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Abstract 

With real-world network systems typically comprising a large number of interactive 
components and inherently dynamic, Graph Continual Learning (GCL) has gained 
increasing popularity in recent years. Furthermore, most applications involve multiple 
entities and relationships with associated attributes, which has led to widely adopt-
ing Heterogeneous Information Networks (HINs) for capturing such rich structural 
and semantic meaning. In this context, we deal with the problem of learning multi-
type node representations in a time evolving graph setting, harnessing the expressive 
power of Graph Neural Networks (GNNs). To this purpose, we propose a novel frame-
work, named DyHANE—Dynamic Heterogeneous Attributed Network Embedding, 
which dynamically identifies a representative sample of multi-typed nodes as training 
set and updates the parameters of a GNN module, enabling the generation of up-to-
date representations for all nodes in the network. We show the advantage of employ-
ing HINs on a data-incremental classification task. We compare the results obtained 
by DyHANE on a multi-step, incremental heterogeneous GAT model trained on a sam-
ple of changed and unchanged nodes, with the results obtained by either the same 
model trained from scratch or the same model trained solely on changed nodes. We 
demonstrate the effectiveness of the proposed approach in facing two major related 
challenges: (i) to avoid model re-train from scratch if only a subset of the network 
has been changed and (ii) to mitigate the risk of losing established patterns if the new 
nodes exhibit unseen properties. To the best of our knowledge, this is the first work 
that deals with the task of (deep) graph continual learning on HINs.

Keywords: Graph Continual Learning, Heterogeneous Information Networks, 
Incremental Graph Neural Networks

Introduction
Contemporary scenarios involve a wide variety of actors and relationships that evolve 
over time, making networks suitable models for analyzing data interdependence. In a 
dynamic discrete-time setting with changes in network structure and entities features, 
detecting and adapting to changes is crucial for an accurate model, so that it can gen-
erate effective representations for all nodes in the network. It is necessary to integrate 
new knowledge, by identifying new patterns in the data, while simultaneously refining 
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existing knowledge, by consolidating existing patterns. This approach helps avoiding the 
so-called catastrophic forgetting problem, i.e., the tendency of a neural network to lose 
proficiency in previously learned tasks when adapting to or acquiring new information 
(McCloskey and Cohen 1989).

As noted by Khoshraftar and An (2022), Graph Neural Networks (GNNs) offer refined 
graph representations and flexibility in handling attributes, but scalability issues limit 
their efficiency compared to shallow approaches. For this reason, there are surprisingly 
few GNN-based works on Graph Continual Learning (GCL), i.e., continual learning 
approaches capable of harnessing the expressive power of GNNs for the integration of 
new knowledge in graph representations without relying on the entire network. Even less 
explored is the study of incremental GNNs for HINs, i.e., GNNs trained incrementally 
to simultaneously detect new patterns in heterogeneous nodes and consolidate current 
ones. We specify that, although in the literature the terms ’incremental’ and ’streaming’ 
are often used interchangeably, in the following we will exclusively employ the former to 
emphasize the incremental, step-wise nature of the proposed approach.

Existing GNN-based works on heterogeneous networks need to store the history of 
nodes and apply an additional recurrent architecture or attention mechanism to update 
the node representations, as shown by Yang et al. (2020); Xue et al. (2020); Martirano 
et  al. (2022). In contrast, multiple architectures for homogeneous graphs, i.e., graphs 
with only one type of node and relationship, have been proposed to overcome scalability 
issues arising from storing multiple embeddings for each node or retraining the network 
from scratch at each observation time (Ma et al. 2020; Zhou and Cao 2021; Wang et al. 
2020; Perini et al. 2022).

Wang et  al. (2020) outline three scenarios for handling evolving graph data by 
employing GNN-based methods: (i) pre-trained GNNs, employing a pre-trained 
GNN model for generating representations of unseen and changed nodes, although 
effectiveness might decrease if node patterns significantly differ from the pre-trained 
model; (ii) retrained GNNs, which train a new GNN module on the entire graph data 
at each timestamp, achieving higher performance, but incurring substantial time and 
space costs, particularly if only a subset of the network changes over time; (iii) online 
GNNs, learning node representations by training solely on new nodes using param-
eters from the previous timestamp, despite a risk of loss of knowledge and degraded 
representations of unchanged nodes if patterns in new nodes differ from the existing 
network. All these strategies have clear limitations in handling the complexities of 
large-scale incremental graph data characterized by shifting pattern distributions over 
time.

To strike a balance between learning new knowledge and preserving existing knowl-
edge, several works employ a regularization technique, such as the Elastic Weight Con-
solidation (EWC) (Kirkpatrick et al. 2016), by introducing a regularization term in the 
loss function that penalizes large changes in important weights learned during previ-
ous timestamps. The regularization term effectively constrains the neural network 
from making drastic changes to the parameters that are crucial for the performance on 
unchanged nodes.
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A recent research direction involves replay-based (or reharsal) methods storing rep-
resentative history data or well-designed data representations, and incorporating these 
elements during the training of new tasks. Strategies like experience replay and gener-
ative replay based on the storing, respectively, of a representative subset of past data 
(Zhou and Cao 2021; Wang et al. 2020; Perini et al. 2022) or of synthetic samples resem-
bling data (Wang et al. 2022) in a memory buffer, proved to be effective in preventing the 
loss of knowledge in homogeneous graphs, but rehearsal approaches are still unexplored 
in HINs.

To fill the above gap in the literature, we propose a novel framework, named DyHANE 
(Dynamic Heterogeneous Attributed Network Embedding), which is designed to gener-
ate at each new timestamp multi-typed up-to-date node representations for all nodes 
in the network, by incrementally updating GNN parameters training on subset of the 
network. To this aim, we identify a novel strategy to detect and integrate the set of 
nodes affected by changes in a HIN—new knowledge detection—and a novel strategy 
to update the heterogeneous memory buffer used for experience node replay—exist-
ing knowledge consolidation. We experimentally evaluate our framework on a multi-
class node classification task on a closed-world setting, i.e., known and fixed number of 
classes, handling both changes in network topology and node features. First, we dem-
onstrate the advantage of HIN modeling. Then, we assess the effectiveness of DyHANE 
in comparison to Retrained GNNs and Online GNNs in terms of achieved performance 
and training time. We notice the flexibility of the proposed framework, particularly our 
base model, namely a Graph Attention Network, is actually interchangeable with any 
other GNN model.

Plan of the paper

The remainder of this paper is structured as follows. “Related work” Section discusses 
recent works particularly related to our framework. “Preliminaries” Section introduces 
and formalize preliminary concepts on HINs and incremental GNNs. “Proposed frame-
work” Section describes our proposed framework in detail, and also provides a discus-
sion on computational complexity aspects. “Experimental evaluation” Section presents 
our experimental evaluation, which was carried out by referring to the task of classifica-
tion of authors’ primary field of study as a case in point. Finally, “Conclusion” Section 
contains concluding remarks and provides pointers for future research.

Related work
To narrow our focus, we concentrate on GNN-based continual learning models in a 
discrete-time setting, with events propagating in batches at defined intervals. Discrete 
dynamic GNNs are known to be faster and generally simpler models compared to the 
continuous models, since iterating over snapshots rather than edge-by-edge. With no 
identified direct competitor for DyHANE in GNN-based continual learning on HINs, 
we provide a brief overview of (i) GNN-based approaches for HINs incorporating the 
temporal dimension and (ii) incremental GNNs for homogeneous networks using a 
memory buffer for experience node replay.
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GNN‑based approaches for HINs with temporal dimension

Existing literature commonly treats the temporal component as an additional dimen-
sion, using extra recurrent architectures or attention mechanisms for updating node 
representations. HDGNN (Zhou et al. 2020) combines GNN and RNN architectures for 
scientific impact propagation learning. DYHAN (Yang et  al. 2020) employs hierarchi-
cal attention for link prediction. DyHATR (Xue et  al. 2020) uses a hierarchical atten-
tion model for learning static snapshots and a temporal attentive RNN for evolutionary 
patterns in link prediction. Co-MLHAN (Martirano et al. 2022) learns node representa-
tions with hierarchical attention and a collaborative contrastive cross-view mechanism 
in an unsupervised setting, modeling the temporal dimension across layers. The issue 
inherent in these methodologies lies in their static nature, since assuming knowledge of 
the entire network. DyHINE (Xie et al. 2021) constructs an online update model with a 
dynamic operator on top of a dynamic time-series embedding model. It employs hier-
archical attention to aggregate neighbor features and temporal random walks to cap-
ture dynamic interactions. In contrast to our approach, it integrates all the neighbors of 
changed nodes and has the need to store the history of nodes, separating each embed-
ding into past and changing embedding. More similar to our approach is LIME (Peng 
et al. 2022). After mapping the nodes into a shared cuboid space and employing dynamic 
meta-path guided random walks and Recursive Neural Networks for initial node embed-
dings, it applies incremental learning to update node representations using the dynamic 
Minimum Cost Maximum Flow algorithm. The update, however, is less controlled and 
does not directly depend on relevant changes in the neighborhood.

Differently from the proposed approach, any of these works (except for HDGNN) is 
concerned with encoding node dynamics, such as changes in node features, while our 
dataset has both fixed and dynamic attributes (cf. “Data” Section). Moreover, our frame-
work can be extended without efforts to handle removals.

Incremental GNNs approaches for homogeneous networks based on experience node 

replay

In the following we present the models designed for homogeneous graphs more related 
to our approach, with which we share the goal of employing incremental GNNs to sup-
port classification accuracy in the presence of changes in class distribution, based on a 
curated, smaller subset of the network. ER-GNN (Zhou and Cao 2021) retains the most 
representative nodes of different classes in a buffer according to different selection strat-
egies and replay them at following timestamps. The proposed strategies based on the 
mean of feature, coverage maximization, and influence maximization are not immedi-
ately applicable to tasks other than classification. Conversely, similarly to our approach, 
ContinualGNN (Wang et al. 2020) prioritizes nodes more likely to be located at the class 
boundary based on their impact on the gradient, and stores those with attributes sig-
nificantly distinct from their neighbors. Our approach extends this notion to diversity 
in attributes and local structure and to multiple node and edge types. Random-Based 
Rehearsal (RBR) and Priority-Based Rehearsal (PBR) (Perini et al. 2022) introduce incre-
mental GNN models with experience replay, yielding a uniform sample of the training 
graph or prioritizing data points based on the model prediction error, respectively, as 



Page 5 of 28Martirano et al. Applied Network Science            (2024) 9:30  

strategies for sample selection. In contrast to our approach, they assume a constant 
number of changes over time, and they do not handle changes over the node set.

Despite prioritizing the most representative nodes for updating the experience 
memory buffer, DyHANE is not an active learning approach. It involves the continual 
adaptation of machine learning models to evolving graph-structured data over time, dis-
tinguishing it from graph active learning, which specifically focuses on selecting data 
points for labeling.

Preliminaries
In this section, we first provide the essential background underlying our proposed 
framework, then we formally define the problem addressed in this work.

Background

Here we recall the concepts of dynamic Heterogeneous Information Network (HIN), 
meta-paths as composite relations on HINs, and the evolution of HINs in discrete 
time.

Dynamic heterogeneous information networks (HINs)

Dynamic HINs or interchangeably dynamic heterogeneous attributed graphs are net-
works with multiple node and/or edge types and external information associated with 
nodes available as a set of attributes. Formally, we define a dynamic HIN at a generic 
timestamp t as Gt = �V t , E t ,A,R,φ,ϕ,X t� , where V t and E t are the sets of nodes and 
edges at timestamp t, A and R are the (fixed) sets of node and relation types, with 
|A| + |R| > 2 , φ : V t → A and ϕ : E t → R are the node- and edge-type mapping func-
tions, and X t is the set of matrices storing node attributes at time t. We specify that, 
since different node types could be associated with different types of content, the 
attribute vectors for different node types could be of different lengths, resulting in 
X

t = {X t
a}, ∀a ∈ A.

Meta‑paths in dynamic HINs

A meta-path type—for short meta-path—Sin a HIN is a composite relation used 
to model high-order proximity in the form σ(a1, ax+1) = a1

r1
−→ a2

r2
−→ · · ·

rx
−→ ax+1 

between two node types, a1 and ax+1 , which are expected to share some information. 
Since many high-order relations can be established between node types, we denote 
as σm the m-meta-path type in the set M of all selected meta-path types. The most 
informative meta-paths are usually few and of short length, and can be either iden-
tified through a hand-crafted sample by domain experts or computed through new 
approaches of meta-path reduction (Wei et al. 2018), interesting meta-paths mining 
(Shi and Weninger 2014) and meta-path discovery (Wan et  al. 2020) even in large-
scale Heterogeneous Information Networks. The length of a meta-path is the number 
of nodes held in the corresponding composite relation and is denoted as len(σm)

A meta-path instance of the meta-path type σm is a sequence of size len(σm) of con-
nected nodes matching the node and edge types in the meta-path, able to make two 
distant nodes in the network (the terminal nodes) reachable. In the following, we 
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denote as p a pair of nodes connected by at least one meta-path instance. A meta-
path-based graph is a graph comprised of all nodes connected via meta-path instances 
of a determined meta-path σm . Given a target node type a ∈ A , i.e., the node type tar-
geted for a task at hand, and a meta-path σm with terminal nodes of the same type a , 
the resulting meta-path-based graph at time t is a homogeneous weighted graph with 
one node type a and one relation type σm , obtained from all meta-path instances of 
σm by removing the intermediate nodes and establishing a direct link between the 
pair p weighted on the number of meta-path instances connecting p. The meta-path-
based neighbors under meta-path σm of a node vi ∈ V t is the set of nodes Ni,σm

t con-
nected at time t to vi via at least one meta-path instance of σm.

Evolution of HINs in discrete time

We define the discrete network evolution over time as a set of events at each timestamp 
t, corresponding to the set of changed edges Ect =

⋃
i,j eij , with eij = �i, xi, j, xj , r, xij , s, c� . 

Each event is an edge between nodes of indices i and j of type ϕ(e) = r , with {vi, vj} ∈ V t ; 
xi and xj denote the attribute vectors of nodes vi and vj resp., while xij denotes the attrib-
ute vector associated with the edge. In our formulation, s = 1 (resp. s = 0 ) denotes the 
addition (resp. removal) of eij of type r; we point out that we assume s = 1 in all the 
events, but all the proposed algorithms are designed to work equally if removals occur; c 
denotes the category of the event: c = 1 (resp. c = 0 ) corresponds to an event with strong 
(resp. weak) impact on its neighbors, as explained in “Identification of influenced nodes” 
Section. To handle the attribute updates of isolated nodes, i.e., nodes not involved in any 
change on network topology, we map the corresponding event as a self loop, with s = 1 
and c = 1 . We specify that each event contributes to changes in the network topology 
�Gt = Gt − Gt−1 , with �Gt comprising new nodes ( V t − V t−1 ) and edges ( E t − E t−1 ), 
and/or changes in the attribute matrices �X t = X t − X t−1.

Problem setting

Our proposed framework is designed to deal with incremental graph neural network 
models on HINs. In the following, we provide the key elements underlying such models 
contextualized in our problem setting.

We are given a set of T timestamps {t1, t2, . . . , tT } , each of which is associated with a 
set of events Ect determining a change in �Gt = Gt − Gt−1 and/or �X t = X t − X t−1 . 
An incremental GNN gradually learns {θ t1 , θ t2 , . . . , θ tT } , where θ t are the GNN parame-
ters at timestamp t to generate effective representations zit , ∀vi ∈ V t , using only a sample 
of nodes in Gt as training set.

The training set T  comprises all the unseen and changed nodes plus a curated sub-
set of unchanged nodes. By denoting with I t the influenced node set at time t, i.e., the 
(minimum) subset of nodes affected by changes, and with Bt−1 the experience memory 
buffer updated at time t − 1 and replayed at time t, the training set at time t is built as 
T t = I t Bt−1 , where I t ⊇ �V t , Bt−1 ⊆ V t−1 and I t

⋃
Bt−1 ⊆ V t . Note that both I t 

and Bt−1 comprise nodes of different types.
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Proposed framework

Algorithm 1 DyHANE incremental GNN.

Our proposed DyHANE is an incremental GNN model that consists of a sequence of 
steps reiterated at each new timestamp t, as summarized in Algorithm 1 and depicted in 
Fig. 1: 

1. Detection of the influenced node set I t , as presented in Algorithm 2.
2. Resume of the experience memory buffer Bt−1 computed at previous timestamp and 

GNN parameters θ t−1 learned at previous timestamp.
3. Update of the GNN module, learning θ t able to generate effective representations for 

all nodes vi ∈ V t.
4. Update of the memory buffer Bt from I t

⋃
Bt−1 , as presented in Algorithm 3.

Note that (1) and (2) can be executed in parallel, while (4) can be performed at any time 
while waiting for the next increment. In the following, we describe the two proposed 
algorithms for the detection of influenced nodes and the update of the experience buffer, 
respectively.
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Please also note that our chosen GNN model is a Graph Attention Network (GAT) 
(Brody et  al. 2021), which is widely recognized as a highly effective GNN for various 
downstream tasks; however, it should be emphasized that DyHANE is not constrained to 
a particular GNN architecture or to a unique implementation of the proposed strategies.

Identification of influenced nodes

To identify nodes affected by changes, focusing on the entire network is unnecessary, 
especially when the node neighborhood is stable (Du et al. 2018). Likewise, relying solely 
on changed nodes is inadequate, since the new patterns can effect existing nodes due to 
interdependence in network data. Given this premise, we propose a dedicated procedure 
(Algorithm 2) to mine nodes affected by changes during network evolution.

Fig. 1 Workflow of DyHANE, with the dashed rectangle highlighting a given incremental step t = t1 , 
involving the detection of the influenced node set at current time I1 (cf. Algorithm 2) and the resume of 
the experience buffer B0 and GNN initialization parameters θ0 updated at previous timestamp. The model 
outputs the updated parameters of the neural network model θ1 , which should be able to generate effective 
representations for both changed and unchanged nodes in V1 . Finally, the memory buffer B1 is updated for 
the next interval (cf. Algorithm 3)
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Algorithm 2 Influenced node set detection.

To identify the minimum set of influenced nodes at current timestamp I t , we cat-
egorize new events in the graph as strong or weak based on their impact on the net-
work topology. The intuition is that weak events do not generate new knowledge, 
while strong events need to be propagated further. Inspired by recent work on graph 
representation learning for dynamic homogeneous networks (Trivedi et al. 2019) and 
acknowledging the effectiveness of meta-path based models in capturing heteroge-
neous information in large networks (Dong et  al. 2017; Shang et  al. 2016), we clas-
sify the edge corresponding to an event as weak if it is not crossed by any meta-path 
instance connecting target node types, or if generated meta-path instances already 
exist; otherwise it is said strong. For all events, we add to the set of influenced nodes 
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the incident nodes. For strong events, we add to I t also the incident nodes’ hetero-
geneous one-hop neighborhood; if any of the incident nodes is of target type a , the 
affected nodes will include also their meta-path-based neighborhood. Since a node 
can contribute to multiple events, we ensure not to include duplicates in the influ-
enced node set. Note that to handle attribute changes of isolated nodes, i.e., nodes 
not involved in any change on network topology, we map the corresponding event as 
a particular self-loop and add the node and its neighborhood to I t.

Because only incremental meta-paths on changed nodes are computed, and catego-
rization is done based on look-ups of sparse matrices, the proposed algorithm has 
been shown to be effective in practice, compared to training on the entire network. 
We elaborate on this aspect in “Experimental evaluation” Section.

Update of the memory buffer

Algorithm 3 Update of the experience memory buffer.

To update the memory buffer Bt , we detect the most relevant nodes for classification 
using a Captum-based explainer, able to identify crucial subgraph structures and node 
features influencing GNN predictions. Employing the Integrated Gradients algorithm 
(Sundararajan et al. 2017) for multi-instance explanations, we assess each input fea-
ture’s contribution to the model output and identify nodes with major impact on gra-
dient (Algorithm 3).

Integrated Gradients is a principled approach that satisfies several desirable prop-
erties for feature attribution, including completeness—the sum of the attributions 
exactly accounts for the difference in the model’s output between the actual input and 
the baseline—and sensitivity—small variations in the input features lead to propor-
tionally small changes in the attributions. Specifically, the Integrated Gradients algo-
rithm comprises several steps:

• Baseline selection: Choose a baseline or reference point as a point in the input space 
with known or neutral feature values.
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• Path construction: Define a path from the baseline to the input data point, being a 
straight line in the input space.

• Gradient calculation: Compute the gradient of the model’s output with respect to 
the input features at multiple points along the constructed path, by taking the partial 
derivative of the model’s output with respect to each input feature.

• Integration: Integrate the computed gradients along the path, using the trapezoidal 
rule or a more sophisticated method. The result is a set of values, each representing 
the accumulated effect of a specific feature along the path.

• Attribution calculation: Multiply the integrated gradients by the difference between 
the input and baseline at each point along the path and sum these values, yielding the 
attribution of each feature to the model’s output.

• Scaling: Scale the attributions by the difference between the baseline and the actual 
input, helping ensure that the attributions are meaningful and consistent across dif-
ferent inputs.

In the process, scores are assigned to each feature of each node. We determine the node-
level score by summing along the feature dimension, i.e., by aggregating the contribu-
tions of all its features. Subsequently, we compute the cumulative contributions of the 
top-k nodes for each node type, with k being a given constant. This computation results 
in the determination of the percentage of nodes for each type a ∈ A to be stored in the 
experience memory buffer. Bt will store the top-ka nodes for each node type a, i.e., the 
nodes of type a with the most substantial impact on the gradient. We point out that the 
most frequent type in the memory buffer does not necessarily correspond to the target 
type and can change at each new computation.

Note that the update of the experience memory buffer to be replayed at next times-
tamp can be performed at any time while waiting for the new batch of events. Differ-
ent buffer sizes according to different top-k thresholds were tested in our experimental 
evaluation (cf. “Experimental evaluation” Section).

Computational complexity aspects

In this section, we discuss the computational complexity of DyHANE. In our analy-
sis, we assume network evolution at discrete time, i.e., a set of deferred timestamps 
{t1, t2, . . . , tT } corresponding to as many sets of events determining changes in network 
topology and/or in node attributes (cf. “Preliminaries” Section).

We assume sparse graphs (both the initial network G0 and each network increment 
�Gt ), and dense content-features of nodes. We also make the reasonable assump-
tion that each increment is significantly smaller with respect to the network size, i.e., 
|E t

c | ≪ |E t | and |I t | ≪ |V t | . We recall that the size of node embeddings is equal to d, with 
d ≪ |V t | , and that the training set is T t = I t

⋃
Bt−1 , with |Bt−1| ≪ |I t |.

In the following, we delve into the time computational aspects of the proposed 
approach, then we analyze the memory space required between two consecutive updates 
and for storing intermediate representations.
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Time complexity

The time complexity analysis of DyHANE can be divided according to the three main 
steps of Algorithm 1, namely the detection of the influenced node set (Algorithm 2), 
the update of the GNN module, and the update of the memory buffer.

Detection of  the  influenced node set Algorithm  2 requires, for each event (edge) 
e ∈ E t

c  , the generation of all instances for each meta-path type crossing the edge and 
connecting nodes of target type, being the most expensive operation. Given an edge 
of type r, generating all instances for a certain meta-path type σm crossing r costs 
∏

r̂∈Rσm−r
|Er̂ | , with Rσm−r denoting all the edge types except for (the first) r crossed by 

the k-meta-path type. The number of products is thus equal to the length of the meta-
path type minus 2. Since these computations can be carried out independently, and 
hence can be parallelized, the time cost is dominated by the longest meta-path type, 
i.e., O(max(len(σ1), len(σ2), . . . , len(σM)) . To summarize, the time cost of the detection 
of the influenced node set is O(|E t

c | × |E t−1
r̃

|len(σm̃)−2) , with r̃ = maxr∈R (|E
t−1
r |) and σm̃ 

being the meta-path type of maximum length. For each identified meta-path instance, 
a lookup at the corresponding meta-path adjacency matrix is required to check if the 
pair of terminal nodes already exists. We assume the worst case in terms of number 
of computations, i.e., all possible meta-path instances generated and all node pairs 
checked; nonetheless, in practical scenarios, the most informative meta-paths are usu-
ally few and of short length (cf. “Preliminaries” Section).

Update of the GNN module The time complexity of a GNN is typically determined by 
the feature transformation step, the neighborhood aggregation (message passing) step, 
and architectural aspects of the neural network such as the number of layers and, in a 
GAT, the number of attention heads. We denote with ET t the set of edges of the subgraph 
induced by the nodes in T t . Assuming each node’s attention mechanism requires com-
putation time linear in the number of neighboring nodes, the time complexity of message 
passing for each node can be expressed as O(maxdeg × d) , where maxdeg is the maximum 
node degree and d is the dimension of the input feature vector for each node. Consider-
ing all nodes, it results in O(|T t | ×maxdeg × d) . In the heterogeneous case, having the 
same attention mechanism for each relation r, the time complexity is dominated by the 
most abundant relationship r∗ = maxr∈R (|ET t

r
|) . The computational complexity with a 

single attention head in a general GAT is O(|Vr |d
2 + |Er |d) (Brody et al. 2021), where Vr 

is the set of nodes connected through the edges in Er . The first term concerns the feature 
transformation step of GATv2, while the second term corresponds to the cost of calcu-
lating a general attention function, which can be parallelized. In the case of Q attention 
heads, both the first and the second terms are multiplied by a factor of Q, where the differ-
ent heads can still be parallelized. The time cost of our heterogeneous incremental GAT 
module is hence O(|Tr∗ | × d2 + |ETr∗ | × d) . We note that for the same GNN architecture, 
the number of training iterations required for convergence usually decreases when train-
ing on a smaller subset of the graph, since the model learns from fewer examples.

Update of the memory buffer In our setting, the detection of the most relevant nodes 
for classification to be stored as experience replay is accomplished by the Captum-
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based explainer on the GNN model. The time cost of the explainer accounts for the 
model evaluation and the Integrated Gradients calculation. The model evaluation time 
is linear with respect to the size of the input graph, i.e., O(|T t |) . The time cost of the 
Integrated Gradients calculation also depends on the size of the input graph scaled on 
the number of steps in the integration process ( s = 50 by default), i.e., O(|T t | × s) . This 
is hence the dominating term of the time cost of the explainer.

Once obtained the output score for each node, we sort the output scores indepen-
dently for each node type, which is O(|T t

ã | × log |T t
ã |) , with T t

ã
 denoting the nodes of 

the most abundant type ã ∈ A . This operation is hence dominated by the type with more 
nodes. The computation of the relative importance of the top-k nodes for a node type 
(with k shared by all node types and timestamps) is O(k) , since it is the sum of the top-k 
scores for that type, and is negligible given k ≪ |T t

ã |, ∀a ∈ A . Analogously, selecting the 
top-ka nodes for each node type on the sorted scores has a time complexity of O(ka) , 
which is negligible given ka ≪ |T t

ã |∀a ∈ A . The total time cost of the update of the mem-
ory buffer is |T t | × s + |T t

ã | × log |T t
ã |

By summing the above contributions, the overall time cost of DyHANE is 
O((|E t

c | × |E t−1
r̃

|len(σm̃)−2)+ (|Tr∗ | × d2 + |ETr∗
| × d))+ (|T t | + |T t | × s + |T t

ã
| × log |T t

ã
|)  , 

where, we recall that, E t
c is the set of events (changed edges) at current time, E t−1

r̃  is the 
set of edges of Gt−1 of type r̃ , with r̃ being maxr∈R (|E

t−1
r |) , σm̃ is the meta-path type of 

maximum length, Tr∗ is the set of nodes of training set connected via the edges in Er∗ , 
with r∗ being maxr∈R (|ET t

r
|) , T t is the training set at current time, and T t

ã  is the subset of 
nodes of current training set of type ã ∈ A , with ã being maxa∈A (|T t

a |).
It can be noticed that the total time cost of the proposed approach, at each timestamp, 

is dominated by the detection of nodes affected by changes (Algorithm 2) and the train-
ing of the GNN module. The memory buffer update, beside being a computationally 
lighter operation, can be performed downstream of classification at any time while wait-
ing for the next increment, exploiting knowledge of the network architecture and stored 
parameters for subsequent model initialization.

Space complexity

As concerns the space complexity, the memory requirement is mainly given by the stor-
age of the node attributes ( |V t | × d ), the edges E t , the learned parameters θ t—including 
the weights associated with the attention mechanism and any other learnable param-
eters in the model—and the meta-path adjacency matrices A adjt−1

σm
 for all meta-path 

types σm ∈ M connecting target node types ( |Va| × |Va| × |M| ), which are stored for 
the next increment. A fixed storage space is devoted to the indices of the nodes included 
in the memory buffer.

Algorithms 2 and 3, as well as the GAT, require additional space to store intermedi-
ate representations. Algorithm  2 needs to store, for each event (edge), all meta-path 
instances crossing that edge. During training and inference, GAT stores intermediate 
representations of nodes and attention weights, whose space complexity depends on 
factors such as the size of the graph and the number of layers in the model (2 in our 
case). Algorithm 3 needs to store the GAT model as input of the Captum explainer, and 
subsequently the output score for each node, and the top-k indices and scores, resulting 
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in O(|T | +
∑

a∈A ka) , where the first term is the cost for storing the output scores and 
the second term is the cost for storing the top-k indices and scores for each node type, 
assuming each index and score is stored using a constant amount of memory.

Experimental evaluation
In this section, we describe the experimental evaluation of our framework. Our main 
goal is to assess the effectiveness of DyHANE with respect to the Retrained and Online 
approaches, showing that the proposed heterogeneous incremental GNN model strikes 
a satisfying balance between the performance achieved by Retrained GNNs, in terms of 
accuracy in classifying changed and unchanged nodes, and by Online GNNs, in terms of 
efficient incorporation of new knowledge.

“Data” Section introduces the data, “Advantage of HINs” Section discusses the advan-
tages offered by HIN models, “Competing methods” Section presents the compet-
ing methods, “Experimental settings” Section discusses the experimental settings, and 
“Results” Section describes the main experimental results.

Data

Our heterogeneous dataset is a collaboration-citation-affiliation network comprising 
3 different node types, i.e., Author (A), Paper (P) and Institution (I), and 3× 2 relation 
types, i.e., “A writes P” (A–P), “P cites P” (P–P), “A is affiliated with I” (A–I), and their 
counterparts, as shown in Fig. 2. We selected A as target node type, towards which we 
built 3 different meta-paths: co-autorship (A–P–A), citation (A–P–P–A) and affilia-
tion (A–I–A), i.e., we are interested in pairs of authors who wrote the same paper, or 
one cited the other, or have the same affiliation. Table 1 shows the dataset statistics 
in terms of number of nodes, number of edges and number of meta-path instances, 
with focus on the last increment. Table  2 provides more insights about centrality, 

Fig. 2 Network schema of the proposed collaboration—citation—affiliation HIN

Table 1 Dataset statistics, in terms of no. of nodes, edges and meta-path instances, with focus on 
the last increment (2022)

2019–2022 2019–2021 2022

# Nodes Authors 15397 13116 2281

Papers 10174 8642 1532

Institutions 1831 1612 219

# Edges A-P 18768 16020 2748

A-I 4893 4181 712

P-P 192 113 79

# Meta-paths A–P–A (w) 65687 57736 7951

A–I–A (w) 25567 18507 7060

A–P–P–A (w) 587 302 285
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connectivity, path-based and mesoscopic measures. We underline that since there 
are no specific libraries for computing the statistics of multi-types of nodes and rela-
tionships, we derived from the heterogeneous graph several subgraphs (bipartite, 
weighted, directed and undirected). For each measure we report the specific subgraph 
on which it is computed.

We built our dataset from OpenAlex (Priem et al. 2022) by a combination of paper 
attributes, including the language (’en’), the type (’journal article’ or ’proceedings-
article’ or ’book’), publication year >= 2019 and ’Computer science’ as concept with 
score >= 0.5 , from which we derived the connected entities. We used the year as our 
time interval, and thus examine 4 time intervals, or rather 3 increments, from 2019 to 
2022.

Each node type is associated with categorical, numeric, and/or textual attributes. 
Author attributes include full name, impact factor, h-index and i10-index, number 
of published papers, and number of received citations. Institution attributes include 
name, country, and type (e.g., education, company, or nonprofit). For papers, in addi-
tion to information used as a filter for scraping, the title, the location (e.g., the journal 
or book title), the number of citations per year, the full abstract, and the weighted 
list of relevant concepts are provided. For attribute encoding, we employed one-hot 

Table 2 Centrality, connectivity, path-based and mesoscopic measures of our dataset computed on 
different subgraphs. Specifically, G_AP and G_AI are bipartite graphs (with A and P, A and I resp., as 
node types). G_A is the inferred homogeneous directed unweighted graph, corresponding to the 
unique meta-path-based graph comprising all meta-paths. All other graphs are variant of G_A: w 
denotes the addition of edge weights, attr denotes the addition of numeric attributes for node type 
A, and und denotes the removal of edge direction. The * denotes that the calculation is performed 
w.r.t. the node of target type A, either in the bipartite or homogeneous graph

Measure Value Graph

Average in-degree from P * 1.22 G_AP

Average in-degree from I * 0.26 G_AI

Average in-degree from A* 3.61 G_A

Average weighted in-degree from A* 4.17 G_A_w

Degree assortativity 0.97 G_A_w

Attribute assortativity (label) 0.39 G_A_attr

Attribute assortativity (n_works) 0.09 G_A_attr

Attribute assortativity (n_cit) 0.15 G_A_attr

Attribute assortativity (impact_factor) 0.18 G_A_attr

Attribute assortativity (h_index) 0.16 G_A_attr

Attribute assortativity (i10_index) 0.18 G_A_attr

Transitivity 0.96 G_A

Clustering coefficient 0.65 G_A

Density 0.000563 G_A

Average path length largest CC 13.01 (897 nodes) G_A_und

Diameter largest CC 33 (897 nodes) G_A_und

# Strongly connected components 2355 G_A

# Weakly connected components 2309 G_A

# Communities 2769 - 2327 G_A - G_A_und

Modularity 0.93 - 0.97 G_A - G_A_und
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encoding for categorical attributes, feature scaling for numeric attributes and Sen-
tenceBERT (Reimers and Gurevych 2019) (with all-MiniLM-L6-v2 as pretrained 
model) for text attributes; since the max sequence length is set to 256, we split long 
texts (such as abstracts) into chunks, encoded individual chunks and computed their 
mean. All node types have their attribute vectors of different sizes. Note that our 
dataset contains a mixture of static and dynamic attributes; for instance, the number 
of published works or the number of citations may vary each year.

We validated the proposed framework on a multi-class classification task, where the 
class attribute corresponds to the authors’ first concept (i.e., main area of expertise), 
and the labels are 8 subfields of ‘Computer science (CS)’: ‘CS.Economics and Business’ 
(0),‘CS.Engineering’ (1), ‘CS.Mathematics’ (2), ‘CS.Natural/Earth science and Medicine’ 
(3), ‘CS.Philosophy and Art’ (4), ‘CS.Physics’ (5), ‘CS.Political science’ (6) and ‘CS.Psy-
chology, CS.Sociology and History’ (7). The derivation of the classes exploited the Ope-
nAlex 6-level hierarchy of concepts, which is a modified version of the tree structure 
proposed by Shen et al. (2018), and the ‘wikidata’ attribute, which is the link to the asso-
ciated Wikipedia page. The distribution of classes for each of the 4 years is shown in 
Fig. 3.

Fig. 3 Distribution of classes for each of the 4 years. The label mapping is as follows: 0: ‘Economics and 
Business’, 1: ‘Engineering’, 2: ‘Mathematics’, 3: ‘Natural/Earth Science and Medicine’, 4: ‘Philosophy and Art’, 5: 
‘Physics’, 6: ‘Political science’, 7: ‘Psychology, Sociology and History’
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Advantage of HINs

Network models, particularly heterogeneous networks, offer a holistic approach that 
exploits the interconnectedness of academic entities and their features, thus enabling 
more robust and informative predictions. With the aim of classifying authors’ primary 
fields of study, we investigated different models by progressively enriching the feature 
space available for classification, thereby enhancing predictive accuracy. For each model, 
we conducted five independent runs for 500 epochs each on the entire dataset spanning 
the years 2019–2022, with training, validation and test sets comprising the same authors 
(70%, 15% and 15% split, respectively). Table 3 reports the mean and standard deviation 
values for micro F1-score, macro F1-score, weighted F1-score, and ROC-AUC.

Initially, we examined the results of classification based solely on author attributes, 
excluding any structural information derived from their relationships. We trained a sim-
ple MLP model with one hidden layer using the Adam optimization algorithm (Kingma 
and Ba 2017) with full batch size and learning rate set to 0.01. Our findings revealed 
that author attributes alone were inadequate for effective classification. We observed a 
marginal enhancement over a dummy model—representing completely random classifi-
cation aligned with class distribution—particularly in the metrics accommodating class 
imbalance.

Subsequently, we incorporated structural information by modeling the data using a 
two-layer GAT over a homogeneous network, with Adam optimization algorithm and 
learning rate equal to 0.01. This network featured a single node type (Author) and a sin-
gle relationship type, wherein a link exists between two authors if they are co-authors, 
affiliated with the same institution, or one cited the other. Table 3 shows a substantial 
increase in performance, justifying the adoption of a graph structure-based model.

Nevertheless, the proposed model still overlooks the various semantics inherent in 
relationships, each contributing distinctively to the classification task. Consequently, 
we explored a second network model—a first HIN model, following the definition 
|A| + |R| > 2—maintaining authors as unique node type but distinguishing between the 
3 relationship types. We kept the same optimization function and hyperparameters as 
the homogeneous model, while making the architecture explicitly discerning the con-
tribution of different types of relationships. This enrichment led to a further perfor-
mance improvement, although it neglected information embedded in other node types, 

Table 3 Comparison of different models trained on the entire dataset spanning the years from 2019 
to 2022 according to multiple evaluation metrics. The first column designates both the architecture 
and dataset employed. The best results are highlighted in bold, the second best are underlined

Model F1‑micro F1‑macro F1‑weighted ROC‑AUC 

MLP on only A-type features 0.145 ± 0.000 0.036 ± 0.000 0.042 ± 0.000 0.515 ± 0.000

GAT on homogeneous net with A-type 
nodes

0.339 ± 0.001 0.332 ± 0.001 0.337 ± 0.001 0.701 ± 0.001

GAT on heterogeneous net with A-type 
nodes

0.560 ± 0.003 0.553 ± 0.002 0.558 ±  0.002 0.698 ± 0.002

GAT on heterogeneous net with A-, P- and 
I-type nodes

0.742 ± 0.006 0.735 ± 0.006 0.742 ± 0.006 0.956 ± 0.002
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specifically Papers and Institutions. The best results are achieved by a HIN model—an 
enriched HIN model, following the definition |A| > 2 & |R| > 2 which featured 3 node 
types, 3 edge types, and 3 meta-path types, as outlined in the “Data” Section. The opti-
mization algorithm and hyperparameters are the same as the previous model.

The semantic richness resulting from modeling multiple relationships and more spe-
cifically multiple node types, along with their specific information content, proved to be 
beneficial for the given task. As a consequence, we shall focus our study on graph con-
tinual learning on HINs using the latest and richest proposed model of heterogeneous 
GAT as an upper bound of our incremental model.

Competing methods

As we previously discussed (cf. “Introduction” and “Related work” Sections), direct com-
petitors for DyHANE in GNN-based continual learning on HINs are missing or unable 
to accommodate dynamic attributes.

Having discussed the benefits offered by network models with multiple node and edge 
types, we compared our proposed incremental model with two baselines, the Retrained 
and Online models, on our multi-class classification task to assess the effectiveness and 
efficiency of the proposed approach. More specifically, we trained DyHANE at each 
timestamp on T t = I t

⋃
Bt−1 , i.e., on a training set comprising the detected nodes 

affected by changes and the nodes stored in the experience buffer, and compared it with 
the following methods:

• RetrainedGNN, having the same architecture as DyHANE and T t = V t , i.e., trained 
on all nodes existing in the network at the given timestamp;

• OnlineGNN, having the same architecture as DyHANE and T t = V t − V t−1 , i.e., 
trained on changed nodes only.

The two baselines employ the same GNN architecture as the proposed approach and 
reflect an upper bound in performance and execution time, respectively.

Experimental settings

We conducted our experiments on a Docker VM with 1x3090 GPU, 128GB of RAM, 
and 64 dedicated cores, on a 2x56-core Intel(R) Xeon(R) Gold 6258R CPU, with 256GB 
RAM and two NVIDIA GeForce RTX3090s, and OS Ubuntu Linux 22.04 LTS.

Although our model can handle different attribute vector sizes for different node 
types, we performed dimensionality reduction via Principal Component Analysis 
(Pearson 1901) on the attribute vectors and set all node dimensions to 128. As previ-
ously mentioned, we used a GATv2 (Brody et al. 2021) architecture as our GNN model 
for all experiments. Specifically, we implemented a two-layer GAT with hidden chan-
nels dimension set to 64 and out channel dimension set to 8 as the number of classes in 
our dataset (cf. “Data” Section). We employed a weighted cross entropy loss function, 
which addresses the class imbalance by assigning higher weights to underrepresented 
classes during the training procedure. We trained the model using the Adam optimi-
zation algorithm with full batch size, for 500 epochs for 5 independent runs, and we 
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set the optimal hyperparameters for the learning process via grid search algorithm in 
the range of {0.05, 0.01, 0.005, 0.001} for the learning rate, {0.005, 0.001, 0.0005, 0.0001} 
for the weight decay and {0.2, 0.3, 0.4, 0.5, 0.6, 0.7} for the dropout rate in combination 
with different configurations of the memory buffer. We carried out a grid search over 
{256, 512, 768, 1024, 2048} for the buffer size |Bt| and tested two different buffer composi-
tions, storing the experience nodes uniformly w.r.t. their type or according to the impor-
tance of their type. Regarding the latter case, for the update of the memory buffer Bt , we 
employed top-k = 64 nodes, for each type, to compute the type importance and select 
the number of nodes of that type to be stored as experience (cf. “Update of the memory 
buffer” Section). We found the best configuration as that corresponding to 0.01 as learn-
ing rate, 0.0001 as weight decay, 0.3 as dropout, and buffer size equal to 768 with differ-
ent rates of nodes for each type summing to 1 (0.125 A, 0.77 P, 0.105 I).

Results

We organize the presentation of our experimental results into four parts. We first com-
pare our best model (cf. “Experimental settings” Section)—hereinafter referred to as 
DyHANEB768—with the two baselines in two different scenarios, followed by a sensi-
tivity analysis of the (hyper)parameters of DyHANEB768 . We then delve into different 
configurations of our framework, focusing on different sizes and compositions of the 
memory buffer and performing an ablation study of the memory buffer. Finally, we dis-
cuss general remarks on our framework variants.

Comparison with baselines

For a fair and meaningful comparison, we compare the results obtained by our best 
model and the baselines in two different scenarios, corresponding to two different test 
sets equal for all models:

• ‘C’: test set consisting only of changed nodes, corresponding to the Online model’s 
test set;

• ‘C+U’: test set consisting of a set of both changed and unchanged nodes, selecting a 
subset of nodes that were neither identified by our algorithms as nodes affected by 
changes (Algorithm 2) nor as experience to be stored in the buffer (Algorithm 3).

In the first scenario, we assess the effectiveness of our method to learn new patterns; in 
the second scenario, we assess the capacity of our method to retain unchanged patterns 
while integrating new ones.

It should be noted that, in both scenarios, the changed nodes in the test set are new 
nodes of the last increment, e.g., they are 2022 nodes not existing in 2019-2021; the 
unchanged nodes are nodes existing before the last increment and not modified based 
on events of 2022. Furthermore, we examined the behavior of incremental models over 
multiple increments, i.e., 2019–2020, 2020–2021, and 2021–2022, to investigate perfor-
mance degradation under sequential (continuous) application of the models. We show 
the results for different scenarios and number of increments under multiple evalua-
tion metrics in Table  4, specifying the total execution time for each model. The total 
execution time corresponds solely to training time for baselines, while for our model it 
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comprises both the detection of nodes affected by changes and training time. Time (in 
seconds) is the average over 5 independent runs of the model on a single increment; in 
the case of multiple increments, it is an average over all increments.

Comparing the overall performance of each model in the two different scenarios, we 
note that, as evidenced in Table  4, only DyHANEB768 improves performance on the 
‘C+U’ scenario, i.e., when testing on a sample comprising both changed and unchanged 
nodes; the Online model fails to make correct predictions for unchanged nodes, while 
apparently the Retrained model suffers from the reduction of its training set.

To gain a comprehensive understanding of models’ performances, we consider multi-
ple evaluation metrics, including F1 measures and Area Under the Receiver Operating 
Characteristic Curve (ROC-AUC), which provides a summary measure of the model’s 
ability to rank instances. A high ROC-AUC suggests good discrimination ability, while a 
lower F1-score is related to class imbalance; this applies especially to the macro-F1 score 
which treats all classes equally. Table 4, especially F1-macro exhibiting the lowest values 
for all models in each scenario, can be explained based on the imbalance of our dataset, 
which features unbalanced increments and is not constrained to a constant number of 
changes over time.

Our framework always achieves worse performance w.r.t. the Retrained model, due to 
the smaller size of the training set and the higher class imbalance at each increment. The 
weakened difference between the ROC-AUC values, w.r.t. the difference in F1-measures, 
confirms this hypothesis. Simultaneously, we observe to be more than twice faster in 
terms of execution time, considering that we include the calculation of the influenced 
node set in the elapsed time value.

On the contrary, DyHANE significantly outperform the Online GNN model in com-
parable time. We spot that it achieves the lowest performance on both scenarios, prob-
ably due to the smaller amount of data. Specifically, it dramatically underperforms when 

Table 4 Comparison with baselines using the same test set; scenario ‘C’ refers to the test set 
comprising only changed nodes, scenario ‘C+U’ refers to the test set comprising both changed 
and unchanged nodes. Incremental models are tested after 1 and 3 network increment(s). Time is 
expressed in seconds; for  DyHANEB768, it consists of both the detection of nodes affected by changes 
and training time; for the baselines it corresponds solely to training time. The best results are 
highlighted in bold, the second best are underlined

Scen. #Incr. Model F1‑micro F1‑macro F1‑weighted ROC‑AUC Time

‘C’ – RetrainedGNN 0.742 ± 0.006 0.735 ± 0.006 0.742 ± 0.006 0.956 ± 0.002 159.9

1 OnlineGNN 0.431 ± 0.001 0.422 ± 0.001 0.429 ± 0.001 0.692 ± 0.001 65.5

3 OnlineGNN 0.398 ± 0.001 0.386 ± 0.001 0.397 ± 0.001 0.651 ± 0.001  65.6

1 DyHANEB768 0.664 ± 0.001 0.659 ± 0.001 0.664 ± 0.001 0.932 ± 0.001 78.9

3 DyHANEB768 0.661 ± 0.001 0.655 ± 0.001 0.660 ± 0.002 0.918 ± 0.001  80.0

‘C+U’ – RetrainedGNN 0.712 ± 0.006 0.709 ± 0.006 0.712 ± 0.006 0.953 ± 0.003 159.9

1 OnlineGNN 0.285 ± 0.004 0.277 ± 0.003 0.281 ± 0.003 0.645 ± 0.002 65.6

3 OnlineGNN 0.259 ± 0.004 0.252 ± 0.003 0.256 ± 0.003 0.592 ± 0.003 65.6

1 DyHANEB768 0.676 ± 0.001 0.671 ± 0.001 0.676 ± 0.001 0.940 ± 0.001 78.9

3 DyHANEB768 0.674 ± 0.001 0.669 ± 0.001 0.674 ±0.001 0.937 ± 0.001 79.4
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tested on unchanged nodes, demonstrating the inadequacy of only initializing the GNN 
parameters to retain the knowledge of the past network.

We specify that the generation of the influenced node set I t at each new timestamp 
requires a maximum of 8.0 seconds. As previously pointed out (cf. “Identification of 
influenced nodes” and “Computational complexity aspects” Sections), the identification 
of nodes affected by change relies on the calculation of incremental meta-paths. Meta-
path processing occurs in parallel, and the longest meta-path type in our dataset is A–P–
P–A with length four, thus requiring the Cartesian product between two (sub)sets of 
edges. More specifically, if the event to be processed is an edge of type A–P, we inter-
sect it with all of type P–P and then with all of type A–P; if the event to be processed 
is of type P–P, we intersect it twice with all of type A–P. We should also consider that 
authors typically work in groups and not alone, so we are unlikely to reach the worst 
case of checking all pairs of edges. The resuming time of the memory buffer Bt−1 and the 
parameters θ t−1 learned at the previous timestamp is negligible. Moreover, it is notewor-
thy that the computation of Bt−1 with the Explainer (cf. “Update of the memory buffer” 
and “Computational complexity aspects” Sections) consistently concludes within a max-
imum time frame of 9.7 s.

We note that the execution time of our model in the case of multiple increments 
increases slightly. Recalling that the execution time reported in Table  4 is the average 
over the three increments and excludes the update of the memory buffer (which is com-
puted while waiting for the next increment), the difference is due to processing sev-
eral times, i.e., in multiple increments, some of the edges, and not just once as in the 
single-increment case. From the perspective of expressiveness, we notice only a slight 
degradation of the values in the case of multiple increments, which demonstrates the 
effectiveness of the proposed approach, especially in updating Bt from Bt−1

⋃
I t , with 

|Bt−1
⋃
I t | ≪ |Gt | . OnlineGNN, conversely to our model, is significantly affected by 

multiple increments.
Finally, we observe remarkable stability of DyHANEB768 with respect to the baselines, 

as reflected by the low standard deviation in comparison with competitors.
Our proposed framework thus emerges as a promising trade-off between expressive-

ness and computational efficiency, positioning itself as a potential candidate for applica-
tions with limited or fixed computational budget. Achieving comparable performance 
w.r.t. our evaluation metrics on both scenarios, i.e., on both testing sets, we can assess 
that using the Explainer to keep the most important nodes with the experience reply 
strategy is effective in retain previous knowledge and that the proposed strategy to detect 
changes leveraging the semantics of meta-paths helps in integrate knew knowledge.

Analysis of the DyHANE variants

We investigated multiple variants of our model, differing in the size of the memory 
buffer |Bt | , to gain deeper insights into its impact on our node classification task. More 
precisely, we conducted an ablation study by removing the memory buffer (equivalently, 
buffer size equal to 0), and then floated the size in the set {256, 512, 768, 1024, 2048} . 
The specific size for each model can be easily identified in the subscript appended to 
its name. For each buffer size, we experimented two different compositions: number of 
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nodes for each type based on type importance (cf. Algorithm 3) and same number of 
nodes for each type. In order to distinguish models with the same memory buffer size 
but different compositions, we marked with f the models using a uniform composition 
for different types, where f stands for fixed-size of node types as opposed to dynamic 
computation of type importance. To summarize:

• DyHANEB0 , with T t = I t , i.e., trained only on the set of nodes directly or indirectly 
affected by changes

• DyHANEB256 , with T t = I t
⋃
Bt−1 and |Bt−1| = 256 , i.e., trained on the set of 

nodes affected by changes and experience nodes stored in a buffer of cardinality 
equal to 256 with floating composition w.r.t. different node types

• DyHANEB256f  , with T t = I t
⋃
Bt−1 and |Bt−1| = 256 and |AB| = |PB| = |IB| , i.e., 

trained on the set of nodes affected by changes and experience nodes stored in a 
buffer of cardinality equal to 256 with uniform composition w.r.t. different node 
types

• DyHANEB512 , with T t = I t
⋃
Bt−1 and |Bt−1| = 512 , i.e., trained on the set of 

nodes affected by changes and experience nodes stored in a buffer of cardinality 
equal to 512 with floating composition w.r.t. different node types

• DyHANEB512f  , with T t = I t
⋃
Bt−1 and |Bt−1| = 512 and |AB| = |PB| = |IB| , i.e., 

trained on the set of nodes affected by changes and experience nodes stored in a 
buffer of cardinality equal to 512 with uniform composition w.r.t. different node 
types

• DyHANEB768 , with T t = I t
⋃
Bt−1 and |Bt−1| = 768 , i.e., trained on the set of 

nodes affected by changes and experience nodes stored in a buffer of cardinality 
equal to 768 with floating composition w.r.t. different node types

• DyHANEB768f  , with T t = I t
⋃
Bt−1 and |Bt−1| = 768 and |AB| = |PB| = |IB| , i.e., 

trained on the set of nodes affected by changes and experience nodes stored in a 
buffer of cardinality equal to 768 with uniform composition w.r.t. different node 
types

• DyHANEB1024 , with T t = I t
⋃
Bt−1 and |Bt−1| = 1024 , i.e., trained on the set of 

nodes affected by changes and experience nodes stored in a buffer of cardinality 
equal to 1024 with floating composition w.r.t. different node types

• DyHANEB1024f  , with T t = I t
⋃
Bt−1 and |Bt−1| = 1024 and |AB| = |PB| = |IB| , 

i.e., trained on the set of nodes affected by changes and experience nodes stored in 
a buffer of cardinality equal to 1024 with uniform composition w.r.t. different node 
types

• DyHANEB2048 , with T t = I t
⋃
Bt−1 and |Bt−1| = 2048 , i.e., trained on the set of 

nodes affected by changes and experience nodes stored in a buffer of cardinality 
equal to 2048 with floating composition w.r.t. different node types

• DyHANEB2048f  , with T t = I t
⋃
Bt−1 and |Bt−1| = 2048 and |AB| = |PB| = |IB| , 

i.e., trained on the set of nodes affected by changes and experience nodes stored in 
a buffer of cardinality equal to 2048 with uniform composition w.r.t. different node 
types
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Table 5 provides for each model the total training set cardinality (which is the same 
for two models with equal memory buffer size) and detail for each node type, coupled 
with its execution time. The values refer to the last network increment (2022). We 
supplement the equivalent information for baselines to strengthen the comparison, 

Table 5 Training set size and composition for baselines and variants of DyHANE, coupled with 
their mean execution time on the last network increment. The cardinalities of the training sets 
and running times are in ascending order. The training set discriminates between the different 
node types, (A)uthors, (P)apers and (I)nstitutions, with |T| = |A| + |P| + |I|. The training set of our 
models comprises both the nodes from I ⋃ β. Given the same buffer size, models marked with f 
have a different internal composition but same final training set size as their counterparts. The time 
is in seconds and refers to the best hyperparameters configuration of each model. For our models, 
it includes the detection of nodes affected by changes and the training time. Baselines are at the 
extremes

Model |T| |A| |P| |I| Time (sec)

OnlineGNN 4611 2584 1563 464 65.6

DyHANEB0 5751 3409 1817 525 73.0

DyHANEB256 6007 3441 2014 552 74.4

DyHANEB256f 6007 3495 1902 610 74.4

DyHANEB512 6263 3483 2194 586 75.7

DyHANEB512f 6263 3580 1987 695 75.7

DyHANEB768 6519 3505 2408 606 78.9

DyHANEB768f 6519 3665 2073 781 78.9

DyHANEB1024 6775 3537 2605 633 86.3

DyHANEB1024f 6775 3751 2158 666 86.3

DyHANEB2048 7799 3665 3393 741 95.2

DyHANEB2048f 7799 4022 2499 1208 95.2

RetrainedGNN 27402 15397 10174 1831 159.6

Table 6 Comparison of multiple DyHANE models in the ‘C+U’ scenario, with baselines at the 
extremities. A model is identified by the number shown as subscript in its name which refers to 
the size of the memory buffer, and the suffix f refers to a possible fixed composition of the buffer, 
with equal number of nodes for each type. Time is expressed in seconds and comprises both the 
detection of nodes affected by changes and training time

Model F1‑micro F1‑macro F1‑weighted ROC‑AUC Time

OnlineGNN 0.285 ± 0.004 0.277 ± 0.003 0.281 ± 0.003 0.645 ± 0.002 65.6

DyHANEB0  0.561 ± 0.002  0.554 ± 0.001  0.559 ± 0.002 0.817 ± 0.002 73.0

DyHANEB256f 0.652 ± 0.002 0.644 ± 0.001 0.652 ± 0.001 0.880 ± 0.001 74.4

DyHANEB256 0.663 ± 0.002 0.656 ± 0.002 0.662 ± 0.002 0.891 ± 0.001 74.4

DyHANEB512f 0.665 ± 0.001 0.659 ± 0.001 0.666 ± 0.001 0.896 ± 0.001 75.7

DyHANEB512 0.671 ± 0.002 0.667 ± 0.001 0.671 ± 0.001 0.903 ± 0.001 75.7

DyHANEB768f 0.672 ± 0.002 0.668 ± 0.001 0.672 ± 0.002 0.919 ± 0.001 78.9

DyHANEB768 0.676 ± 0.001 0.671 ± 0.001 0.676 ± 0.001 0.940 ± 0.001 78.9

DyHANEB1024f 0.676 ± 0.001 0.671 ± 0.001 0.677 ± 0.001 0.941 ± 0.002 86.3

DyHANEB1024 0.678 ± 0.001 0.672 ± 0.002 0.678 ± 0.002 0.942 ± 0.001 86.3

DyHANEB2048f 0.680 ± 0.001 0.674 ± 0.001 0.681 ± 0.001 0.944 ± 0.002 95.2

DyHANEB2048 0.683 ± 0.002 0.677 ± 0.002 0.683 ± 0.002 0.949 ± 0.001 95.2

RetrainedGNN 0.712 ± 0.006 0.709 ± 0.006 0.712 ± 0.006 0.956 ± 0.002 159.9
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observing that all our models lie between the two. The table emerges sorted in 
ascending order of training set size and execution time.

Table 5 shows that the node type with the most impact on classifying authors’ pri-
mary field of study is P, although it is not the target node type. This is due to the 
higher information content of Paper attributes, including abstracts. Node type P is 
followed by A and I, respectively, in lower ratio.

To gain deeper insights into the impact of heterogeneous nodes experience replay 
on our node classification task, we conducted a comprehensive assessment involv-
ing all the aforementioned configurations. The evaluation of the multiple variants of 
DyHANE, each under its best configuration, is referred to Table 6.

Table 6 shows a surprising stability in all the results of our models, as indicated by 
the low standard deviation. A low standard deviation typically denotes that the per-
formance of the classifier is consistent across different classes.

We first performed an ablation study, removing the memory buffer from the training 
set, which thereby contains only the nodes affected by changes identified by Algorithm 2. 
We spotted that the model with buffer size equal to 0 records the lowest values among 
our models, but still considerably higher than the Online model. We can thus assess the 
effectiveness of the proposed approach in identifying the subset of nodes significantly 
related to changed nodes.

We then explored different sizes of the memory buffer. We observed that reducing the 
number of experience nodes leads to a degradation in the classification task while speed-
ing up the training process, prompting to consider a trade-off. We spotted a satisfactory 
balance in correspondence to size 768. By increasing the buffer cardinality to 1024, the 
difference in scores is not adequate to justify the observed delay (we recall that a maxi-
mum of 8.0 s is required for the identification of nodes affected by changes); by reducing 
the buffer cardinality to 512, the saved time is not adequate to justify remarkable perfor-
mance degradation for all evaluation metrics. We emphasize that although there are few 
nodes in the buffer, their identification based on Algorithm 3 has proven to be effective 
in selecting meaningful samples.

We noticed that the Explainer is successful also in calculating the importance of the 
contribution of different node types. More specifically, the comparison of pairs of models 
with the same buffer cardinality but different composition, i.e., models with and without 
f, shows that prioritizing one node type over another results in improved performance.

Sensitivity analysis

We performed sensitivity analysis of our main (hyper)parameters to ensure the robust-
ness and reliability of the models, assessing the impact of variations in input parame-
ters on model outputs and providing insights into the relative importance of different 
variables.

We first explored 100 DyHANE configurations varying the size of the memory buffer 
(for short, B_size) and two significant GAT’s hyperparameters: dropout and learning 
rate, with weight decay (also known as L2 regularization) set to 0.0001 in all the experi-
ments (cf. “Experimental settings” Section). The F1-weighted score for each triplet is 
shown in the scatter plot in Fig. 4.
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The combination of the highest learning rate and the highest dropout values (0.05 and 
0.7, resp.) resulted in extremely poor performances, thus we preferred to remove them 
from the plot in order to improve readability. More generally, higher dropouts (0.7, 0.6 
and even 0.5) and learning rates at the extremes (the highest value 0.05 and the lowest 
0.001) lead to poor performance. For each buffer size, the highest scores correspond to 
lower values of dropout (0.3 or 0.4) and learning rate in the range [0.005, 0.01], hinting 
at the opportunity to limit regularization and balance convergence speed and stability 
during training. We recall that our training set at each increment is a subset of the entire 
network and may exhibit new patterns even completely different from previous ones. 
We therefore need low regularization values (both dropout and weight decay) for learn-
ing new patterns, but very low values result in the risk of overfitting, reason why we do 
not explore values below 0.3 for dropout and 0.0001 for weight decay.

We elaborate further on the behavior of single hyperparameters. Our analysis was per-
formed by varying the value of a single parameter at time while maintaining the others 
to our best configuration (cf. “Experimental settings” Section). This involved our main 
(hyper)parameters, i.e., the size of the memory buffer and three significant GAT hyper-
parameters: dropout, learning rate and weight decay. Figure  5 shows the F1-weighted 
score for each combination.

When varying the number of experience nodes (Fig. 5a), we observe small fluctuations 
on F1-weighted values. Indeed, low values of weight decay (specifically, 0.0001) and 
dropout (0.3 and 0.4), and learning rates in the range [0.005, 0.01] exhibited the best per-
formance for all our models.

By varying the dropout (Fig. 5b), we note that performance degrades as the fraction 
of node or edge features set to zero increases during each training iteration, i.e., as the 
dropout increases. This is not always true in GAT-based models, so that the Retrained 

Fig. 4 Scatter plot of 100 DyHANE configurations. Floating the size of the memory buffer, we show the 
F1-weighted score based on dropout and learning rates. Different colors and symbols denote different 
dropout values and learning rates, respectively. The weight decay is set to 0.0001 in all the experiments. For 
visualization reasons, we removed from the plot the values with dropout 0.7 and learning rate 0.05, whose 
performance is below the plot limit
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model uses a dropout of 0.6. This might be due to the reduced size of the training set, 
since higher dropout values with fewer examples may introduce excessive regulariza-
tion, hindering the model’s ability to effectively capture the complex relational structures 
underlying the network.

Concerning the learning rate (Fig. 5c), we identified the optimal values in the range 
[0.005, 0.01], striking a balance between convergence speed and stability during training.

As regards the weight decay (Fig.  5d), we note that performance degrades as large 
weights are more heavily penalized during training, i.e., as the weight decay increases. 
We found the optimal value at 0.0001, a relative low value which enables the model to 
learn complex patterns from the data without being overly constrained by regulariza-
tion. Further decreasing this value may increase the risk of overfitting, since we are deal-
ing with a reduced dataset corresponding to an increment.

Remarks on regularization strategies Note that the number of influenced nodes, vary-
ing at each timestamp, is usually significantly larger than the size of the experience buffer, 
which is instead of fixed size. To cope with the overfitting problem caused by the small 
number of replayed nodes, a commonly used strategy is to add an extra regularization 
term to the loss function to guarantee that the distance between the current and the 

Fig. 5 Sensitivity analysis of our main (hyper)parameters w.r.t. DyHANE best configuration (cf. “Experimental 
settings” Section). The x-axis indicates the investigated parameter, while the y-axis indicates the 
corresponding F1-weighted value. The other parameters are fixed for each barchart
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historical model parameters will not deviate further; more specifically, different impor-
tance is given to different parameters to keep small the changes of GNN parameters that 
are important to the past network while the others can be updated more drastically. We 
found that the Elastic Weight Consolidation (EWC) regularization-based method (Kirk-
patrick et al. 2016) improve performance in all models so, for the sake of model compari-
son, we avoid to integrate any additional regularization term in our current formulation.

Conclusion
Incremental GNNs and HINs represent a widely unexplored field of research. In this 
regard, we presented DyHANE, a GNN-based incremental framework capable of han-
dling multiple types of nodes and relationships in a dynamic scenario. DyHANE adapts 
to changes in network topology and node attributes efficiently, by updating GNN param-
eters and training on a sample of the network. DyHANE is comprised of two main mod-
ules, the one for identifying a reduced set of nodes affected by changes and the other for 
identifying a reduced set of nodes to be used as experience node replay. On a multi-class 
classification task, we demonstrated the advantages of modeling offered by HINs and 
showed the ability of our framework to achieve good performance on both changed and 
unchanged nodes, w.r.t. the GAT retrained on the entire network, in a comparable time 
to online GAT that suffers of performance degradation on unchanged nodes.

As further developments, we are interested in investigating and comparing the results 
obtained in various dynamic scenarios, including a stable distribution of classes, skew, 
abrupt shift, and concept drift. We plan to test DyHANE on new datasets, such as pre-
dicting the primary interest(s) of users in a social network, and on new tasks, like pre-
dicting the number of papers’/authors’ citations, or co-authorship relationships. The 
flexibility of our pipeline will also enable further optimization of the proposed algo-
rithms for detecting nodes affected by changes and experience nodes on heterogeneous 
graphs of growing size.
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