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Abstract 

Importance measures (IMs) in networks are indices that allow the analysis and evalua-
tion of the network components that are most critical to the performance of the net-
work. Such information is useful for a decision-maker as it enables taking actions 
to prevent or improve the performance of the network in the face of changing 
operational events (e.g., the identification of important links that should be hardened 
or made redundant). This paper presents an approach to analyze the relationships 
between the IMs through the use of so-called psychological networks, which estimate 
the characteristics of a new kind of network wherein the “nodes” correspond to IMs 
and the connecting links and their capacities are derived statistically using the IMs 
calculated. Such estimation does not use any a priori information of relationships 
among IMs. The approach proposed in this work defines an equivalence paradigm 
not described previously in the literature between the approach used in psychol-
ogy and the IMs used to measure networks. As a result, the main characteristics 
of the relationships among IMs are derived, such as magnitude, sign, and robustness 
of the selected IMs. An example related to a transportation network and a set of flow-
based IMs illustrates the contribution of psychological networks for understanding 
how the IMs interact.

Keywords: Component importance, Networks, Psychological network analysis, 
Network performance

Introduction
The network theory paradigm has been used with great success to model numerous real 
or natural systems, from electrical power systems, social relationships among people, 
and biological interactions. A network is defined by a set of nodes that interact with each 
other when they are connected through links, such that both nodes and links are known.

Network designers and analysts are often interested in knowing which network com-
ponents, whether nodes or links, may be critical to the performance of the network. For 
example, one may wish to know which component, when taken out of service, causes the 
greatest disturbance in the network. To evaluate this effect, numerous indices or indica-
tors have been defined to quantify the effect of the presence, absence, or degradation of 
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a component in the network. Such indices, referred to as importance measures (IMs), 
often assess different aspects of the network topology such as distance, node neighbor-
hood, node degree, flow, among others (Rocco and Barker 2022).

Most of the studies on the importance of components try to quantify these effects and 
rank components according to the extent of their effect on the system. It is typical in 
these studies that the use of various indicators can produce different hierarchies of com-
ponents, as each indicator analyzes different facets of performance (e.g., one node may 
be especially important to average degree while may not be as important to the mini-
mum shortest path). One way that researchers have used is to seek a consensus between 
the results derived from applying a set of indicators representing different perspectives. 
For example, Almoghathawi et  al. (2017) used a multi-criteria decision analysis tech-
nique to aggregate different importance measures into a single ranking. In this way, it 
is possible to define a single hierarchy in which, depending on the selected aggregation 
method, the preferences of the decision-making entities could be considered. However, 
it is possible that such a consensus cannot be reached, and the decision-makers must 
assess and understand how different IMs may differ and/or “interact” with each other.

The main idea of this paper is not related to the assessment of the importance of 
the components of a network per se but rather to map out the possible interactions 
or dependency relationships among IMs: how the different importance measures are 
related, their magnitude and signs, the importance measures that could be considered 
as relevant, as well as the assessment of the stability and robustness of the estimations 
performed.

At first glance, one might consider assessing the interactions among the perspectives 
offered by different IMs using a correlation analysis, a valuable tool in many research 
scenarios. However, correlation analysis alone may not offer a complete understand-
ing of relationships among variables for several reasons: (i) there could exist complex 
relationships, which may not be uncovered by the linear relationship between variables 
assumed with correlation, (ii) our approach considers multivariate relationships, where 
correlation analysis only captures pairwise associations, missing broader connections, 
and (iii) correlation analysis can suffer from omitted variable bias, as excluding key vari-
ables can result in misleading correlations.

For these reasons, we propose a different approach based on the use of psychological 
networks, or a network analysis of multivariate data supported by network theory that 
has recently been used in psychology studies (e.g., Punzi et  al. 2022, Feng et  al. 2022, 
Solmi et  al. 2020, Borsboom 2017). In this approach, researchers define for a specific 
psychological diagnosis (e.g., an eating disorder) a set of appropriate symptoms to meas-
ure how likely a person is to possess that affliction. To this end, a questionnaire is defined 
with a series of questions aimed at measuring different aspects that are believed to be 
related to the disorder that is being evaluated. These evaluations are generally based on 
the use of a Likert-type ordinal scale. For example, question 25 of the Eating Disorder 
Examination Questionnaire (EDE-Q 6.0) (Fairburn and Beglin 1994) asks “In the past 
four weeks, how dissatisfied have you been with your weight?”. The possible answers range 
from “not at all” to “markedly” on a 7-point Likert scale (Allen and Seaman 2007).

This questionnaire is delivered to a sample, and responses are analyzed to determine 
which questions or symptoms define the nodes of a psychological network (PN) and, 
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with statistical techniques, to determine any relationships between the symptoms, 
including their sign and magnitude. In this way, an undirected weighted network of 
nodes and links is created and subsequently analyzed following the guidelines derived 
from network theory. For example, the symptoms (nodes of the PN) that are the most 
important or links that have the greatest absolute magnitude are evaluated. Such a prob-
lem is different from a classical network assessment. Indeed, in the classical assessment, 
nodes and links (as well as their weights) are known. On the contrary, in the PN, only the 
set of nodes is known whereas the set of edges must be estimated using statistical pro-
cedures (Epskamp et al. 2018). In other words, the characteristics of the PN derived do 
not consider any a priori information on the structure of network (e.g., the relationships 
among IMs) as other approaches require (e.g., statistical latent variable models). Indeed, 
the latter assumes that the covariation between measures occurs due to an underly-
ing unobservable common cause (e.g., Borsboom et  al. 2018), while PNs assume that 
variables causally influence each other, not because they share a latent common cause 
(Epskamp et al. 2018).

The approach proposed in this work seeks to determine the relationship between the 
different measures of importance that apply to a given system, modeled as a network 
G , and how the measures are related to each other. For this purpose, each IM is consid-
ered as a symptom, and therefore a node of the PN that is sought to be generated: each 
IM evaluates a particular aspect of the components of the network G . Given a set of 
IMs, each component in network G is evaluated using each measure. This is equivalent 
to considering each component as being an individual who answers a questionnaire, in 
which the questions evaluate the selected measures of importance.

As such, the similarity between the measures of importance and the symptoms is 
established. The statistical processing of the questionnaire will allow the generation of 
the PN interactions between the measures of importance, for the selected G network 
and its subsequent analysis. To our best knowledge, this is the first time that the statisti-
cal analysis of a set of indices for assessing the importance of components is performed 
using the PN paradigm.

To illustrate the proposed approach, we show the assessment of the flow-importance 
measures proposed by Nicholson et al. (2016) to derive the ranking distribution of the 
importance of the links of a selected network. These measures consider the topology of 
the network as well as the capacity that characterizes each link. An example based on 
three operating conditions of the Colombian transportation network (Rocco et al. 2022) 
is used to illustrate the approach.

The importance and applications of the work presented are reflected in the results 
obtained. Indeed, they reveal the most important relationships among IMs, demon-
strate the presence of negative effects, and suggest to which IMs to devote attention to 
improve network performance in light of varying operating conditions. In addition, the 
comparison of the three estimated PNs allows concluding that there are no differences, 
which could be interpreted as the importance of the components are not affected by the 
operating conditions being analyzed.

In Sect. "Proposed method" some important concepts are presented, and the proposed 
approach is described. In Sect. "Illustrative example: colombian transportation network", 
an example, based on the Colombian transportation network, illustrates the approach. 
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Concluding remarks and areas of future work are discussed in Sect.  "Conclusions and 
future work".

Proposed method
Consider a system under study described by a weighted graph GW = (V ,E,W ) , where 
V  is a set of nodes, E is the set of links connecting the nodes, and W  is a set real num-
bers that represent the capacity of the links in the network. Here, capacity refers to the 
link parameter that indicates the maximum amount of a good or commodity that can be 
transferred between two nodes of the network, such as the number of finished products 
or generated electric power. Capacity is a characteristic that is defined during the plan-
ning of the network.

Nodes are indexed with i = 1, . . . , n; n = |V | . Links and weights are indexed with 
k = 1, . . . ,m;m = |E| . The index of the IMs with which to evaluate the importance of 
nodes is l = 1, . . . , nim , where nim is the number of IMs considered. Matrix EIM defines 
an m× nim matrix of importance measures such that EIMk ,l is the evaluation of IMl for 
link k . Note that the information compiled corresponds to cross-sectional data (i.e., time 
is not considered).

Psychological network analysis of multivariate data

Mentioned previously, EIM defines a matrix of IMs such that EIMk ,l is the evaluation 
of IMl for link k . Such a matrix will be considered as basic information: each row rep-
resents an individual (i.e., a node or a link, as in the example to be discussed) and each 
column represents the assessment of each importance measure. The assessment could 
be presented as real numeric values or by the corresponding rankings. In the latter case, 
values in each column of EIM range from 1 to m . To mimic a psychological question-
naire, matrix EIM could be converted to a questionnaire, by defining a Likert scale of, 
say, five points ranging from 1 = Very Important to 5 = Not Important, though any scale 
could be selected. Using a Likert scale can be driven by factors like the data’s format (e.g., 
data in physical units) or its confidential nature. In such situations, an analyst might 
select to reformat the data to make it more akin to a questionnaire for easier interpre-
tation. In Sect.  "Illustrative example: colombian transportation network", for example, 
we represent the ranking of links in the Colombian network as a Likert scale, offering a 
finely detailed level of granularity. After this transformation, EIMT  will be the “question-
naire” (to use the PN analysis terminology). If the analyst does not make any transforma-
tion, then EIMT = EIM.

The psychological network analysis methodology is based on four steps: (i) build the 
psychological network (i.e., the statistical estimation of the PN structure), (ii) describe 
the characteristics of the PN, (iii) evaluate the stability or robustness of the PN, and (iv) 
if required, compare different PNs.

In this way, the network analysis of multivariate data is a technique that mixes multi-
variate statistics and network assessment procedures to derive the structure of relation-
ships in multivariate data (Borsboom et al. 2021). As a result, we build the structure of 
the PN as a weighted graph P = Vp,Ep,Wp  , where Vp denotes a set of nodes, Ep is the 
set of links connecting nodes, and Wp is a set of weights, real numbers that represent, 
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for example, the partial correlation between nodes. The set of links Ep and the corre-
sponding set of weights Wp will be estimated from EIMT  . Nodes are indexed with 
i = 1, . . . , nim , links and weights are indexed with k = 1, . . . ,mp;mp = |Ep| , and |Ep| is 
the number of links of the PN to be determined.

Network estimation

The network estimation procedure used in the psychology literature is based on the the-
ory of a pairwise Markov random field (PMRF) (Costantini et al. 2015, van Borkulo et al. 
2014). Under this approach, a network has known nodes and the relationship between 
nodes (to be estimated) is quantified with “partial correlation coefficients between two 
nodes after conditioning on all other nodes in the dataset” (Epskamp et al. 2018). For 
example, in a network with three nodes a , b , and c , the estimation process could detect 
the existence of two links (a, b) and (b, c) with weights wab and wbc , positive and nega-
tive, respectively. This suggests that node a has a positive interaction with node b while 
controlling c , while nodes b and c have a negative interaction while controlling a . The 
interactions wab and wbc cannot be described by the rest of nodes in the network (i.e., 
node c and node a , respectively). Additionally, nodes a and c are “conditionally independ-
ent given node b” (Epskamp et al. 2018) (i.e., there exist no partial correlations between 
a and c while controlling b (da Cunha Leme et al 2020)). Note that in the estimated net-
work, based on cross-sectional data, there is no implication of directionality, thus the 
generated network is an undirected weighted network.

An interesting detail in this process is the use of partial correlation coefficients as 
weights associated with links. In fact, many authors consider that the direct use of cor-
relations as weights “do not correct for linear relations that might be due to other vari-
ables” (e.g., Lafit et  al. 2019). Partial correlations are calculated by inverting a proper 
matrix of correlations (e.g., Pearson, polychoric, or polyserial correlation, depending on 
the characteristic of the variables selected (Johal and Rhemtulla 2021)).

It is important to mention that the network estimation requires the determination of 
1
2

[

mp ×
(

mp − 1
)]

 weights and mp threshold parameters. This means that, for example, in a 
network with 15 nodes, there are 120 parameters to be estimated from the data.

Since the quality of the connectivity and weight estimates depends on the size of the data 
set, to derive non-zero weights (i.e., to mitigate the existence of false positives), a regularization 
technique is usually selected during the estimation process. Such a regularization technique is 
the graphical least absolute shrinkage and selection operator (GLASSO) approach (Friedman 
et al. 2008, 2014) that includes a penalty parameter λ that converts small link weights to zero. 
In this way, the regularization by the GLASSO approach produces a parsimonious (or sparse) 
and more interpretable network (Miers et al. 2020).

In general, the optimal selection of λ could be based on the minimization of the 
Extended Bayesian Information Criterion (EBIC) (Chen and Chen 2008). EBIC includes 
a tuning parameter to cope with the complexity of the model (e.g., selecting 0.5 produces 
a conservative approach (Solmi et al. 2020; Epskamp et al. 2018; Fried et al. 2016)).

The network estimation process ends with the visualization of the estimated network. 
To this aim, the Fruchterman-Reingold algorithm (Fruchterman and Reingold 1991) is 
selected as it tends to group nodes with high link weights. We used the software R for 
statistical computing (version 4.2.1, open source, available at https:// www.r- proje ct. 

https://www.r-project.org/
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org/). The network was estimated and visualized using the R-package qgraph (Epskamp 
et al. 2012).

To avoid the inclusion of two nodes with similar correlation patterns, some authors 
(e.g., Jones 2020) suggest using the “goldbricker function” to assess this situation. This 
procedure (implemented in the ‘networktools’ package, Version 1.5.0) uses different 
methods for deciding “if correlation pairs are significantly different” (Jones 2020), given a 
selected p-value threshold.

Network characteristics

An interesting property associated with a network is the ability to quantify the central-
ity of its nodes. Indeed, centrality measures can assess the importance of the nodes for 
determining the dynamics and the structure of the network (da Cunha Leme et al. 2020). 
For example, the betweenness of a node is a centrality index that measures how many 
times the node belongs to the all-pairs shortest paths in the network.

One of the measures that has recently received attention is the expected influence, 
defined as “the summed weight of its edges shared with the remaining nodes in the net-
work” (Robinaugh et al. 2016, Yuan et al. 2022). The measure is especially useful in esti-
mated networks with positive and negative partial correlations (Robinaugh et al. 2016, 
Yuan et al. 2022). The expected coefficient of influence indicates whether a node acti-
vates or deactivates other nodes of the network, depending on the sign of the weights. 
As such, nodes with higher expected influence are considered to be more important 
nodes.

Another common centrality measure often presented is the strength centrality, or “the 
sum of the absolute value of all edges linking to a given node” (Robinaugh et al. 2016). It 
is clear that for a node with exclusively positive edges, the expected influence centrality 
is equal to its strength centrality (Robinaugh et al. 2016). All of the centrality measures 
in this work were estimated by using R-package qgraph (Epskamp et al. 2012).

Stability or robustness of the PN

Mentioned previously, the estimation of the PN characteristics as well the link weights 
are based on a sample. This means that, to properly understand the link weights and the 
centrality measures, we must assess the accuracy and stability of the estimated network 
(Epskamp et al. 2017). To this aim, Epskamp et al. (2017) proposed different techniques 
and resampling procedures (based on the bootstrap technique (Efron 1979)) that can be 
applied to evaluate the precision of the estimated network. One such procedure imple-
mented in the R-package bootnet (Epskamp 2018, Borsboom et al. 2018) is able to derive 
a pseudo-95% confidence interval for link weights. Since the GLASSO procedure is used 
as the estimation tool, the information obtained is basically used to evaluate the accu-
racy of the estimations and is not intended as a zero test (i.e., as a procedure to detect if a 
weight is zero because the confidence interval contains zero). However, the authors also 
propose a bootstrapped difference test to compare if pairs of link weights vary signifi-
cantly from one another (Wei et al. 2021).

In addition, a procedure to quantify the stability of the estimation is also proposed. 
This procedure removes an increasing number of data (subsample) and determines the 
correlation coefficient between the original estimation and the estimation obtained with 

https://www.r-project.org/
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the subsample data. The correlation stability (CS) coefficient quantifies the maximum 
proportion of cases that can be eliminated to retain, with 95% certainty, a correlation 
with the original centrality greater than 0.7 (da Cunha Leme et al. 2020). To interpret 
the differences in centrality, Epskamp et al. (2017) indicate, as a guide, that the CS coef-
ficients should not be less than 0.25 and preferably greater than 0.5 (Solmi et al. 2020).

Network comparison

A decision-maker may be interested in comparing the structure of two or more fitted 
PNs generated by two or more EIMT  data. Mentioned previously, no a priori information 
regarding the relationships among IMs is used. As such, the structure of the PN is deter-
mined only from the data set under analysis. Network comparison is then an interesting 
tool to evaluate the resulting PNs. For example, the analyst could: (i) assess the impor-
tance of the components for a single network under two different set of weights (e.g., 
different operating conditions) modeled as W1 and W2 (i.e., networks GW1 = (V ,E,W1) 
and GW2 = (V ,E,W2) ), (ii) compare the effects of modifications to the set of compo-
nents (e.g., different sets of links GWa = (V ,Ea,Wa) and GWb = (V ,Eb,Wb) , or (iii) 
assess different networks GWa = (Va,Ea,Wa) and GWb = (Vb,Eb,Wb) . In all of these 
cases, a proper set of PNs is generated. As such, comparing two or more PN structures 
means to statistically decide: (i) if the overall structure of the fitted PNs can be consid-
ered different or not, (ii) if the presence of links in each PN is equal, and (iii) which links 
(i.e., weights) can be considered to be different (Jefferies et al. 2022). In our context, the 
comparison among PNs could suggest, for example, that the operating conditions ana-
lyzed affects the importance of the components according to the centrality measures 
described in 2.2.3, or that the modifications to the set of links do not cause any differ-
ence, or that the set of IMs is heterogeneous in the sense that they do not quantify the 
networks in the same way.

To this aim, three tests have been proposed to evaluate the differences in networks 
[van Borkulo et al. 2022]: (i) the global structure test M, which quantifies the differences 
in the distribution of the link weights, (ii) the edge weights test, which evaluates differ-
ences for selected links and is performed if the previous test M gives a significant result, 
and (iii) the global network structure test S, which considers the absolute sum of all the 
edges between groups. In this paper, network test comparisons were performed using 
the R-package NetworkComparisonTest (van Borkulo et al. 2016).

PN assessment process

Figure  1 shows a typical process used to perform the required evaluations to develop 
a PN. Some procedures are optional and depend on the type of evaluation being per-
formed. Here we assume (blue section) that the network to be analyzed and the set of 
IMs have been previously selected, and the corresponding importance assessment is 
already performed such that matrix EIM is available. If required, matrix EIM is trans-
formed to EIMT  (e.g., by defining a proper Likert scale) or otherwise EIMT = EIM . 
From here, steps 2.1.2–2.1.4 (red section) are performed. If network comparisons are 
required, the process defined in Fig.  1 is repeated for each network and step 2.1.5 is 
performed.
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Illustrative example: Colombian transportation network
In this section we present the results of the analysis of multivariate data using the 
approach described in 2.2. The R packages used in the evaluation were executed with the 
default settings, unless indicated. The assessments performed are in line with the guide-
lines suggested by Burger et al. (2022).

Figure 2 shows the topology of the Colombian transportation network with 51 nodes 
and 57 links. Table 1 shows the from-to and base link capacities. This network has been 

Fig. 1 PN assessment process

Fig. 2 The Colombian transportation network
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assessed by Rocco et al. (2022) to quantify the rank robustness of the importance of the 
links under different link capacity scenarios. To this aim, the authors defined a set of 
possible random scenarios of link capacities, quantified the set of importance measures 
defined for each link, and used a fuzzy multicriteria analysis to rank the importance of 
the set of links.

As a first example of the proposed procedure, we generate three networks ( G1 , G2 , G3 ) 
by randomly varying the base capacity of the links in the interval [70, 100)%, [95, 100)%, 
[80, 95)%, and [70, 80)% (uniform distributions). Such variations could correspond to 
planned or unplanned disruptions during the normal operation of a network, such as 
maintenance, weather events, random failures, or even intentional actions (e.g., riots). 
Under these circumstances, the link capacities could be affected.

Link importance measures

While there are many importance measures in the literature (e.g., centrality measures 
(Newman 2010, Wu 2011, Saxena and Jadeja 2022)), here we consider a set of meas-
ures proposed by Nicholson et al. (2016) that consider how the max-flow in a network 
is affected by the presence of each link: All Pairs Max Flow Count (MFC), Min Cutset 
Count (MCC), Edge Flow Centrality (EFC), Flow Capacity Rate (FCR), Weighted Flow 
Capacity Rate (WFCR), and One-at-a-Time Damage Impact (DI).

The most important links derived by this evaluation could suggest to a decision maker 
how those links “can be reinforced, protected prior to any disruption, or expedited dur-
ing the recovery stage” (Nicholson et al. 2016). For example, the IM defined as “all pairs 
max flow edge count (MFC)” assesses “the utilization of a given edge in all s − t pairs 
max flow problems.” That means that if a link participates more than others in the “all 
s − t pairs max flow” problems, then it could produce a substantial effect on network 

Table 1 From-to and base link capacities

Link From To Capacity Link From To Capacity Link From To Capacity

1 1 30 35 20 8 32 74 39 21 46 30

2 1 39 41 21 8 39 69 40 22 48 12.3

3 1 41 77 22 8 45 178 41 23 50 16

4 2 18 59 23 9 10 101 42 24 38 112

5 2 27 111 24 10 36 85.4 43 24 48 46

6 2 29 88 25 10 31 18 44 25 34 23

7 3 51 190 26 11 26 36 45 26 34 133

8 4 31 103 27 11 19 151 46 26 47 212

9 4 25 60 28 11 39 291 47 26 37 148

10 5 13 84 29 12 43 44 48 26 35 219

11 5 14 45 30 12 13 69 49 28 35 33.2

12 6 45 87 31 14 42 20 50 28 43 74.2

13 6 49 75 32 15 30 124 51 31 34 121

14 6 16 95.3 33 15 32 47 52 33 46 44

15 6 17 27 34 16 20 36 53 33 36 155

16 6 23 40 35 16 29 97.5 54 38 42 107

17 7 41 55 36 17 50 28.6 55 40 49 177

18 7 12 96 37 19 25 83 56 44 46 128

19 7 22 70 38 19 50 58 57 49 51 163
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performance when such link is disrupted. Table 2 shows the set of importance measures 
proposed by Nicholson et al. (2016).

Psychological network analysis application

For each network, we rank the links from the most important to the least important 
using the set of six IMs from Nicholson et al. (2016). Note that each of the three net-
works has the same layout of nodes and links but with randomly generated link capaci-
ties. This could be interpreted as different operating conditions for the network. 
Therefore, the IMs also assess different network characteristics and assist in planning for 
operators.

To illustrate, Table 3 shows the matrix EIM1 with the ranks of the links for the first 
network G1 . For example, according to the MFC importance measure, link 28 is ranked 
in the first position (bolded in Table 3), followed by link 27, and so on. Note that the 
same link 28 is ranked in the 49th position according to MCC, thus illustrating that dif-
ferent importance measures could rank the components in a very different way.

Rather than convert these rankings into a Likert scale with, say, five or seven points, we 
instead opted to maintain the original granularity of the rankings and useEIMT = EIM . 
The corresponding Cronbach’s alpha indices for each data set EIMTl , l = 1,2, 3 , are 
0.860, 0.862, 0.854 respectively, which indicate that response values are consistent.

Using the procedure described in 2.1.2, we estimated the PNs Pl , l = 1,2, 3 , using 
as input data the corresponding matrices EIMTl , l = 1,2, 3 . Figure  3 depicts the three 
estimated networks. We selected the averageLayout function of the qgraph package 
to organize the nodes in a unique layout for an easy visual comparison. Links in green 
represent positive partial correlation while red links correspond to negative partial cor-
relations. The widths of the links are proportional to their partial correlations. At first 
glance, the three estimated PNs seem qualitatively equals.

Note that, as consequence of the GLASSO procedure, many links are not shown 
since their weights are fixed to zero. Some links are shown in red, indicating the 
presence of negative partial correlations. This fact could be explained as if the nodes 
involved act as negative effects or more likely as a spurious relationship due to the 

Table 2 Set of selected component importance measures (Nicholson et al. 2016, Almoghathawi 
et al. 2017)

j IM Definition

1 All Pairs Max Flow Count (MFC) Measures the utilization of a given link in all s− t pairs max flow 
problems

2 Min Cutset Count (MCC) Measures the involvement of a given link to the min cutset for all s− t 
pairs, where an s− tcut on a graph is a partitioning of nodes into two 
disjoint sets S and T  such that s ∈ S and t ∈ T  and the s− tcutset is the 
set of links which starts in S and ends in T

3 Edge Flow Centrality (EFC) Measures importance based on the ratio of the total volume of flow 
through a given link for all possible s− t pair max flow problems to 
the flow of all pairs max flows

4 Flow Capacity Rate (FCR) Measures how close a given link is to becoming a potential bottleneck 
based on the amount of flow through that link and its capacity

5 Weighted Flow Capacity Rate (WFCR) Measures the expected impact to the overall network performance 
by considering the flow capacity rate of a given link along with the 
expected contribution of that link to the max flow of all pairs
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sample size used. Table 4 shows the weights derived for each network. However, note 
that the highest absolute negative partial correlation is less than 0.145. Note that the 
network estimation is based in 6 × 5/2 + 6 = 21 possible parameters.

A fast evaluation of the similarity among networks is based on the sum of the abso-
lute values of the weight matrices (Van Borkulo et al. 2016). In our case, the sums are 
6.01, 5.85 and 5.84, respectively, suggesting very similar values.

Using the procedure described in 2.2.5, we compare the three PNs. Since the pro-
cedure can compare only pairs of estimated networks, three comparisons are per-
formed (the paired = TRUE option in the NetworkComparisonTest package was used 
since the input data refer to the same set of links). The pairwise comparison of the 

Fig. 3 The three PNs estimated from different capacities. Links in green represent positive partial correlation 
while red links correspond to negative partial correlations with line widths proportional to their partial 
correlations

Table 4 Weights derived for each of the three PNs

P1 MFC MCC EFC FCR WFCR DI

MFC 0 0 0.441 0.095 0.353 − 0.086

MCC 0 0 − 0.132 0.353 0 0.586

EFC 0.441 − 0.132 0 0 0.380 0

FCR 0.095 0.353 0 0 0.492 0.089

WFCR 0.353 0 0.380 0.492 0 0

DI − 0.086 0.586 0 0.089 0 0

P2 MFC MCC EFC FCR WFCR DI

MFC 0 − 0.016 0.418 0.040 0.344 − 0.033

MCC − 0.0016 0 − 0.121 0.306 0 0.636

EFC 0.418 − 0.121 0 0 0.401 0

FCR 0.040 0.306 0 0 0.537 0.072

WFCR 0.344 0 0.401 0.537 0 0

DI − 0.033 0.636 0 0.072 0 0

P3 MFC MCC EFC FCR WFCR DI

MFC 0 0 0.495 0.035 0.335 − 0.039

MCC 0 0 − 0.145 0.335 0 0.607

EFC 0.495 − 0.145 0 0 0.345 0

FCR 0.035 0.335 0 0 0.555 0.029

WFCR 0.335 0 0.345 0.555 0 0

DI − 0.039 0.607 0 0.029 0 0
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three PNs estimated are shown in Table 5. The results of the network invariance and 
global strength invariance tests suggest that the three networks are not different from 
each other and are “equals.” Note that the fact that the networks are statistically equal 
means that the analysis of the significantly different links is not required. In other 
situations, such analysis would reveal the presence or absence of common links as 
well as the magnitude differences of the relationships.

In our context, from a practical point of view, this result means that the importance of 
the elements is not affected when the network is exposed to these three different operat-
ing conditions. Of course, a larger sample would be necessary to make a general conclu-
sion. But we consider that the analysis presented here is sufficient for illustrating how a 
network comparison in PNs could be performed.

The previous results suggest the analysis of an additional case where the information 
of the three networks analyzed is combined as a new data set of observations (Jefferies 
et al. 2022): the three matrices EIMTl , l = 1,2, 3 are combined to build the global matrix 
EIMTglobal . This new matrix EIMTglobal has a Cronbach’s alpha value of 0.858, (again 
indicating that response values are consistent. The results of the goldbricker procedure 
(package nettools, using the option method = "zou2007") suggest no further reduction of 
the data and that the matrix can be used as-it-is for estimating the global network.

The corresponding network is shown in Fig. 4 while the associated weights of the links 
are presented in Table 6. The sum of the absolute values of the weight matrix is 5.90, very 
similar to the values obtained for the single networks P1,P2,P3.

A notable characteristic of this network is that two-third of the links (10 out of 15) 
were not zero, and almost all of these links were positive (only two partial correla-
tions are negative). The three strongest interrelationships between nodes (i.e., say 
weights > 0.45) in the final network are: MCC-DI (0.61), FCR-WFCR (0.53) and MFC-
EFC (0.45).

It is interesting to note that the fit produces two negative weights, but their absolute 
values are less than 0.14. That the weights for links MFC-DI and MCC-EFC are negative 
could suggest that their negative contribution is due to, even if MFC, MCC, DI, and EFC 
are importance measures, they assess different importance aspects of the components of 
the network. But at this stage, it is not possible to make any strong conclusions.

The comparison of the single networks P1,P2,P3 and the global network reveals that 
the networks cannot be considered different. The network invariance tests M produce 
p-values of 0.998, 1.000, and 0.995, respectively, while the global strength invariance 
tests S result in p-values of 0.640, 0.831, and 0.776.

Figure 5 shows the bootstrapped 95% confidence interval of link weights as a qualita-
tive way of measuring the accuracy of the weight estimations (using nBoots = 2000 in 

Table 5 Pairwise comparison for the three PNs, test statistics and p-values for the network 
invariance and global strength invariance tests

Network comparison Network invariance test Global strength invariance test

P1vsP2 M = 0.0542, p-value = 0.999 S = 0.0481, p-value = 0.604

P1vsP3 M = 0.0634, p-value = 0.995 S = 0.0635, p-value = 0.995

P2vsP3 M = 0.0768, p-value = 0.980 S = 0.0041, p-value = 0.981
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the bootnet package). Mentioned previously, the derived confidence intervals based on 
GLASSO cannot be used as a test to verify non-zero estimation. Figure 5 shows that for 
each estimated link there are: (i) a black dot that reflects the means derived by the boot-
strap procedure, (ii) a red line that corresponds to the original estimation, and (iii) the 
gray area corresponding to the confidence interval estimation.

Note that almost all of the confidence intervals are not large, suggesting, qualitatively, 
a good accuracy of the estimation of the link weights and a clear interpretation of the 
link weights ranking. In general, large confidence intervals would require a careful inter-
pretation of the importance of the link weights. An additional important characteris-
tic in Fig. 5 is the absence of confidence intervals in those links that are forced by the 
GLASSO procedure to be zero. Finally, the ranges of the negative estimations are also 
narrow.

To test the difference among the weight estimations, a different bootstrap procedure is 
used (stability difference test: alpha = 0.05). Figure 6 shows the results of this test, only 
for non-zero estimations. Each cell corresponds to a pair of estimated links, and there 
are three types of cells. The cells on the diagonal show the estimation weights. Black 

Fig. 4 The global network estimated. Links in green represent positive partial correlation while red links 
correspond to negative partial correlations with line widths proportional to their partial correlations

Table 6 Weights associated to the links of the global network estimation

MFC MCC EFC FCR WFCR DI

MFC 0 0 0.452 0.054 0.343 − 0.055

MCC 0 0 − 0.135 0.331 0 0.610

EFC 0.452 − 0.135 0 0 0.377 0

FCR 0.054 0.331 0 0 0.530 0.063

WFCR 0.343 0 0.377 0.530 0 0

DI − 0.055 0.610 0 0.063 0 0
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boxes correspond to weight estimations that are significantly different, while gray boxes 
suggest there are no significant differences in the estimates.

For example, Fig. 6 shows that the weight associated to the interaction MCC-DI differs 
significantly from the other values except for FCR-WFCR. Positive weights for MFC-
EFC and MFC-WFCR do not indicate any significant differences as well as the negative 
weights for MFC-DI and MCC-EFC.

Figure 7 shows the importance of the nodes according to three well-known centrality 
measures: strength, betweenness, and expected influence. Since there is a tendency to 
consider the expected influence as the more convenient measure, we will refer only to 
this measure. Figure 7 shows that nodes WFCR and FCR have the highest value, mean-
ing that these two importance measures show the strongest association with other nodes 
in the network. From a theoretical point of view, actions for controlling these two nodes 
would produce more effective actions to reduce the importance of the links in the net-
work G.

To clearly pinpoint the differences among the values of the expected influence of the 
nodes, Fig. 8 shows the bootstrapped difference test. Figure 8 should be interpreted in 
a similar manner as Fig. 6, relative to bootstrapped difference test for link weights. In 
this case, the expected influences of WFCR and FCR are different (except FCR vs MCC) 
while the rest of the cells in gray do not indicate any significant differences.

Finally, Fig.  9 shows the stability of nodes for expected influence and strength. The 
red (blue) line indicates the average correlation between the node expected influences 
(respectively node strengths) in the full sample and subsample. The areas correspond to 
intervals between percentiles 97.5 and 2.5. CS-coefficients are 0.749 for expected influ-
ence and 0.673 for strength, indicating adequately stable CS-coefficients.

Fig. 5 Accuracy of link weights
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Conclusions and future work
In this paper we study the relationships that may exist between a set of importance 
measures that quantify which components most affect the performance of a network. To 
this aim, we adapt the concept of psychological network analysis, a methodology based 
on the symptoms of psychological disorders. Under this construct, IMs are considered to 
be “symptoms,” and each component of the network is regarded as an individual whose 
symptoms are investigated.

To our knowledge, this novel approach has not been applied in the field of network 
IMs. Indeed, the equivalence between symptoms and IMs allows to statistically estimate 
a PN, able to show how the different importance measures are related, their magnitude 
and signs and the importance measures that could be considered as relevant. Addition-
ally, the stability and robustness of the estimation is determined. The characteristics of 
the PN derived do not consider any a priori information on the structure of network 
(e.g., the relationships among IMs).

We apply the procedure to a transportation network using a selected set of flow-
based IMs for links and the corresponding ranking of the links, as a Likert scale with a 
highly detailed level of granularity. We analyzed three network scenarios correspond-
ing to the different operating conditions, as well as combining the three scenarios 

Fig. 6 Bootstrapped difference test for link weights
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into a unique scenario. The results highlight the most important relationships, dem-
onstrate the presence of negative effects, and suggest which IMs to pay attention to 
improve network performance in light of varying operating conditions. In addition, 
the comparison of the PNs allows concluding that there are no differences in the PNs, 
which could be interpreted as the importance of the components are not affected by 
the operating conditions being analyzed. It is important to mention that our work 
considers only one network with three random different operating conditions and a 
selected set of flow-related importance measures for links.

We believe that the additional information derived using PNs enables a better under-
standing of the IMs and their relationships. In fact, the network analysis relies on 
building a model from the numerical assessment of the IMs of the components (i.e., 
completely driven by the data). Since the analysis is not based on any a priori relation-
ship, such assessment may uncover unsuspected patterns, effects, or conditions. In our 
practical example, we noticed that some relationships among IMs are non-existent, 
others have higher weights, some are inhibiting or reinforcing, and some IMs are more 
important than others. These numerical conclusions were unforeseen.

Future work will consider three main aspects. First, we will evaluate the effect of (i) 
a larger sample of operating conditions and draw stronger conclusions regarding the 

Fig. 7 Importance of the IMs according to strength, betweenness, and expected influence
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Fig. 8 Bootstrapped difference test for expected influence of IMs

Fig. 9 Stability of IMs for expected influence and strength
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invariance (or lack thereof ) of the importance of components of a network, and (ii) 
converting the information from the IMs to one or more Likert scale of different size. 
Second, we will assess how the relationships derived for the same set of importance 
measures on different networks are related, including the effects of component modi-
fications to the topology of a previously considered network (e.g., layout of links). As 
evidenced in the psychological area, the determination of the PNs for different input 
groups (i.e., different networks) does not necessarily produce the same results. This 
suggests that it is possible that the procedure described in this work (applied to dif-
ferent networks) produces different PNs indicating that the interrelationships between 
the measures of importance are statistically different. This ultimately cannot be considered a 
disadvantage of the approach since it would highlight that the behavior of the IMs selected, 
when considering different networks and possibly operational aspects, is not homogenous 
and definitely produce different results. To this aim, a variability network analysis (Fried et al. 
2018, Holtge et al. 2020) could be used to highlight the similarities or the differences. The third 
aspect that deserves consideration is the simultaneous assessment of different sets of impor-
tance measures (e.g., flow-based and graph theoretic-based importance measures). This anal-
ysis could highlight which importance measures act as bridge or connection among the two 
sets and “therefore represent potential points of effective intervention” (Burger et al. 2022).
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