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Abstract 

Influence maximization (IM) is an important topic in network science where a small 
seed set is chosen to maximize the spread of influence on a network. Recently, this 
problem has attracted attention on temporal networks where the network structure 
changes with time. IM on such dynamically varying networks is the topic of this 
review. We first categorize methods into two main paradigms: single and multiple 
seeding. In single seeding, nodes activate at the beginning of the diffusion process, 
and most methods either efficiently estimate the influence spread and select 
nodes with a greedy algorithm, or use a node-ranking heuristic. Nodes activate 
at different time points in the multiple seeding problem, via either sequential seeding, 
maintenance seeding or node probing paradigms. Throughout this review, we give 
special attention to deploying these algorithms in practice while also discussing 
existing solutions for real-world applications. We conclude by sharing important future 
research directions and challenges.
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Introduction
Networks, or graphs, are a simple tool to abstractly represent a system involving inter-
acting entities, where the objects are modeled as nodes and their relationship as edges 
(Strogatz 2001; Newman 2003, 2018). Because of their generality and flexibility, many 
real-world settings have leveraged networks over the past few decades including: online 
social networks (Garton et al. 1997; Mislove et al. 2007; Phuvipadawat and Murata 2010), 
infrastructure networks (Latora and Marchiori 2005; Liu and Song 2020; Guimera and 
Amaral 2004) and biological process networks (Girvan and Newman 2002; Pavlopoulos 
et al. 2011). Recently, there has been great interest in not only understanding the topo-
logical structure of networks, but also how information diffuses on them (López-Pintado 
2008; Rodriguez et al. 2011; Xu and Liu 2010; Harush and Barzel 2017). For example, in 
social networks, we may be interested in understanding viral outbreaks in a population, 
or breaking news spreads in an online setting.

The most fundamental assumption of network science and machine learning applied 
to graphs is that the network structure begets the function of the networked system. 
First discussed in abstract terms by Georg Simmel in the 1890s (Simmel 1955) and in 
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the language of graph theory by Jacob Moreno and Helen Jennings in the 1930s (Moreno 
and Jennings 1938), this assumption is close to the core structuralism—a pillar of 20th-
century (primarily social) science. It suggests that we can infer the function of nodes 
from their position in the network.

The foundational functional concept is a node’s importance. But to operationalize a 
concept like importance, we must consider many specifics about the system. Some ques-
tions may include: What is the objective of the system? What dynamics operate on it? 
Or what are the possible interventions? Influence maximization (IM),1 assumes a sce-
nario where some diffusion (in the mathematical and physical literature, also known 
as spreading) process can happen on the network and we want this process to reach as 
many nodes as possible. This diffusion process is triggered by some seed nodes and the 
IM problem is to identify the seed nodes that maximize the number of nodes affected by 
the diffusion.

Viral (or word-of-mouth) marketing is an obvious potential application area that fits 
the assumptions above (Domingos and Richardson 2001; Leskovec et al. 2007; Hinz et al. 
2011; Lü et  al. 2016; Bhattacharya et  al. 2019). Recommendation systems are another 
relevant area of application (Herlocker et al. 2004; Bobadilla et al. 2013; Aggarwal 2016; 
Zhang et  al. 2021; Huang et  al. 2022), as is seeding public health campaigns (Yadav 
et al. 2016, 2018; Wilder et al. 2017, 2018). However, by analogy to network centrality—
another family of conceptualizations under the umbrella term of importance—
influence maximization is interesting for a wider area of problems. Protecting critical 
infrastructure (Liu and Song 2020) or safeguarding against bioterrorism (Waniek et al. 
2022) could also benefit from influence maximization studies. It is also a possible 
approximation (Holme 2017) for distinct but related scenarios like the vaccination 
problem (Holme 2004; Lee et  al. 2012) (finding nodes whose removal would hinder a 
diffusion event as effectively as possible), and sentinel surveillance (Christakis and 
Fowler 2010; Bai et al. 2017) (identifying nodes that would be suitable probes for early 
and reliable detection of diffusion events).

Kempe et al. (2003) first formulated the IM problem in their seminal work and ever 
since, the problem has been explored extensively in the computer science, statistical 
physics and information science literature. The majority of work considers static net-
works where the nodes and edges are fixed (Kempe et al. 2003; Bharathi et al. 2007; 
Chen et al. 2009; Goyal et al. 2011). Most methods either efficiently emulate the influ-
ence spread function, or use some heuristic to rank nodes by importance. We eschew 
extended discussion of the static IM problem and instead refer interested readers to 
reviews in Li et  al. (2018), Azaouzi et  al. (2021). In many real-world situations, the 
static assumption is violated as networks have temporal variation with links forming 
and disappearing (Holme and Saramäki 2012; Holme 2015; Li et al. 2017). For exam-
ple, in contact networks, a person’s interactions vary greatly throughout a single day 
or week. Being at home, work, or a mall may lead to sizeable differences in both the 
frequency and set of contacts. Accounting for this dynamism is essential for effec-
tive IM seeding because, e.g., the temporal variation in the network structure greatly 

1 Throughout this work, we use the terms influenced activated and infected interchangeably when referring to a node’s 
state.
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impacts the rate and extent of the diffusion process (Prakash et al. 2010; Karsai et al. 
2011). The topic of this review is IM techniques and analyses for such dynamically 
varying networks.

There are several key challenges associated with the IM problem. First, simply 
calculating the expected influence spread is #P-hard for many models (Goyal et  al. 
2011). One common approach to circumvent this issue is Monte Carlo (MC) simula-
tions, where the diffusion process is simulated a large number of times and the aver-
age number of influence nodes is used to estimate the influence spread (Kempe et al. 
2003; Ohsaka et al. 2014). Still, selecting the optimal seed nodes is NP-hard (Kempe 
et  al. 2003). Therefore, many researchers employ heuristics so finding the globally 
optimal solution is rarely guaranteed. In temporal networks, there is an additional 
challenge stemming from the interplay of dynamic variation in edge sets and diffusion 
processes.

In this work, we provide a comprehensive review of the existing literature on IM on 
temporal networks and elucidate important future research areas. One main contri-
bution of this review is our keen eye towards the challenges associated with deploying 
these methods in practice. While there has been significant research on the static and 
temporal IM problem, we found that there is minimal research on using these meth-
ods “in the field.” Thus, we highlight the utility of each method for practitioners. This 
differentiates the present work from reviews in Yang and Pei (2019) and Hafiene et al. 
(2020). Additionally, Yang and Pei (2019) focuses on influence analysis rather than 
strictly influence maximization. We also discuss several tasks not mentioned by the 
authors, e.g., sequential seeding where nodes are initialized throughout the process, 
and the ex ante setting where the future evolution of the network is unknown.

There are four main sections of this review. For the remainder of this section, we 
introduce the necessary prerequisites for studying the IM problem. In section “Single 
seeding”, we discuss “single seeding” methods which select a single seed set at 
the beginning of the diffusion process. This problem is the natural extension of 
the static IM problem. We classify the existing methods into three categories 
while also discussing methods which analyze the diffusion process. The topic of 
section  “Multiple seedings” is methods which repeatedly choose seed nodes as the 
network evolves. Within this category, some methods activate nodes at different 
times throughout the diffusion process while others “maintain” an influential seed set. 
Additionally, we consider the node probing problem where the future evolution of 

Fig. 1 Different temporal influence maximization paradigms compared in this work
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the network can only be known by probing a small subset of nodes and this partially 
visible network is used for IM seeding. See Fig.  1 for an overview comparing these 
different paradigms. Real-world implementation of IM algorithms is the topic of 
section  “Real world implementations” where we primarily focus on the problem of 
increasing HIV awareness amongst homeless youth. This application highlights the 
many challenges associated with deploying IM algorithms. Finally, we conclude 
in Sect.  5 with important areas for future research, including the ex ante setting, 
model misspecification, and the temporal relationship between the diffusion process 
and network evolution. Throughout the paper, we give special attention to the 
functionality of these methods on real-world problems.

Notation

We begin by defining common notations used throughout the paper. Let 
G = (G0, . . . ,GT−1) be a temporally evolving network over T time stamps. Typically the 
graph snapshots Gt occur over evenly spaced time intervals, i.e., tk − tl is constant for 
all k,  l. For each t, let Gt = (Vt ,Et) , where Vt is the set of vertices and Et is the set of 
edges. Typically, Vt ≡ V  and does not vary with time. Let n = | ∪t Vt | and m = t |Et | 
be the total number of nodes and edges in the network, respectively. Additionally, let 
Aij(t) denote the corresponding adjacency matrix for graph Gt where Aij(t) = 1 if there 
is an edge from node j to node i at time t, and 0 otherwise. In an undirected network, 
Aij = Aji for all i, j, while A may be asymmetric for a directed network. Let Ni(t) be the 
set of incoming neighbors of node i at time t, i.e., Ni(t) = {j : Aij(t) = 1}.

Diffusion mechanisms

In order to study IM, it is necessary to describe the diffusion of influence on a net-
work. The most common diffusion models are the independent cascade (IC), lin-
ear threshold (LT) and susceptible-infected-recover (SIR) models. In the IC model 
(Kempe et  al. 2003; Saito et  al. 2008; Shakarian et  al. 2015), influenced nodes have 
a single chance to activate their uninfluenced neighbors. Specifically, let pij be the 

Fig. 2 Example of influence diffusion on a toy temporal network using the independent cascade (IC) model. 
Activated nodes (green) try to influence all of their neighbors before becoming inactive (red) in the next time 
step. The number of nodes currently or formerly activated corresponds to the total influence spread
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probability that node i influences nodes j. If node i is infected at time t − 1 and 
Aij(t − 1) = 1 , then node j becomes infected at time t with probability pij . From time 
t, node i can no longer influence its neighbors. Then the total influence spread is the 
number of nodes that were active at any point.

In Fig.  2, we show the influence diffusion process on a toy network using the IC 
model. Two nodes (green) are initially selected for the seed set and begin in the 
active state. These nodes attempt to activate all of their neighbors, but only some 
attempts are successful (green and red edges are successful and unsuccessful activa-
tions, respectively). In the next time step, the newly activated nodes now attempt to 
influence all of their current neighbors, while the previously activated nodes become 
inactive. This process continues one more time step, and the number of nodes in the 
active (green) or formerly active (red) state is the total influence spread for this seed 
set (eight nodes). Due to the stochastic nature of the process, even if the process is 
repeated with the same seed nodes, the total diffusion spread may differ.

The SIR model (Pastor-Satorras et  al. 2015; Erkol et  al. 2022) is similar to the IC 
model, but now each activated node has a fixed probability � of infecting its unac-
tivated neighbors. Moreover, a node can activate its neighbors as long as it is in the 
infected state. Each infected node, however, has probability µ of “recovering” and 
being unable to activate its neighbors. The total influence spread is the final number 
of nodes in the infected and recovered state. If pij = � for all i, j and µ = 1 , then the 
SIR and IC models are equivalent. Additionally, the SIR model reduces to the suscep-
tible-infected (SI) model (Osawa and Murata 2015; Murata and Koga 2018) if µ = 0.

In the LT model (Kempe et al. 2003; Chen et al. 2010; Pathak et al. 2010; Shakarian 
et  al. 2015), each node is randomly assigned a threshold θi and each edge endowed 
with a weight bij . If the sum of weights for a node’s infected neighbors exceeds its 
threshold, then this node becomes infected, i.e., node i is activated if 

∑

bij > θi where 
the sum is over all infected neighbors of i.

Problem statement

With notation and diffusion mechanisms in hand, we formally define the IM problem. 
Let G be some dynamic network and let D be a diffusion mechanism, e.g., IC or SIR. 
We define σ(S) as the expected number of influenced nodes for seed set S and for dif-
fusion process D on graph G . Of course, the behavior of σ(S) depends on G and D , but 
we suppress this dependence in the notation. For a fixed k = |S| , we seek the seed set 
S which maximizes σ(S) , i.e.,

Perhaps the simplest approach to approximate (1) is evaluating σ(S) via MC simulations 
and choosing the node which marginally leads to the largest gain in influence spread, 
as outlined in Algorithm 1. In the static setting, this greedy algorithm provably yields a 
result within a factor of (1− 1/e) of the global optimum (Kempe et al. 2003). MC simula-
tions are computationally intensive, however, so many methods focus on efficiently com-
puting the influence spread before employing a greedy algorithm.

(1)S∗ = arg max
S⊆V ,|S|=k

σ(S).
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Algorithm 1 Greedy influence maximization

Another common paradigm for selecting seed nodes that avoids direct calculation of 
the influence function is based on node ranking, e.g., Michalski et al. (2011), Murata and 
Koga (2018), Michalski et al. (2020). Nodes are ranked based on some measure of impor-
tance like degree or centrality, and the k nodes with the largest value are chosen for the 
seed set. While much faster than greedy algorithms, these approaches yield no theoreti-
cal guarantees and may choose nodes that “overlap” their influence. For example, if two 
nodes have high degrees but share many common neighbors, then seeding both nodes 
may not be optimal as their influence will spread to the same nodes.

Reverse Reachable (RR) sketches also choose seed nodes without direct computation 
of σ(S)Cohen et al. (2014), Kim et al. (2017), Guo et al. (2020). For a given time t and for 
each edge (i,  j), we randomly draw Zij ∼ Bernoulli(pij) where pij is the probability that 
node i influences node j, and keep the subgraph with Zij = 1 . These edges are sometimes 
referred to as the “live” or “active” edges. Once this subgraph is constructed, the source 
and destination of each (directed) edge are reversed before randomly selecting a node. 
Finally, a breadth-first search is conducted from this randomly selected node and all 
nodes reached by this search are kept for this particular RR-sketch. Essentially, the nodes 
in this set are those that can influence the selected node through the diffusion process. 
This process is repeated a large number of times to yield a set of RR-sketches.

Single seeding
The classical IM problem is where a practitioner selects a set of seed nodes at time t = 0 
in order to maximize the influence spread at time t = T  . Most solutions either estimate 
the influence spread via probabilities, or use some heuristic to rank nodes by influence. 
For the majority of these methods, the complete temporal evolution of the network is 
assumed to be known, but some relax this assumption. We also discuss several works 
which do not present novel algorithms, but rather analyze existing methods and/or dif-
fusion processes.

Algorithms

First, we discuss algorithms which solve the single seeding temporal IM problem.

Greedy

The greedy algorithm of Kempe et al. (2003) naturally extends to the temporal setting: 
nodes with the largest marginal gain in influence spread are added to the seed set 
incrementally as in Algorithm 1. The only difference from Kempe et al. (2003) is that 
the expected influence spread is computed on a temporally evolving network. This 
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method is considered the “gold standard” of IM algorithms and can easily be adapted 
to any diffusion model. On the other hand, this algorithm suffers from a high compu-
tational cost due to the repeated MC simulations required for computing the influ-
ence spread.

Probability of influence spread

Since the costly step of the greedy algorithm is computing the influence spread, 
several heuristics exist which use the probability of a node’s activation in order to 
approximate σ(S) . In Aggarwal et al. (2012), πi(t) is the probability that node i is acti-
vated at time t. Assuming the network is a tree, if pji(t) is the probability that node j 
activates node i at time t, then the probability that node i is activated at time t + 1 is

where Ni(t) is the set of incoming neighbors of node i at time t. We explicitly write Ni(t) 
as a function of t to stress that the neighboring set of each node is time-dependent and 
thus encodes the temporal variation in the network. The first term in (2) is the prob-
ability that the node was already activated during the previous time step while the sec-
ond term is the probability that it was not previously activated but becomes so in the 
current step. The authors initialize πi(1) = 1 if i ∈ S and 0 otherwise. For each i, πi(t) 
iteratively updates via (2) and 

∑

i πi(T ) estimates σ(S) . Aggarwal et  al. use this pro-
cedure and a greedy algorithm to choose the seed set. The authors also assume that 
pij(t) := pij = pij(�

(T )
ij ) is an increasing function of the total amount of time that an 

edge between nodes i and j exists in the network, �(T )
ij  . This means the edge trans-

mission probabilities do not vary temporally, but only depend on �(T )
ij  . For example, if 

Aij(0) = Aij(1) = 1, Aij(t) = 0 for all t > 1 , then �(T )
ij = 2 , and Akl(0) = 1, Akl(t) = 0 

for all t > 0 , then �(T )

kl = 1 , so pij(�(T )
ij ) > pkl(�

(T )

kl ) . Additionally, this method eschews 
the standard, equally-spaced graph snapshots in favor of times corresponding to struc-
tural changes based on the number of edge updates. The approach also can find the most 
likely seed nodes for a given diffusion pattern.

Osawa and Murata (2015) take an analogous approach to Aggarwal et al. but use the 
SI model for diffusion. In fact, this method is equivalent to Aggarwal et al. (2012) if 
pij(t) = � for all i, j and times t. Osawa and Murata show this approach slightly over-
estimates the true influence spread and prove that the associated greedy algorithm’s 
computational complexity is O(nmk). In simulations, this method outperforms broad-
cast (Grindrod et al. 2011) and closeness centrality (Holme and Saramäki 2012) heu-
ristics. It also yields comparable performance to a standard greedy algorithm but is 
two orders of magnitude faster. Additionally, Osawa and Murata show that centrality 
heuristics perform worse on networks with strong community structure due to nodes’ 
overlapping influence.

Erkol et al. (2020) extend this paradigm to the SIR model. If πi(t) is defined as above 
and ρi(t) is the probability that node i is in state R at time t (such that 1− πi(t)− ρi(t) 
is the probability of being in state S), then the SIR dynamics are defined by

(2)πi(t + 1) = πi(t)+ (1− πi(t))×



1−
�

j∈Ni(t)

(1− πj(t)pji(t))
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A greedy algorithm chooses the seed nodes based on the influence spread estimate 
∑

i{πi(T )+ ρi(T )} . Erkol et  al.  study the performance of the method when the net-
work is noisy or incomplete, i.e., the temporal snapshots are randomly re-ordered, only 
the first snapshot is available, and the network is aggregated into a single snapshot. 
The authors find that the order of snapshots is crucial and ignorance about G0 causes 
the algorithm to suffer. Indeed, in many cases, knowing only G0 is sufficient for large 
influence spread, while the aggregation approach consistently performs poorly. Erkol 
et al. also show that if the recovery probability, µ , is large, then central nodes in the first 
few layers are the best influence spreaders, whereas for small µ , nodes must be central in 
many layers to make for optimal seed nodes.

Node ranking heuristics

Rather than estimate the influence spread, the following methods rank nodes by influ-
ence and select the top k as seed nodes. The earliest approach comes from Michalski 
et  al. (2014). The authors adopt the LT model and assume the first T/2 snapshots are 
available to select seed nodes, but the diffusion process occurs on GT/2, . . . ,GT−1 . Some 
static measure of node importance mi(t) is computed for all nodes i and snapshots Gt . 
The values across t are combined by down-weighting older values to yield a single metric 
θi for each node, i.e.,

where f(x,  t) is an increasing function in t. The k nodes with largest θi for a given f (·) 
are chosen as seed nodes. Michalski et al. find that the following combinations of met-
rics mi(t) and forgetting mechanisms f (·) yield the largest influence spread2: out-degree 
and in-degree with exponential forgetting (fexp(x, t) = e−tx) total degree and logarithmic 
forgetting (flog (x, t) = logT/2−1−t+1(x)) , betweenness centrality and hyperbolic forget-

ting (fhyp(x, t) = (T/2− 1− t − 1)−1x) ; and closeness centrality with power forgetting 
(fpow(x, t) = xt) . The authors also vary the number of aggregated snapshots used to com-
pute the metrics and find that the finest granularity performs the best. Indeed, treating 
the network as static by aggregating G0, . . . ,GT/2−1 into a single graph yields the lowest 
influence spread on GT/2, . . . ,GT−1 , thus demonstrating the importance of accounting 
for the temporal variation in the network.

Another node ranking heuristic comes from Murata and Koga (2018). Using the SI 
model, the authors extend several static measures of importance to the temporal 

(3)

πi(t) = (1− µ)πi(t − 1)+ (1− πi(t − 1)− ρi(t − 1))

×



1−
�

j∈Ni(t)

(1− �πj(t − 1))





(4)ρi(t) = ρi(t − 1)+ µπi(t − 1).

(5)θi =

T/2−1
∑

t=0

f (mi(t), t)

2 The exponential forgetting mechanism is as reported in the original paper, but there appears to be some error since 
this function clearly decreases with t.
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settings. In particular, the dynamic degree discount algorithm extends (Chen et al. 2009). 
First, the node with largest dynamic degree DT (v) is added to the seed set, where

and Nv(t) is the neighbors of node v at time t. Once a node is selected, the value of 
the dynamic degree for its neighboring nodes is decreased and the process repeats 
until k nodes are selected. The authors show that the complexity of this method is 
O(k log n+m+mT/n) but that it only is valid for the SI model. Murata and Koga also 
propose Dynamic CI as an extension of (Morone and Makse 2015) based on optimal 
percolation and Dynamic RIS as an extension of Borgs et al. (2014), Tang et al. (2014) 
based on RR sketches. In simulations, all methods perform comparably to Osawa and 
Murata (2015) but are significantly faster. The authors also show that when � is large, 
choosing the optimal seed nodes is less important as many seed sets yield comparable 
influence spread.

Recently, Michalski et al. (2020) propose another node-ranking heuristic. The authors 
postulate that, for the IC model, nodes with large variability in their neighbors should 
be chosen to maximize spread. They quantify neighborhood variability with an entropy 
measure that rewards nodes for changing their neighbors in subsequent graph snapshots 
and the k nodes with the largest value are chosen for the seed set. The measure is com-
puted on the first T/2 snapshots while the influence is calculated on the second half of 
the graph’s evolution, similar to Michalski et al. (2014). The authors note, however, that 
this metric may not make sense for the LT model which requires the number of acti-
vated neighbors to “build up” for a node to become infected. As the method depends on 
the neighborhood set of each node, its complexity is O(m).

To summarize the methods in the previous two subsections, we include Table 1 which 
compares them across several metrics.

Analysis

We turn our attention to methods that do not propose a novel IM algorithm, but rather 
analyze the existing algorithms and/or diffusion mechanisms. In order to better model 
information propagation, Hao et al. (2011) propose two novel diffusion models where a 
node’s propensity of activation depends on the number of past attempts to activate it. In 
the time-dependent comprehensive cascade model, an active node still only has a single 
chance to activate its neighbors, but the probability of being infected can either increase, 
decrease or be unaffected by the number of previous attempts on that node. The authors 
also propose a dynamic LT model where the node’s activation threshold depends on 
the number of previous activation attempts. Hao et  al.  proposes a time series-based 
approach to empirically determine the effect of past activation attempts on infection 
probabilities.

Gayraud et  al. (2015) study the behavior of the influence spread function 
under several novel diffusion models while also allowing seed nodes to be 
activated at different times. Let f : 2V → R be a set function. If S ⊆ V  , then f is 

(6)DT (v) =

T
∑

t=2

|Nv(t − 1) \ Nv(t)|

|Nv(t − 1) ∪ Nv(t)|
|Nv(t)|



Page 10 of 25Yanchenko et al. Applied Network Science            (2024) 9:16 

monotone if f (S ∪ {v})− f (S) ≥ 0 for all v ∈ V \ S and S ⊆ V  . It is submodular if 
f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) for A ⊆ B and v ∈ V \ B . In other words, the 
monotone property implies that adding a node never decreases the influence spread 
and submodularity means that there is diminishing returns for adding more nodes. 
Additionally, the authors define a seeding strategy to be timing insensitive if all nodes 
should be activated at time t = 0 and timing sensitive otherwise. In the transient 
evolving IC model (tEIC), infected nodes at time t − 1 have one chance to infect 
their neighbors at time t. The authors prove that this diffusion mechanism is neither 
monotone nor submodular. In contrast to the tEIC model, the persistent EIC model 
assumes that a node tries to activate its neighbors the first time that the two nodes 
have a link. If the activation probabilities are constant in time, Gayraud et al. prove 
that this model is monotone, submodular and timing insensitive. If the activation 
probabilities dynamically vary, then the influence function is neither monotone nor 
submodular and is timing-sensitive. The authors propose similar extensions to the LT 
model. The transient ELT model only considers weights from active neighbors at the 
current snapshot whereas the persistent ELT model sums all weights from neighbors 
activated during any previous time. These models are monotone, not submodular and 
timing insensitive, and monotone, submodular and timing insensitive, respectively. 
The key contribution of this paper is that if a model is timing-sensitive, the seed nodes 
should be activated throughout the diffusion process, as opposed to all at t = 0 . The 
authors also show that choosing seed nodes based on aggregating all graph snapshots 
does not perform well for any model.

The submodularity of the influence function is also studied in Erkol et al. (2022), this 
time under the SIR model. The authors show that if µ = 0 (SI model), the influence 
function is submodular, but loses this property when µ > 0 . Effectively, the violations 

Table 1 Comparison of different algorithms for single seeding temporal influence maximization

Paradigm: Approx: estimates the probability that a node is activated. Node rank: uses a node ranking heuristic. Model: 
Diffusion model. Note that ICt refers to Aggarwal et al. (2012)’s model which does not neatly line up into any of the standard 
models but it similar to an IC model with time component. Complexity: number of flops to implement the algorithm. R is 
number of MC simulations; θ , d, l are tuning parameters in the Dynamic RIS algorithm

Method Paradigm Model Complexity

Greedy Greedy Any O(nmkR)

 Aggarwal et al. (2012) Approx. ICt O(nmk)

 Osawa and Murata (2015) Approx. SI O(nmk)

 Erkol et al. (2020) Approx. SIR O(nmk)

InExp Michalski et al. (2014) Node rank LT O(m)

OutExp Michalski et al. (2014) Node rank LT O(m)

TotalLog Michalski et al. (2014) Node rank LT O(m)

BetHyp Michalski et al. (2014) Node rank LT O(nm+ n
2
T )

CloPow Michalski et al. (2014) Node rank LT O(nm+ n
2
T )

Dynamic Degree Murata and Koga (2018) Node rank SI O(k log n+m+mT/n)

Dynamic CI Murata and Koga (2018) Node rank SI O(n log n+mT/n)

Dynamic RIS Murata and Koga (2018) Node rank SI O(θdkl2(m+ n) log2 n/ǫ3)

Entropy Michalski et al. (2020) Node rank IC O(m)
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come from nodes in state R “blocking” paths to nodes in state S, as demonstrated by a 
toy example in Fig. 3 (reproduced with permission of the author).

A relaxation of the submodularity property, γ-weakly submodular, is also not achieved 
in the SIR model. A function f is γ-weakly submodular if for A ∩ B = ∅ and 0 < γ ≤ 1,

The authors then empirically check the number of violations of the submodular criteria 
in real networks. They find that if nodes are randomly selected, the criteria is frequently 
violated. If nodes are selected based on a greedy algorithm, however, the submodularity 
property is rarely violated. Thus, the influence function is effectively submodular. Now, 
since the influence function is not submodular, there is no theoretical guarantee that the 
greedy algorithm adequately approximates the optimal solution. In spite of this, com-
pared with a brute-force algorithm on real-world networks, the greedy algorithm still 
yields results within 97% of the optimal solution.

Lastly, although not pertaining explicitly to IM, we briefly discuss Albano et al. (2013). 
This work studies the relationship between graph topological evolution and diffusion 
processes by analyzing which part of the diffusion is owed to the diffusion mechanism, 
and which to graph dynamics. The authors consider two timing mechanisms: extrinsic 
time based on seconds between interactions, and intrinsic time based on changes or 
transitions in the network. While researchers typically use extrinsic time, the authors 
argue that intrinsic time may be more sensible in many cases. Using the SI model and 

(7)
∑

v∈B

f (A ∪ {v}) ≥ min

{

γ f (A ∪ B),
1

γ
f (A ∪ B)

}

.

Fig. 3 Toy example showing the violation of the sub-modularity property in the temporal SIR model. Green 
circles are susceptible nodes, red squares are infected nodes, and yellow triangles are recovered nodes. Each 
row represents the diffusion process for a particular seed set with � = µ = 1 . In the first row, S1 = {x} and 
the total influence spread is three nodes. In row three, S2 = {x , z} , but the total influence spread is only two 
nodes. Thus, S1 ⊂ S2 while σ(S1) > σ(S2) . Reproduced from Erkol et al. (2022) with permission of the author
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intrinsic time, the observed diffusion is governed more by the diffusion mechanism than 
the evolution of the network. Using extrinsic time, conversely, the topological changes in 
the network greatly affect the diffusion. Thus, the diffusion process is highly dependent 
on the timing method.

Discussion

In the previous subsections, we presented the leading methods for choosing a single 
seed set in temporal IM. Each method either estimates the influence spread, or ranks 
nodes based on a heuristic. Aggarwal et al. (2012), Osawa and Murata (2015) and Erkol 
et al. (2020) proposed analogous approaches with the only difference being in the dif-
fusion model. These methods maintain many of the desired properties of the greedy 
algorithm, but are computationally less intensive. The node ranking metrics of Michalski 
et al. (2014), Murata and Koga (2018) Michalski et al. (2020) are even faster since they 
avoid the costly influence spread calculation.

In practice, if a network is small enough, the greedy algorithm should always be pre-
ferred; it comes with theoretical guarantees and empirically yields the largest seed set. 
Indeed, the majority of real-world applications discussed in Sect.  4 employ a greedy 
approach. When there is not enough computing time or resources for the greedy algo-
rithm, the probability-based methods are the second best choice. Osawa and Murata 
as well as Erkol et al. show that these tend to yield seed sets which lead to larger aver-
age outbreaks sizes than those based on node ranking. Indeed, the influence spread of 
Erkol et al. ’s algorithm comes within 95% of that of the greedy algorithm under differ-
ent settings of the SIR model. On the contrary, closeness centrality-based ranking meth-
ods might only have influence spreads less than one third that of greedy’s (Osawa and 
Murata 2015). Node ranking methods should be reserved for extremely large networks 
where the previous two frameworks are infeasible.

Knowledge of the network structure and diffusion process can also inform algorithm 
selection. For networks without a community structure, Osawa and Murata show meth-
ods which approximate the influence spread function do not outperform those based on 
node ranking heuristics. Similarly, when there is a high probability of nodes recovering 
in the SIR model, then the most central nodes in the first few snapshots of the graph are 
the best to include in the seed set (Erkol et al. 2020). Finally, if the infection probability 
is large, then Murata and Koga find the algorithm choice is of little consequence as many 
seed sets similar influence spreads.

A key challenge in implementing these methods on real-world problems is the require-
ment that the entire topology of the network be known. Save (Michalski et  al. 2014, 
2020), each method assumes that the evolution of the network G0, . . . ,GT−1 is known 
at time t = 0 when the seed nodes are selected. Of course, in practice, it is unreasonable 
for a practitioner to know the future topology of the network, so it is not obvious how to 
apply these methods in this case. To address this issue, Yanchenko et al. (2023) propose 
a link prediction approach for ex ante temporal IM. Using the SI model, the authors use 
the first p snapshots to train a link prediction algorithm and then predict the network 
topology for Gp, . . . ,GT−1 . An existing temporal IM algorithm is applied to these pre-
dicted networks to choose the seed sets. In many cases, finding seed nodes on a simple 
aggregation of G0, . . . ,Gp−1 performs as well as the more complicated link prediction 
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methods. This finding is at odds with Michalski et al. (2014) and Erkol et al. Erkol et al. 
(2020) who showed poor performance of IM algorithms on aggregated networks. These 
papers, however, assumed different diffusion mechanisms, so it is possible that aggre-
gating only works well for the SI model. Another practical consideration for applied 
researchers is the size of the network. If working with a relatively small social network, 
then a greedy algorithm is reasonable, whereas a node ranking heuristic is mandatory 
for large online social networks with millions of nodes. Finally, the diffusion mechanism 
must be carefully chosen based on the application’s domain, as certain methods are only 
applicable to specific mechanisms.

Multiple seedings
In the previous section, we considered IM algorithms for temporal networks where all 
seed nodes are activated at time t = 0 . Now we discuss methods where nodes are seeded 
at different points throughout the evolution of the network, or where the seed set is 
updated at each time step.

Sequential seedings

Related to the single seeding problem, consider a single seed set S, but instead of activat-
ing all nodes at t = 0 , nodes activate sequentially as the network evolves. This problem 
involves not only choosing which nodes to include in the seed set, but also when to acti-
vate them.

Michalski et al. (2020) focus on the seed activation step of this problem. The authors 
consider a variant of the IC model where a single node is activated and the diffusion 
occurs until no more activations are possible. Then the next node is activated and the 
process continues. In this setting, Michalski et  al. use a simple seed selection method 
based on degrees. First, the node with the largest degree is activated. Once the diffusion 
process finishes, the uninfected node with largest degree is activated and the process 
continues until k nodes have been seeded. This method is compared with activating 
the k nodes with largest degree at time t = 0 . When t is small, activating all nodes at 
once leads to a larger influence spread, but as t increases, the sequential seeding strategy 
outperforms the single seeding, as shown in Fig. 4 (reproduced with permission of the 
author).

Tong et al. (2016) consider another variation of the sequential seeding problem where 
seed set nodes are unsuccessfully activated with some probability. They propose a greedy 
algorithm which maximizes the marginal gain in influence spread given the current dif-
fusion. Towards this end, the authors derive a closed-form expression for the expected 
number of influenced nodes by constructing an auxiliary graph with extra nodes and 
edges based on possible seed sets and propagation probabilities. The greedy algorithm 
is shown to yield results within (1− 1/e) of the optimal influence spread while the com-
putational burden is mitigated with the Lazy-forward technique (Leskovec et al. 2007). 
Additionally, Tong et  al.  prove that the strategy outlined in Michalski et  al. (2020) of 
seeding nodes one at a time and waiting for the diffusion process to finish before activat-
ing the next node is the optimal seeding strategy for any temporal graph.
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Maintenance seeding

In a highly dynamic network, the optimal seed set may change with time. For example, 
in a long-term marketing campaign on X, the active users and followers change over 
the duration of the campaign. Thus, it is necessary to maintain or update the seed set St 
such that it provides maximum influence spread on Gt for all t. This problem is known as 
maintenance seeding. Maintenance seeding is markedly different from static seeding as 
now k nodes are activated at each time step t in order to maximize the diffusion on Gt . 
Thus, this process is analogous to a sequence of static IM problems.

Chen et al. (2015), Song et al. (2016) first study this problem under the name “influ-
ential node tracking.” The authors assume that the topology of the network is known at 
the next time step Gt+1 and use the IC model for diffusion. Using the seed set from the 
current snapshot St , Chen et al. employ an interchange heuristic (Nemhauser et al. 1978) 
to efficiently update the seed set and prove that the solution is guaranteed to be within 
1/2 of the optimal spread. Effectively, this method swaps one node in St with one node in 
V \ St to maximize the marginal gain in influence spread. Since evaluating the marginal 
gain for every node in V \ St is expensive, the authors only consider nodes with the larg-
est marginal gain upper bound. If the upper bound for node u ∈ V \ S is smaller than the 
marginal gain of another node v, then evaluating the influence of node u is unnecessary 
as its inclusion cannot improve the total influence spread. The proposed algorithm has 
O(kn) complexity.

Ohsaka et al. (2016) consider a similar problem for large online networks where nodes 
and edges are added or removed at each time step. Using the IC model, the authors pro-
pose a sketching method akin to RR sets and an efficient data structure to build and store 
these sketches. A greedy algorithm is then implemented to choose the seed sets. Specifi-
cally, the node which is present in the most sketches is chosen as a seed node. Then all 
sketches which contain that node are removed from consideration, and the node which 

Fig. 4 Comparison of the influence spread for the sequential seeding strategy with that of single seeding. 
The red curve activates all nodes at t = 0 while the green curve activates nodes one at a time. Single seeding 
leads to greater influence spread at first, but the sequential seeding strategy ultimately leads to more 
spreading. Reproduced from Michalski et al. (2020) with permission of the author
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occurs in the most remaining sketches is chosen for the seed set. This process contin-
ues until k nodes are chosen. In addition to the novel data structure, this work proposes 
heuristics that lead to efficient updates of the sketches at each evolution of the graph, 
instead of recomputing them from scratch. These heuristics come with theoretical guar-
antees and lead to algorithmic speed-ups.

There are several other methods that address this problem. Wu et al. (2019) recast it as 
a bandit problem but tackle it in a similar manner to Ohsaka et al. by using RR sketches. 
Wang et al. (2017) find the optimal seed nodes at t = 0 and incrementally update them 
based on investigating parts of the graph which changed significantly between snapshots. 
Wang et al. (2017) selects seed nodes based on a sliding window scheme, and Chandran 
and Viswanatham (2022) uses a node’s number of triangles to estimate its influence. Min 
et al. (2020) consider a special case by accounting for user attributes in an online social 
network, including preferred topics of engagement. The authors also account for certain 
time periods where users may be inactive and allow for a different diffusion model based 
on the topic.

Up to this point, each method assumes knowledge of the future topology of the net-
work. Singh and Kailasam (2021) relax this assumption by predicting the graph structure 
one time step in the future using a conditionally temporal restricted Boltzmann machine 
(Li et al. 2014) and then finding the seed nodes on the predicted graph. The authors use 
an interchange (Nemhauser et al. 1978) heuristic to update the seed set and ideas from 
(Song et al. 2016) to improve efficiency.

Rather than propose a new maintenance seeding algorithm, Peng (2021) studies the 
amortized running time, i.e., the amount of time it takes to update the seed nodes at 
each time step. Even though the current algorithms efficiently update the seed set in 
O(n) time for each t, the author argues that this is still too slow for large networks. Peng 
then considers two different graph evolution paradigms, both under either the IC or 
LT model. First is an incremental model where a network may only add new nodes and 
edges. Under this model, Peng shows that an (1− 1/e − ǫ) approximation of the optimal 
solution is possible with probability 1− δ for amortized running time O(kǫ−3 log3(n/δ)) , 
much faster than O(n). Under a fully dynamic model, however, where nodes and edges 
can be added and deleted, the author proves that a 2(− log n)1−o(1) approximation is impos-
sible without n1−o(1) amortized run time. Thus, there is no possibility of improving the 
O(n) run time.

Node probing

While previous methods assumed complete knowledge of the future network topology, 
the node probing problem assumes that the future graph snapshots are unknown but can 
be partially observed by probing the neighborhoods of certain nodes. Here, probing a 
node means observing its edges. Assuming G0 to be known, the goal is to carefully select 
which nodes to probe in order to have the most information on the topology of the 
network in order to effectively implement an IM algorithm. This problem may arise in 
large online social networks where it is infeasible to observe the activities of all users at 
every time step. Another relevant application is modeling the social connections within 
a hard-to-reach population, e.g., homeless youth, as there is no straightforward way to 
observe all the people (nodes) in this network, yet alone the friendships (edges).
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This problem was originally formulated by Zhuang et  al. (2013). For each t, the 
researcher probes b nodes and observes changes in their neighborhoods. Once the 
nodes are probed, an IM algorithm is implemented on the (incomplete) visible network. 
Thus, the goal is to find the ideal probing strategy. The authors propose probing nodes 
that yield the maximum possible change to the solution of the IM problem. Since the 
authors use the degree discount algorithm (Chen et al. 2009), this reduces to finding the 
nodes with greatest change in their degree. Specifically, let β(v) be the maximum dif-
ference in the influence spread of optimal seeds chosen before and after probing node 
v. Moreover, let S be the optimal seed nodes at time t − 1 and let S0 be the k nodes with 
the largest in-degree on the most up-to-date graph snapshot. Let t − cv be the last time 
stamp at which node v was probed. For ǫ > 0 , if zv =

√

−2cv log ǫ , β(v) is derived as:

where d̂in(v) is the in-degree of node v based on the most recently probed network. 
Then node v∗ = arg maxv∈V β(v) is probed and the network topology is updated. Once b 
nodes have been probed, the degree discount algorithm is applied to determine the opti-
mal seed nodes for influence spread.

Han et  al. (2017) study the same problem but focus on communities with high var-
iation as opposed to nodes. The authors postulate that the total in-degree for a com-
munity should be relatively stable with time, so if this changes greatly, there must have 
been a significant change in this community and it is worth probing. The authors use 
the community detection algorithm of Zhou et al. (2009), and once the community with 
high variability has been identified, they employ a probing algorithm similar to that of 
Zhuang et al. (2013).

Discussion

We close this section by highlighting important considerations for practical implemen-
tation of these methods. In the sequential seeding setting, it is important for researchers 
to consider how long they can allow the diffusion to take place since static seeding is 
preferable for small T and sequential for large T. Michalski et al. (2020) also emphasize 
that the sequential strategy is better suited for independently activated models, e.g., IC 
and SI, rather than threshold-based models, e.g., LT, so the diffusion model is another 
important consideration. It would also be interesting to compare static and sequential 
seeding for more complicated IM algorithms. It is well-known that seeding the top k 
degree nodes is a relatively poor IM algorithm, so it is unclear whether sequential seed-
ing would perform so much better when combined with different IM algorithms.

For maintenance seeding, we observe that the seeding budget is effectively kT rather 
than k, since k nodes are activated at T different time steps. If T is large, then it may be 
prohibitive to keep activating k nodes each round. Additionally, this setting implicitly 
assumes that nodes can be reinfected at successive snapshots, i.e., St ∩ St+1 �= ∅ . This 
may be reasonable in epidemiological settings, for example, where a person can be rein-
fected by a disease. For marketing campaigns, on the other hand, it is unlikely that a user 
targeted with an ad in multiple time steps can be expected to have significant diffusion 

(8)β(v) =

{

max{0,maxu/∈S d̂in(u)− d̂in(v)+ zv}, v ∈ S0

max{0, d̂in(v)−minu∈S d̂in(u)+ zv}, v �∈ S0
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in each case. Thus, the number of times that a user has been infected and this effect on 
the diffusion mechanism should be considered carefully. Moreover, save the IC model, 
if a node is infected at time t, then it could continue to attempt to infect its neighbors 
at t + 1, t + 2, . . . . The frameworks presented above, however, assume that unless nodes 
are in the new seed set St+1 , they are unable to exert influence. Next, save (Singh and 
Kailasam 2021), each maintenance seeding method assumes that the future network 
topology is known, which is generally untrue in practice. In particular, sequential seed-
ing strategies when the graph snapshots are unknown is an important and practically 
relevant open problem. Finally, Yang et al. (2017) argue that identifying influential nodes 
is a separate task from influence maximization. For example, if a new user joins X, they 
may want to follow the most influential users. Identifying these users is different from 
trying to maximize the spread of a product or idea on X’s network.

The node probing problem is a promising step toward practically relevant IM algo-
rithms. Indeed, assuming that the network structure is unknown, except through 
probing, is much more realistic than the methods which assume complete topological 
information. These methods, however, treat the problem as a sequence of static IM tasks 
since the seed nodes are computed fresh at each time step. An interesting advance would 
be to leverage the previous seed set in computing the new seeds.

Real world implementations
A key focus of this review is understanding if existing methods are prepared to handle 
IM tasks “in the field.” By real-world implementation, we mean that researchers inter-
vene to initially influence nodes in the network and then empirically calculate or esti-
mate the information spread at the end of the experiment. This contrasts with most IM 
studies which may use a real network, but then perform simulations on these networks 
to both influence nodes and compute the final spread.

To date, the literature on IM in real-world settings is scant. In this section, we highlight 
the existing studies and discuss some of the associated challenges. While these works 
assume that the network is static, the majority employ a sequential seeding strategy 
which is why we include it in our discussion of temporal IM. To our knowledge, there 
are no existing papers explicitly implementing IM algorithms on dynamic networks.

The most notable examples of applied IM comes from a series of papers by Yadav et al. 
(2016), Yadav et al. (2017), Yadav et al. (2018), Wilder et al. (2017), Wilder et al. (2018). 
In these works, the goal is to maximize HIV awareness among homeless youth in large 
urban areas. This is a classic IM setting as homeless shelters can only train a small num-
ber of youth on HIV prevention, but hope that participants pass this information along 
to their friends to maximize awareness. The general problem setup is as follows. First, 
the social network of homeless youth is partially constructed. Then the homeless shelter 
chooses k youth to participate in an intervention on HIV prevention. During the train-
ing, the youth reveal all of their one-hop friendships. The information is then given time 
to diffuse on the network (but this spread is unknown) before inviting k more youth for 
training. This process continues for T training rounds.

There are several key challenges to deploying IM algorithms in this setting. First, the 
complete social network of the homeless youth population is unknown, both in terms 
of nodes (youth) and links (friendships). Moreover, new information on the network 
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structure is collected during the experiment as youth are trained and their friendship 
circle is elucidated. Second, youth may refuse and/or be unable to attend the training, 
meaning that seed nodes have a certain probability of remaining inactive. Lastly, quan-
tifying the information spread on the network is highly non-trivial. Thus, this problem 
combines node probing, as the network structure is partially unknown before selecting 
a node to learn their social circle, and sequential seeding, where the nodes are activated 
over time. It differs from the standard node probing problem, however, in that nodes 
are chosen to optimize influence spread, rather than maximize topological informa-
tion about the network; it differs from sequential seeding in that the influence spread is 
unknown when selecting the next seed nodes.

The first attempt to address these challenges comes from Yadav et al. (2016). Assum-
ing the SI model3 for diffusion, the authors construct the social network using Face-
book friendships while inferring missing links using link prediction techniques (Kim 
and Leskovec 2011). They prove that the task of choosing k seed nodes at each of the T 
time steps is NP-hard and that it is impossible to achieve a n−1+ǫ approximation of the 
optimal solution with an uncertain network. The problem is then recast as a Partially 
Observable Markov Decision Process (POMDP). By simulating the diffusion process, 
the nodes with the largest expected reward (influence spread) are selected for the seed 
set. In order for the method to handle real-world network sizes, the authors propose a 
divide-and-conquer approach. Their proposed method is one hundred times faster than 
existing methods while also yielding greater influence spread. In Yadav et al. (2016), the 
authors generalize the model by allowing for greater uncertainty in the influence and 
edge probabilities.

In Wilder et al. (2018), the authors focus on several practical considerations for this 
problem. First, the algorithm accounts for a non-zero probability that a seed set node 
remains inactive, i.e., the youth does not attend the training. The authors also address 
the network construction step by proposing a network sampling approach based on 
the friendship paradox (Feld 1991). This paradox says that, on average, a random node’s 

Fig. 5 Homeless youth social network constructed using different methods. a All methods combined. b 
Self-reported edges. c Field observations. d Staff observations. Reproduced from Wilder et al. (2018) with 
permission of the author

3 In the paper, Yadav et al. state that they use the IC model, but in terms of the notation of this paper, it falls under the SI 
classification.
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neighbor has more friends than the original node. Thus, with a sampling budget of M 
nodes, they first randomly sample M/2 nodes and then randomly sample one neighbor 
per node. This approach increases the likelihood that central (e.g., influential) nodes are 
sampled. Figure 5 shows the homeless youth social network constructed using different 
methods (reproduced with permission of the author). These four networks highlight the 
challenges of constructing the network for a hard-to-reach population as the topology 
varies greatly depending on the collection method (self-report, field observations 
and homeless shelter staff observations). Next, the authors assume that the influence 
propagation probability is unknown but modeled to maximize the worst-case ratio 
between the true spread and the estimated spread. Finally, the authors propose a greedy 
algorithm to select the optimal seed nodes and prove that it is guaranteed to output a 
solution within a factor of (e − 1)/(2e − 1) of the optimal. In a real-world pilot study, 
by sampling only 15% of the nodes, the proposed method achieved comparable spread 
compared to that if the entire network was known.

These methods are applied to the real-world task in Yadav et al. (2017), Yadav et al. 
(2018). Some of the key questions considered are: Do the activated nodes actually pass 
their information along to others? Do the activated nodes give meaningful information 
about the social network? Can these algorithms do a better job of selecting seed nodes 
than an expert (social worker) can? To answer these questions, the authors implement 
the methods from Yadav et al. (2016) and Wilder et al. (2017). They also consider a base-
line IM algorithm based on largest degrees. For each method, the authors recruit study 
participants, construct the network, activate nodes (via training) and conduct follow-ups 
to evaluate the final influence spread. The proposed methods in Yadav et al. (2016) and 
Wilder et al. Wilder et al. (2017) yielded much larger influence spreads than the degree-
based method while also leading to a change in participants’ behavior, i.e., increase in 
participants testing for HIV.

Lastly, we discuss an application of IM to an online setting. Huang et al. (2022) con-
sider a “closed” social network where posts are only shared with certain people rather 
than all of the users’ connections. As a slight variation to the standard IM problem, the 
authors find the friends with which the user should share their information to maximize 
spread. In other words, the goal is to maximize the influence spread where users can 
only share the information with a limited subset of edges (neighbors). Indeed, this may 
be a more realistic diffusion mechanism for social networks as it is unlikely that some-
one would give equal effort to share information with each of their friends; rather, he/she 
would likely target a few specific people. The authors apply this to an online multiplayer 
game where each user is recommended friends to interact with, e.g., send gifts, game 
invitations, etc. The proposed method is compared with randomly selecting friends and 
yields a 5% increase in click-through rate.

Considerations and future directions
We concluded by sharing thoughts on the challenges associated with temporal IM as 
well as some of the important areas for future research.
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Real‑world implementations

In Sect. 4, we saw the litany of challenges facing a researcher trying to implement IM 
algorithms on real-world problems. We list a handful of questions that he/she must con-
sider in applying these methods: What is the information diffusion mechanism? Can 
nodes be sequentially updated, or are they all activated at the start? Will seed nodes be 
activated with certainty? How long does the diffusion process continue? On what time 
scale is the network evolving? How long does it take to influence a node? Are the net-
work dynamics changing rapidly? Does the future topology of the network need to be 
predicted? Is the network updated in an online setting or with standard snapshots? Is the 
true influence spread known? We look forward to many more IM implementations in 
real-world applications.

Single seeding methods

In Sect. 2, we discussed several methods for the single seeding temporal IM problem. 
There were only five papers, however, and Aggarwal et  al. (2012), Osawa and Murata 
(2015) and Erkol et  al. (2020) all proposed similar solutions. Thus, there is still much 
room for research on this problem. Recently, graph neural networks (GNN) were applied 
to the static IM problem (Qiu et al. 2018; Tian et al. 2020; Kumar et al. 2022) and may 
also find success in the temporal setting.

Reverse reachable sketches

RR sketches have become the standard for state-of-the-art algorithms in the static IM 
setting (Tang et al. 2015; Nguyen et al. 2016; Guo et al. 2020). However, it is not straight-
forward to extend the RR paradigm to the temporal setting, e.g., uniformly sampling RR 
sets is difficult as the network evolves. RR sketch-based temporal IM algorithms have 
only been explored by Peng (2021), so this is an important research direction.

Ex ante vs. ex post

Most methods proposed in Sect. 2 assume that the entire topology of the dynamic net-
work is known (ex post assumption), even though this is unrealistic in many situations. 
Yanchenko et al. (2023) yielded promising results for ex ante IM where the future evolu-
tion of the network is unknown, but more work is certainly needed.

Impact of time

In dynamic networks with diffusion, there is a highly intricate relationship between the 
structural evolution and influence diffusion. This must be carefully accounted for in the 
IM problem similar to Gayraud et al. (2015) and Albano et al. (2013). The impact of time 
scales, aggregation, diffusion times, and diffusion mechanisms deserves further study.

Online setting

Related to the previous point is IM in the online setting, where nodes and edges come 
and go continuously. In real-world applications, it may not be obvious how or when to 
aggregate the network so it becomes more natural to consider online updates. Most 
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methods, however, require that the network is aggregated into graph snapshots. This 
aggregation inherently loses information, such as when the link appeared/disappeared 
and the persistence of the edge. More methods like Ohsaka et al. (2016) can be devel-
oped to address this challenge.

Model mis‑specification

A pertinent challenge for applied IM is selecting the diffusion model. For diseases, 
the SIR model is sensible since infected persons can infect other nodes for as long as 
they are infected. On the other hand, for HIV awareness among homeless youth, it is 
unlikely that someone would attempt to influence all of his/her friends indefinitely. Thus, 
choosing an appropriate diffusion model is crucial. But what are the effects on influence 
spread if the model is misspecified? In Aral and Dhillon (2018), the authors study this 
for static IM and find that standard diffusion models grossly underestimate the influence 
spread of more realistic models. This is likely only compounded in temporal networks 
where the topology also varies.

Uncertainty estimates of seed nodes

The majority of temporal IM algorithms output the optimal seed nodes to achieve 
maximal influence spread. But are there other seed sets that would yield a comparable 
spread? In other words, is the objective function “flat” in the sense that many seed sets 
yield comparable spread? An interesting avenue of research would be deriving a measure 
of uncertainty for optimal seed sets.

Influence minimization

A related problem to IM is that of influence minimization in which seed nodes are “vac-
cinated” to stop the spread of influence on the network. This problem arises in rumor 
diffusion and epidemiological settings (Wang et al. 2013, 2020; Yang et al. 2019; Wang 
et al. 2017) and may lead to interesting philosophical questions. For example, in the vac-
cine campaign against COVID-19, vaccines were first administered to the most vulner-
able populations, e.g., elderly. Thus, seed nodes were chosen based on vulnerability. In 
an influence minimization schema, however, the most active and/or social people would 
likely receive the vaccine first to minimize the spread between groups. These opposing 
goals lead to challenging decisions both ethically and politically.
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