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Abstract 

In this work, we investigate the analysis of generators for dynamic graphs, which are 
defined as graphs whose topology changes over time. We focus on generated graphs 
whose order (number of nodes) varies over time. We use a concept called “sustainabil-
ity” to qualify the long-term evolution of dynamic graphs. A dynamic graph is consid-
ered sustainable if its evolution does not result in a static, empty, or periodic graph. To 
illustrate how the analysis can be conducted, a parameterized and probability-based 
generator, named D3G3 (Degree-Driven Dynamic Geometric Graphs Generator), 
has been introduced in a recent work. From this model, we derive multiple scenarios 
that correspond to three trends in graph order evolution. Our central contribution lies 
in a mathematical framework that provides an expectation of the order of the graph 
at time step t + 1 , given its order at time step t. Nevertheless, our analysis underscores 
the challenge of characterizing the sustainability of dynamic graphs, even when a for-
mal mathematical model for graph order evolution is known.

Keywords:  Dynamic graphs, Graph generation, Graph properties, Evolutionary models

Introduction
This work provides an analytical study for generated graphs obtained in the context of 
dynamic graph generators. A dynamic graph generator can be defined as a computa-
tional process that takes input data, such as an initial graph (referred to as a seed graph), 
and proceeds to generate a sequence of static snapshot graphs. This sequence is gener-
ated by applying predefined rules to the previously generated graphs. More precisely, 
a generator will produce a snapshot graph Gt+1 at a step t + 1 considering t generated 
snapshot graphs {G1, . . . ,Gt} and the seed graph G0 . The output of a dynamic graph gen-
erator is therefore a stream of static graphs ordered according to timestamps.

In that context, the present work focuses on the analysis of the evolution of the 
graph order (number of nodes) of dynamic graphs obtained by a specific generator. 
Many works have been dedicated to the generation of graphs. Most of them have been 
designed for a specific purpose (Barabási and Albert 1999; Krioukov et al. 2010; Zuev 
et al. 2015; Papadopoulos et al. 2012; Muscoloni and Cannistraci 2018; Clementi et al. 
2010; Erdős and Rényi 1960; Watts and Strogatz 1998).
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Most of the time, the order increases at each time step (growing networks) (Bara-
bási and Albert 1999; Krioukov et al. 2010; Zuev et al. 2015; Papadopoulos et al. 2012; 
Muscoloni and Cannistraci 2018) or remains the same (Clementi et al. 2010; Erdős and 
Rényi 1960; Watts and Strogatz 1998). In Tishby et  al. (2019) and Tishby et  al. (2020) 
however, the authors study the evolution of graphs subject to three different contraction 
schemes. Applying their method, the order of the graph is decreasing at each time step. 
They show that whatever the contraction process, the topology of the graphs converges 
to the classical Erdös-Renyi graph topology. However, for all these works, the order of 
generated graphs is known at each step and thus studying the evolution of the order is 
useless. A more interesting contribution was recently proposed in Budnick et al. (2022). 
The authors propose to apply an addition-deletion process for driving the evolution of 
a graph. Starting from an initial graph, equivalent to the seed considered in our model, 
they propose an evolution method based on two rules. A node-addition rule and a node-
deletion rule. At each time step only one rule is applied and its choice is probabilistic, 
with a probability Pdel for the node-deletion rule and 1− Padd for the node-addtion 
rule. In their work they study the evolution of the distribution of degrees which is time-
dependent. While the proposed generator is interesting for studying many graph prop-
erties, in the context of our study, the value of Pdel determines the property we propose 
to examine.

The purpose of this work is to address the question in another way. Here the mecha-
nism generating graphs is assumed to be known and the problem is to find properties 
generated graphs satisfy. As a first study, this work deals with the evolution of graph 
order when the generator relies on rules enabling both the addition and the deletion of 
vertices. According to the generative mechanism, it may happen, after some time steps, 
that generated graphs become empty forever or periodic. A notion called “sustainability” 
was introduced in Bridonneau et al. (2023a) to highlight this phenomenon. If there exists 
a time step t such that a generated graph becomes empty or periodic from that moment, 
then this graph is said to be “non sustainable”. Otherwise, if no such time step exists, the 
graph is said “sustainable”.

Definition 1  (Graph sustainability) A dynamic graph G is said sustainable if both 
Condition 1 and Condition 2 are not verified.

To better understand the purpose of this notion, a new version of the Degree Driven 
Dynamic Geometric Graph Generator (D3G3), introduced in Bridonneau et al. (2023b), 
is considered. Graphs produced by D3G3 are geometric graphs. A geometric graph is 
defined by an euclidean space and a threshold d. If the euclidean distance between two 
distinct vertices is lower that the threshold, they are connected by and edge. For this 
study, without loss of generality we consider a 2D-unit-torus (i.e., a square [0; 1[2 where 
the two opposite sides are connected). Each vertex is characterized by a set of coordi-
nates, such that given two vertices u and v it is possible to compute their euclidean dis-
tance: dist(u, v). Given V the set of vertices, the set of edges E is defined in the following 
way: E = {(u, v) ∈ V 2 | dist (u, v) � d}.

Condition 1: ∃T ∈ N, ∀t � T ,Gt = (∅, ∅)
Condition 2: ∃T ∈ N and ∃k ∈ N

∗, ∀t � T ,Gt = Gt+k
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Graphs generated by D3G3 are produced thanks to an evolution process. This mecha-
nism is parameterized by an initial graph (the seed graph) and by two transition rules 
driving the evolution of the graph between two consecutive time steps. Apart from a 
random generator, no external decision or additional information is used by this mecha-
nism. Rules are based on node degrees only and rely on a random generator for posi-
tioning new nodes in the 2D euclidean space. This leads to the name of the generator: 
Degree-Driven Dynamic Geometric Graphs Generator or D3G3.

Definition 2  (Degree Driven Dynamic Geometric Graph Generator) An instance of 
D3G3 is defined by an initial graph, a set of parameters and two rules:

•	 G0  = (∅, ∅) the seed graph,
•	 parameters:

•	 d ∈]0,
√
2
2 [

•	 SS a set of non-negative integers
•	 SC a set of non-negative integers

•	 rules applied on Gt leading to Gt+1:

•	 if v ∈ Vt , then v ∈ Vt+1 iff deg (v) ∈ SS (conservation rule, position of v remains 
unchanged)

•	 if v ∈ Vt and if deg (v) ∈ SC then a new vertex u is added to Vt+1 (creation rule, 
position of u is random in the unit-torus)

The general evolution process is iterative. To compute a new graph at step i + 1 
from the current step i, the generator makes two independent decisions for each node: 
1) whether this node from step i will exist in step i + 1 or should it disappear, and 2) 
whether the node from step i will generate a new node at i + 1 (at a random position). 
These decisions are guided by the node’s degree. If the degree value is contained in set 
SS , then the node survives to the next step and retains its actual position. If the degree of 
the node is contained in parameter SC , then a new node is created. These two processes 
are independent. Finally, edges between nodes are updated based on proximity.

The order of the graph at each step is not set by any external process or as a param-
eter of the generator but rather emerges from the application of the rules on consecutive 
snapshot graphs. The central question is whether, for a given parameter set, the gener-
ated graphs are sustainable or not.

However, due to a memory effect (the conserved nodes with their position) between 
two consecutive steps of the evolution of the graph, we did not found any mathematical 
approach for the analysis of the sustainability. This led us to propose a relaxed version of 
the generator.

For the new model considered in this article, position of conserved nodes consid-
ered in D3G3 are not kept for the next time step, but are randomly repositioned into 
the 2D-space so that their new position is independent from one step to the next one. 
Moreover, this study also restrain the values both sets SS and SC may take, so that they 
are considered to be the same. Therefore parameter sets SS and SC will be referred to as 
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S, a set of non-negative integers. The rules driving the evolution of the generator become 
as follows: if a node at a given step t has its degree in S then it is conserved and it is at 
the origin of a new node at step t + 1 . Another consideration is made in the context 
of this study. Considered values of set S are such that S = {sk + r | k ∈ N+ r ∈ A} , for 
a fixed positive integer s and a set A ⊂ [0, s) . For this very specific settings, we show 
that generated graphs have one of the three following behavior when their order is big 
enough: either their order increases exponentially, either it decreases exponentially or 
it is roughly constant. For each case, we provide criterion about sustainability. We show 
that proving whether a generated graph is sustainable for this three cases is not obvious 
and need to consider both small and big snapshot graphs.

Model and concepts
The model discussed here, RD3G3, is a relaxation of the D3G3 model defined in the 
introduction. It mainly differs on two points. First, only one set of non-negative inte-
gers is considered for both the conservation and the creation rules. Second, all con-
served vertices are repositionned in the 2D-torus at the following time step. The model 
is defined as follows:

Definition 3  (Redistributed Degree Driven Dynamic Geometric Graph Generator) An 
instance of the model is defined by an initial graph, a set of integer and a rule:

•	 G0  = (∅, ∅) the initial graph,
•	 parameters:

•	 d ∈]0,
√
2
2 [

•	 S a set of non-negative integers

•	 rules applied on Gt leading to Gt+1:
•	 for all v ∈ Vt such that deg (v) ∈ S , v ∈ Vt+1 (conservation rule) with a new posi-

tion and a new vertex is added to Vt+1 with a random position in the unit-torus 
(creation rule)

Figure 1 illustrates the application of this rule for one example snapshot Gt to the next 
one ( Gt+1 ). The term “redistributed” here comes from the new treatment of conserved 
nodes from D3G3. In the D3G3 model, if at a step t a node is conserved at step t + 1 
then its position does not change. Unlike this original version, at every time step t, the 
conserved nodes at step t + 1 are uniformly redistributed over the torus so that new 
graphs are random geometric graphs whose order depends only on the number of con-
served nodes. One can then find an estimation function fS,d of graph order at step t + 1 
knowing graph order at step t:

where p is the probability for two nodes to be connected (for d ∈ (0, 12 ) , p = πd2 ). Here 
n refers the order of the graph at step t. For the rest of the article, considered values of S 
will be restrained. These values are specified in the following section.

(1)∀n, fS,d(n) = 2n

k∈S

n− 1
k

pk(1− p)n−1−k
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Asymptotic graph order evolution
This section aims at presenting our work on the RD3G3 model for restrained 
values on the parameter S. Indeed, this work focuses on sets of the form 
S = {sk + r | r ∈ A, k ∈ N} for fixed s ∈ Z

+ and A ⊂ [0, s − 1] . Such sets correspond 
to non-negative integers that are multiples of a positive integer (s) plus a remainder 
within set A. The main result of this paper is an equivalent of fS,d(n) for large values 
of n. This equivalent will also help understanding the behavior of generated graphs 
with high orders. It will also provide an answer to whether generated graphs are sus-
tainable or not.

Intermediate result

The result of this work relies on properties roots of unity satisfy. As a reminder, a nth 
root of unity for any positive integer n is defined as follow:

Definition 4  Let n be a positive integer. Then a nth root of unity is a complex number 
ω such that ωn = 1.

Such numbers satisfy several properties one may find in Hadlock (2000) at sec-
tion 2.5. Most important ones for this article are gathered in the following lemma:

Lemma 1  Let n be a positive integer. Then the following holds:

•	 ωn = exp ( 2iπn ) is a nth root of unity;
•	 a complex number ω is a nth roots of unity if and only if there exist k such that 

ω = ωk
n;

•	 if a complex number ω is a nth root of unity, then its modulus satisfies |ω| = 1;
•	 sum of jth powers of nth root of unity, for any non-negative integer j, are such 

that: 

(a) Gt (b) Intermediate step. (c) Gt+1

Fig. 1  At step t the graph is Gt = (Vt , Et) , with |Vt | = 13 . On this graph, during the intermediate step, rules 
are applied to every vertex. S = {0, 2, 3} , each node which degree belongs to S is kept and is duplicated (blue 
circle surrounded by a circle) and all the other nodes are removed (red diamonds). There are 7 nodes that are 
kept and 6 that are removed. Then new nodes (green stars) are added to the graph and the remaining ones 
are randomly positioned in the space. This leads to graph Gt+1
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Such numbers are useful to prove the following result concerning infinite sums:

Lemma 2  Let s ∈ Z
+, n ∈ N and x ∈ R . Let r ∈ [0, s − 1] , then we get the following 

equality:

where ωs = exp
(

2iπ
s

)

 is an sth root of unity.

Proof  Let s ∈ Z
+, n ∈ N and x ∈ R . Let r ∈ [0, s − 1] . Let ωs = exp ( 2iπs ) . The first thing 

to notice is that the infinite sum on the left side of the equality converges. For any values 

of k such that sk + r > n , the binomial 
(

n
sk + r

)

= 0 . Thus, the infinite sum contains 

only finitely many non-zero terms. Then, it is sufficient to notice that, according to prop-
erties roots of unity satisfy, the following holds:

From this the following equations hold:

This ends the proof. 	�  �

This lemma on roots of unity helps getting another expression of the function fS,d:

Theorem 1  Let s ∈ Z
+ , n ∈ N and A ⊂ [0, s − 1] . Let S as defined above, then:

n−1
∑

k=0

(

ωk
n

)j
=

{

n If n divides j
0 Otherwise

+∞
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n
sk + r
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Proof  Let s ∈ Z
+ , n ∈ N and A ⊂ [0, s − 1] . Rewriting fS,d(n) lead to the following 

expression

Thus, applying result of lemma 2 provides:

This ends the proof. 	�  �

This theorem provides an exact formulae for the estimation function fS,d . It is impor-
tant to notice that this re-written formulae involves only finite sums. It is therefore easier 
to deal with its analysis which is the purpose of the following sub-section.

The equivalent and first interpretation

From result obtained in the last subsection, it is possible to get an equivalent for large 
values of n for fS,d:

Theorem 2  Let s ∈ Z
+ , n ∈ N and A ⊂ [0, s − 1] . Let S as defined above, then for large 

values of n:

Proof  This comes from Theorem 1 and from properties on complex numbers. More 
precisely, for each value of r ∈ A there is exactly one value of j ∈ [0, s − 1] such that 
ω
−jr
s (1− p+ ω

j
sp) = 1 (for j = 0 ). For all other values of j, (1− p+ ω

j
sp) �= 1 and have a 

modulus lower than 1. Therefore, raised to the n− 1-th power, (1− p+ ω
j
sp)

n−1 −→ 0 
as n grows to infinity. The rest is computation of limits. 	�  �

This result has an interpretation for graphs generated with the model. Indeed, for a 
given snapshot graph at step t of order nt , the application of the rule will produce a graph 

with an expected order 
(

2|A|
s

)

nt at step t + 1 . The evolution of graph order exhibits three 
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different trends depending on whether 
(

2|A|
s

)

 is lower than, equal to or greater than 1. 

The next section goes further in the analysis of these three cases. It also highlights the 
differences between graph order evolution of big and small graphs: interpretation 
depends on the smallest values of parameter S.

Generated graphs interpretation
This section aims at going further in the interpretation of previously stated results. 
More precisely, this section highlight three different asymptotic graph order evolution 
that occur from stated equivalent in . Moreover, interpretation for small graph order is 
given. This will help knowing whether generated graphs are likely to remain steady or 
not, depending on the smallest values of the parameter S.

General observations

Before dealing with each case, it is important to understand the meaning of Theorem 2. 
This theorem states that for any given generated graph having nt nodes at a step t and 
assuming nt is large enough, then, at the next step, nt+1 is expected to be close to 
(

2|A|
s

)

nt . Therefore, starting with a seed graph of order N large enough would lead, after 

t steps, to a graph of order

This is why graph order is said to grow exponentially. From this, three cases have to be 
considered:

•	 The first case is 2|A|s < 1 . This means generated graphs order is likely to decrease 
when it is large.

•	 The second case is 2|A|s > 1 . This means generated graphs order is likely to increase 
when it is large.

•	 Finally, the third case is 2|A|s = 1 . This means generated graphs order is likely to 
remain steady when it is large.

Exponential increasing

The first studied case is when s and A both satisfy 2|A|s > 1 . For this case, as S is not 
bounded the order of generated graphs is likely to tend to infinity. Generated graphs are 
therefore likely to be sustainable. An instance illustrating this case is given Fig. 2.

Exponential decreasing

The second studied case is when s and A both satisfy 2|A|s < 1 . For this case, graph order 
of generated graphs is likely to decrease exponentially. An instance illustrating this case 
is given Fig. 3. However, it is not enough to conclude on the sustainability of generated 
graphs. Indeed, when graphs become small enough (close to 0), one may consider to take 
into account the smallest values of set S. This last case is further studied in section .

nt ≃
(

2|A|
s

)t

N
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Quasi constant evolution

Two points must be noticed for the last case. First, this case happens if and only if s is 
even. Indeed, if s is odd, whatever the set A one may choose, the numerator will be even. 
Second, for a given time step t, application of the rule on a graph which order is nt will 
produce a graph which order is expected to be nt+1 = nt . It is however necessary to go 
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Fig. 2  Scenario of exponential increase. A = [0, 5], s = 7, n0 = 375 . The theoretical value is given by the 

formula nt ≈
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2|A|
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further as fS,d only provides an expectation. The graph order will indeed change a little. 
An estimation for this change can be obtained with the standard deviation of a binomial 
law. Despite all these consideration simulations have been performed. They all show that 
graph order changes through time with little variations. These simulations are repre-
sented in Fig. 4. It is worth noticing graph order is not constant all along the simulation, 
but rather increasing or decreasing a little bit every time.

A further step to this study is to take into account the standard deviation σS,d associ-
ated with graph order evolution. For a given nt ∈ Z

+ order of a graph at step t, σS,d(nt) 
tells how far away from nt+1 is fS,d(nt) , which in this case is roughly nt . Thus, applying 
Chebishev’s inequality (Feller 1991), for instance, states that for any given real number 
k > 0:

The computation of σS,d(n) for large enough values of n lead to an equivalent which is 
the purpose of the following theorem:

Theorem 3  Let s ∈ Z
+ , n ∈ N and A ⊂ [0, s − 1] . Let S as defined above, then for large 

values of n:

Proof  The proof of this theorem relies on the same argument as for theorem 2 and on 
the definition of the standard deviation of binomial distributions. 	�  �

Pr[nt+1 /∈ [nt − kσS,d(nt), nt + kσS,d(nt)]] �
1

k2

σS,d(n) ∼
1

s

√

n|A|(s − |A|)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

t

n
t

Graph order evolution through time.
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Fig. 4  Simulation performed considering s = 4 , A = [0, 1] and d = 0.05 . The number of steps is 5000 and the 
initial seed graph is a random geometric graph of order 2000
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This theorem states that the standard deviation σS,d(n) is proportional to 
√
n for large 

values of n. This provides better information about the possible values nt+1 may have 
depending on nt . Indeed, now above stated inequality can by rewritten as follow:

Therefore, nt+1 and nt are expected to be roughly the same with a difference expected 
to be small in comparison to nt (proportional to √nt  ). It is however not enough to con-
clude about the sustainability as nothing prevent the graph order to reach small values. 
It is necessary to add a focus on small graph order to answer the question about what 
happens when graphs become small.

Sustainability of small generated graphs

The question of whether a small generated graph is sustainable or not does not depend 
on the asymptotic variation of the graph order. The answer to this question relies on the 
smallest values that the parameter S contains.

Indeed, on the one hand, whatever the values of s one may consider, if A ⊂ [k , s − 1) 
for any k � s

2 , then graphs whose order does not exceed k do not have nodes with a 
degree greater than or equal to k. Therefore such graphs become empty because they do 
not have any node satisfying the creation rule. A further step is to consider small values 
of parameter S. For instance, for d = 0.05 , s = 16 and A = [8, 15] , the full-lined curve of 
fS,d represented in Fig. 6 shows that for small values of n, fS,d(n) < n . This means that 
graph order of small graph is expected to decrease between two consecutive steps and 
graphs are likely to become empty. Therefore generated graphs, for this configuration are 
likely not be sustainable.

Pr[nt+1 /∈ [nt −
k

2

√
nt , nt +

k

2

√
nt ]] �

1

k2

0 5 10 15 20 25 30
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

Time Steps

G
ra
ph

O
rd
er

Sustainable Small Network Example

Numerical results

Fig. 5  Example of an instance illustrating the sustainable small network case. A = [0, 1], s = 5, n0 = 7523 . As 
A contains small values, the graph is likely to be sustainable since from t to t + 1 isolated nodes are kept and 
are at the origin of new nodes. With the current set of parameters, nt remains close to 210± 40
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On the other hand, whatever the values of s one may consider, if A ⊂ [0, k + 1] for any 
k < s

2 , then graphs whose order does not exceed k have nodes with a degree lower than or 
equal to k. Therefore such graphs do not become empty because they have all their nodes 
satisfying the creation rule. As for the first case, a further step is to consider small values 
of parameter S. For instance, for d = 0.05 , s = 16 and A = [0, 7] , the dotted curve of fS,d 
represented in Fig. 6 shows that for small values of n, fS,d(n) � n . This means that graph 
order of small graph is expected to increase between two consecutive steps. Therefore, 
as soon as graph order does not exceed a certain quantity, generated graphs are likely to 
conserve few nodes and therefore are likely to be sustainable as illustrated on Fig. 5.

Conclusion
This research work aims to provide insights into the dynamics of dynamic graphs. We 
propose a metric, called ’sustainability,’ to measure the long-term evolution of a dynamic 
graph. In our context, a graph is considered sustainable if its long-term evolution does 
not result in an empty graph or a periodic/static graph. To illustrate our approach for 
analyzing the dynamics, we consider dynamic graphs generated by a modified version of 
the D3G3 Generator (Bridonneau et al. 2023b). The evolution of such geometric graphs 
is obtained by the application of two rules on the vertices. Rules are parameterized by an 
integer set S. Vertices which degree does not belong to S are removed from the graph. 
The other vertices are kept and duplicated for the next time step. Each vertex is ran-
domly positioned in the environment, thus, vertex degree is stochastic. However, for 
large graphs, the analysis leads to a mathematical formulation of the evolution of graph 
order. It has been proved that graph order of generated graphs has three different asymp-
totic evolutions. Either it is exponentially increasing, exponentially decreasing or quasi 
constant. For the first case, generated graphs are sustainable with high probability. For 
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y = fS,d(n);A = [0 : 7]
y = fS,d(n);A = [8 : 15]

y = n

Fig. 6  Theoretical graphical representation of fS,d for value of n from 0 to 400. The blue curve correspond to 
A = [0, 7] and the red one correspond to A = [8, 15]
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the decreasing case, this question is more difficult to answer and sustainability must be 
considered with respect to sustainability of small generated graphs. Indeed, a decrease 
in the graph order does not necessarily imply that the graph will disappear. Therefore, it 
is important to consider the smallest values of the parameter S. Similar considerations 
apply to graphs exhibiting quasi-constant order with an added focus on standard devia-
tion. However, for the specific configuration studied in this paper, graph order evolu-
tion is completely known and yet the sustainable property remains a challenging task. In 
summary, studying generators that allow both addition and suppression of nodes with-
out a total control on the size of the graph requires an analysis of the sustainability. Our 
findings illustrate that this property does not yield a straightforward solution, even when 
the graph order evolution is well-understood and when the model is simple.
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