, the BIC would be minimal for the correct higher order 
network dependence. As we examined a large range of β-order choices, this deviance 
from Gaussianity leads us to propose investigating alternative error structures as future 
work (Fig. 9).

The GNAR model further assumes that the errors are uncorrelated. To assess this 
assumption, the residuals are investigated according to their temporal as well as spatial 
autocorrelation using the Ljung-Box test and Moran’s I based permutation test (Ljung 
and Box 1978; Moran 1950). The former concludes significant temporal correlation for 
short-term lags in the GNAR residuals for each county. Thus, there is evidence that the 
GNAR model insufficiently accounts for temporal dependence in COVID-19 incidence 
in subsequent weeks. The residuals show remaining spatial autocorrelation. The Moran’s 
I based permutation test counts Nm = 8 Moran’s I values outside the corresponding 95% 
credibility interval (expected 0.05 · 45 ≈ 2 ) for the restricted phase and Nm = 16 for the 
unrestricted phase (expected 0.05 · · · 107 ≈ 5 ). The reduction in spatial correlation for 
the restricted phases and the Economic hub network is greater ( Nm = 10 on COVID-19 
cases to Nm = 8 for residuals) than for the unrestricted phases and the KNN network 
( Nm = 16 for COVID-19 cases and residuals). We conclude that there is evidence that 
the GNAR model may not sufficiently incorporate the spatial relationship in COVID-19 
case numbers across counties. These possible violations of the model assumptions have 
to be taken into account when interpreting the model fit.

Fig. 9 QQ-plot for the residuals from the best performing GNAR model and network (Economic hub network 
for restricted phase, KNN (k= 21) network for unrestricted phase) for restricted and unrestricted pandemic 
phase for county Dublin (left) and Donegal (right)

10 The Kolmogorov-Smirnov test was significant for counties Donegal, Galway, Kilkenny, Laois, Limerick, Offaly, Sligo 
and Wicklow.
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Discussion
In general, a network model could can be a powerful tool to inform the spread of infec-
tious diseases, see for example (Britton 2019; Overton 2020). In this paper, we modelled 
the COVID-19 incidence across the 26 counties in the Republic of Ireland by fitting 
GNAR models, leveraging different networks to represent spatial dependence between 
the counties. While we do not assume that the disease only spreads along the network, 
we consider the edges to represent the main trajectory of the infection. The analy-
sis shows that there is a clear network effect, but networks of similar density perform 
similarly in predictive accuracy. GNAR models perform better on data collected during 
pandemic phases with inter-county movement restrictions than data gathered during 
less restricted phases. Sparse networks perform better for the restricted data set, while 
denser networks achieve lower BIC for the unrestricted data set.

There are some caveats relating to the model. First, the time series for the restricted 
phase and for the unrestricted phase are actually concatenated time series; Fig. 2 shows 
the original time series. The concatenation was carried out because of data availability, 
but it is possible that it obfuscates some potentially interesting phase-specific signals. 
As seen in Fig. 2, even after differencing the time series do not display clear stationar-
ity. Further, COVID-19 is subject to “seasonal” effects, e.g. systematic reporting delays 
due to weekends and winter waves (Kubiczek and Hadasik 2021; Nichols 2021; Sartor 
2020). The GNAR model does not have a seasonal analogue which can incorporate sea-
sonality in data, like SARIMA for ARIMA models (Shumway et al. 2000). Future work 
could introduce a seasonal component to the GNAR model, improving its applicabil-
ity to infectious disease modelling. There may be other spatio-temporal patterns such 
as non-linear effects which the GNAR model currently does not include. Moreover, the 
COVID-19 pandemic had a strong influence on mobility patterns (COVID-19 Com-
munity Mobility Report 2022; Manzira et al. 2022), in particular due to restrictions of 
movement and an increased apprehension towards larger crowds. Considering only 
static networks may introduce a bias to the model (Bansal et al. 2007; Mo 2021; Perra 
2012). Future work could therefore explore how GNAR models can include dynamic 
networks to incorporate a temporal component of spatial dependency. Alternative 
weighting schemes for GNAR models could be investigated to account for differences in 
edge relevance across time and network.

Regarding the theory of GNAR models, alternative error distributions, such as a Pois-
son distributed error term as in Armillotta and Fokianos (2021), could be explored given 
the indication of non-Gaussian residuals for the unrestricted pandemic phase. The sta-
bility of parameter estimation in GNAR models also warrants further investigation. 
The network constructions themselves could also be refined. Simulations have shown 
that GNAR models are sensitive to network misspecifications. Omitting edges may 
result in bias in the GNAR coefficients. While this paper has carried some robustness 
analysis regarding network choice, future analysis could focus on more content-based 
approaches to constructing networks, e.g. building a network based on the intensity of 
inter-county trade, computed according to the gravity equation theory (Chaney 2018). 
Many researchers have successfully modelled the initial spread of COVID-19 from 
Wuhan across China based on detailed mobility patterns, e.g. Jia (2020); Kraemer (2020). 
Finally, our statistical analysis did not include information about the dominant strain. 
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With COVID-19 being an evolving disease, different strains may display different trans-
mission patterns. If more detailed data become available then this question would also 
be of interest for further investigation. However, this study has illustrated that it may be 
of benefit to use a GNAR model for the spread of an infectious disease, in particular dur-
ing movement restrictions, so that the spread is mainly local. It has also detailed a range 
of possible network choices, and it has provided a set of tests to assess the performance 
of the model and its fit.
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