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Introduction
Inferring relations between observed features from correlational data is a foundational 
approach to exploring underlying mechanisms in, for example, ecological, genetic and 
neural systems (Barberán et al. 2012; Wang and Huang 2014; Bullmore and Sporns 2009). 
The resulting relations are often represented as a network where the features are nodes 
and their respective relations are links. These networks are dense, making it difficult to dis-
cern relevant structures. Field-specific methods to sparsify them suggest soft thresholding 
(Zhang and Horvath 2005), but hard thresholding is often applied in practice (Barberán 
et al. 2012; de Vries et al. 2018; Neuman et al. 2022). Gaussian graphical models provide an 
alternative way of representing correlational data by encoding relations between features 
through partial correlations. A popular approach to infer a Gaussian graphical model is the 
graphical lasso (GLASSO) (Friedman et al. 2007; Yuan and Lin 2007), which estimates the 
precision matrix while ensuring sparsity through l1-regularization. This method and related 
methods, such as neighborhood selection (Meinshausen and Bühlmann 2006), elastic net 
(Zou and Hastie 2005) and Markov networks (Murphy 2012), are widely used in many 
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disciplines (Harris 2016; Epskamp et al. 2018; Cao et al. 2017; Severson et al. 2019). Despite 
its widespread application, GLASSO struggles to tackle noise and the high dimensionality 
that comes with many observed features, often exceeding the number of available samples 
(Ravikumar et al. 2008; Wainwright 2009; Ravikumar et al. 2011; Liu et al. 2012).

Representing the inferred relations as networks enables studying structures in the data 
with standard tools from network science. Network modules – groups of tightly connected 
nodes – are studied across scientific disciplines because they reveal significant patterns and 
functional relationships in diverse systems, ranging from ecological (Calatayud et al. 2020, 
2021) to metabolic networks (Guimera and Nunes Amaral 2005). However, the GLASSO 
is agnostic to modular structure in the inferred networks, which can obscure network 
structure and subsequent interpretation and understanding of the studied systems. Simul-
taneously inferring the network and its modular structure can alleviate this problem, but 
requires prior knowledge about the dynamical processes on the network (Peixoto 2019), 
which is rarely applicable or available. Attempts at integrating modular structure with the 
GLASSO use a predetermined number of modules (Ambroise et al. 2009; Ver Steeg et al. 
2019) or other criteria than modular structure when regularizing (Tan et al. 2015; Pircala-
belu and Claeskens 2020; Kumar et al. 2020). Manually setting the number of modules or 
regularizing using criteria that do not account for modular structure risks over- or underfit-
ting the modular structure to data.

Here we propose a novel approach to solve this model selection problem by integrating 
the two steps from relational data to network modules – network inference and commu-
nity detection – in an extension of the GLASSO method. We use the network’s modular 
structure to select the regularization strength, which allows us to balance over- and under-
fitting the modular structure to the data. Using synthetic data, we show that this approach 
allows us to recover more modular structures in noisy data compared with the standard 
GLASSO. Applied to country-level daily incidence during the Covid-19 pandemic and gene 
co-expression data from the plant Arabidopsis thaliana, we find that the module-based 
GLASSO can identify more modular structure in these data compared to the standard 
GLASSO – highly relevant for researchers studying these systems.

Results
Gaussian graphical models describe relations between observed features. They are derived 
from the precision matrix � that encodes conditional independence between variables, 
meaning that two observations Xi and Xj are independent, given all other observations, if 
the corresponding ij:th element in � is zero. The GLASSO aims at maximizing the Gauss-
ian log-likelihood of the precision matrix given the data while ensuring a sparse solution by 
imposing an l1-regularization term �||�||1 , with the regularization parameter � . The best 
precision matrix �� for a specific value of � is thus

where �̂ is the covariance matrix calculated from the observed data. The parameter � 
determines the regularization strength and thereby the sparsity of the inferred precision 
matrix. The regularization parameter � is often determined using cross-validation where 

(1)�� = argmax
�

log det(�)− tr(��̂)− �||�||1 ,
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the best value �∗ll is the one that has the largest log-likelihood of the test data �̂test given 
the model ��,train inferred from the training data �̂train such that

The resulting regularization strength conserves relations with support in both the train-
ing and test data, without considering any conserved structures in the data.

To take the modular structure into account when selecting the regularization 
strength, we suggest using the map equation framework and its search algorithm 
Infomap (Rosvall and Bergstrom 2008; Rosvall et al. 2009; Edler et al. 2017). The map 
equation encodes a random walk on a network and measures the codelength L(M) of 
the random walk given a partition M of the network into modules. Infomap uses a 
greedy approach to find the partition M∗ that minimizes the codelength,

such that M∗ is the best partition of the network according to the minimum descrip-
tion length principle. This popular approach is widely recognized as one of the best 
methods for detecting network communities (Lancichinetti and Fortunato 2009; Alde-
coa and Marín 2013). To connect Infomap with the GLASSO regularization, we suggest 
maximizing the signal of modular structure present in both the training and test sets 
when cross-validating the regularization parameter � . We measure this signal using the 
codelength savings in the test data given the optimal partition of the training data, such 
that

where M�,train is the optimal partition of the training data and Ltest(1) is the one-level 
codelength of the test data with all nodes in the same module. The codelength savings 
are positive if the modular structure in the training data is present also in the test data 
and has its maximum when this shared modular structure is most prominent. This peak 
is associated with the � that best captures modular structure in the data without over- 
or underfitting, analogous to the log-likelihood in Eq.  2. In previous work (Neuman 
et al. 2022), we explored this module-based approach for hard thresholding of correla-
tion networks and showed that a too low threshold gives a highly connected network 
with little modular structure in both the training and test networks, while a too high 
threshold gives a highly modular structure in the training network that is not present in 
the test network. The same reasoning applies to the GLASSO when selecting regulariza-
tion strength. The approach we suggest finds the best compromise between these two 
extremes.

To derive the network G(�∗) that balances under- and overfitting, we use GLASSO 
to estimate the precision matrix �∗ corresponding to �∗ . We use the relation between 
a partition matrix element and the partial correlation so that the link eij between 
nodes i and j is given by

(2)�
∗
ll
= argmax

�

(

log det(��,train)− tr(��,train�̂test)

)

.

(3)M∗ = argmin
M

L(M),

(4)�
∗
cl = argmax

�

Ltest(1)− Ltest(M�,train)

Ltest(1)
,
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where θij is elements of �∗ , and the link weight is thus the absolute value of the partial 
correlation.

Synthetic data

To test the module-based regularization, we generate synthetic data by sampling a 
covariance matrix S from a Wishart distribution such that

where � is the block-diagonal covariance matrix of the planted (oracle) modular struc-
ture, p is the dimension (number of features or nodes) and n is the number of degrees of 
freedom. We plant a modular structure by imposing a block-diagonal structure:

where M(pi) denotes the module of node pi . In this way, both the planted covariance 
matrix � and the sampled matrix S are positive definite. To change the signal-to-noise 
ratio, we can vary the the planted within-module covariance c and the degrees of free-
dom n in the Wishart distribution. Using this setup, we sample the observed data X from 
a p-variate normal distribution such that Xi ∼ Np(0, S) and X ∈ R

p×q , where q denotes 
the number of samples. The objective is to infer the planted modular structure using 
these data.

We use ten planted modules with ten nodes in each module to illustrate our approach, 
as shown in Fig. 1. The sampled covariance matrix is shown in Fig. 1a, where the number 
of degrees of freedom is n = 100 and the planted covariance is c = 0.4 , and we see that 
the matrix is noisy but with discernible modular structure. Using this covariance matrix 
we draw q = 100 samples to obtain the synthetic data. We see that the log-likelihood-
based GLASSO (hereafter Standard GLASSO) gives a lower optimal � value and hence 
regularizes less than the module-based GLASSO (hereafter Modular GLASSO), since 
their respective quality functions peak at different �-values (Fig. 1b). This leads to the 
Standard GLASSO including a lot of noisy links, as the network representation shows 
(Fig.  1c). In contrast, Modular GLASSO increases the regularization to maximize the 
modular structure common to the test and training data, enabling the method to cor-
rectly recover the planted modular structure (Fig. 1d).

To explore this result, we vary the covariance c and the number of samples q. 
We quantify how well the methods recover the planted partition by calculating the 
adjusted mutual information (AMI) between the planted partition and the recovered 
partition, which is the partition found by Infomap given the network G(�∗) (Fig. 2). 
The Standard GLASSO recovers the planted partition when the number of samples 
is small and the covariance is large, but not for many samples (Fig.  2a). This ten-
dency to recover more modular structure with fewer samples exemplifies the “bless-
ing of dimensionality” (Ver  Steeg et  al. 2019). In contrast, the Modular GLASSO 

(5)eij = | − θij/
√

θiiθjj|,

(6)S ∼ Wp(n,�),

(7)�i,j =







1, i = j
c, M(pi) = M(pj)
0, M(pi) �= M(pj),
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recovers the modular structure when the number of samples and the covariance are 
large–increasing the number of samples is always beneficial until all modular struc-
ture is recovered (Fig. 2b).

When we decrease the noise level by using n = 1000 degrees of freedom in the 
Wishart distribution, the methods show similar performance, with a slight advan-
tage for the Standard GLASSO, and recover the modular structure for sufficiently 
large covariance and number of samples (Fig. 2cd). This result indicates that Stand-
ard GLASSO’s performance is sensitive to the presence of noise in the data.

To compare the methods more closely, we plot the optimal �-value as a function 
of the number of samples for a fixed value c = 0.6 of the within-module covari-
ance (Fig. 3). The Standard GLASSO’s optimal � decreases for more samples, while 
it increases for the Modular GLASSO. The AMI approaches zero for the Standard 
GLASSO for more samples because it regularizes less. The Modular GLASSO’s 
regularization increases with the number of samples. The AMI reaches 1 since the 
method captures the signal of the modular structure and adapts the regularization. 
In contrast, the Standard GLASSO does not regularize at all when there are many 
samples, retaining all spurious relations between the observed features and obscur-
ing the modular structure.
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Fig. 1 Comparing Standard and Modular GLASSO methods in detecting planted modular structure. The 
covariance matrix sampled from the Wishart distribution is noisy but with modular structure (a). With data 
sampled using this matrix, the GLASSO based on log-likelihood (Standard GLASSO) regularizes less than the 
GLASSO based on modular structure through Infomap’s codelength (Modular GLASSO) (b), which leads to 
the Standard GLASSO’s failure to identify any modular structure (c) while the Modular GLASSO successfully 
recovers the planted modular structure (d)
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Fig. 2 Performance comparison of the Standard and the Modular GLASSO in detecting planted partitions 
under low and high noise conditions. The adjusted mutual information (AMI) between recovered and 
planted partitions shows that the Standard GLASSO finds the planted partition only if the samples are few 
when the noise level is high, but when samples and within-module covariance are sufficient for low noise. 
In contrast, the Modular GLASSO finds the planted partition also in high noise when samples and covariance 
are sufficient
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GLASSO. The Standard GLASSO regularizes less, resulting in the inclusion of many noisy correlations. The 
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averages over ten runs, with individual runs shown as small points. The AMI between recovered and planted 
partitions is displayed as a number next to each point
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Real‑world data

Covid-19 data. We analyze the global Covid-19 data ("Our World in Data", 2022) with 
the daily incidence of Covid-19 in 192 countries over 777 days, from 2020/01/01 to 
2022/02/15. The observed features are the world’s countries and the samples are the 777 
days with Covid-19 incidence, making it a sample-rich data set. The signal-to-noise ratio 
is high because the distribution of correlations significantly deviates from what would 
be expected from spurious correlations (the Kolmogorov-Smirnov statistic is 0.72). For 
these data, Standard and Modular GLASSO suggest vastly different �-values (Fig.  4a). 
For the Standard GLASSO, �∗ ∼ 0.001 and � � 0.1 results in only one module in the cor-
responding network, providing no information about modular structure in the Covid-19 
data. Excluding the edge-case peak for a disintegrated network with many singletons, 
�
∗ ∼ 0.36 for the Modular GLASSO resulting in 14 modules (Fig.  4b). The modules 

spread on the world map exhibit a geographic signal, with neighboring countries often 
belonging to the same module, as in Eastern Europe and parts of Central America, for 
example. China, however, forms its own module. In some cases, the connection between 
countries within the same module is less obvious, such as between the United States and 
the Iberian Peninsula, leaving it unclear whether a causal connection exists.

While the Standard GLASSO provides no information about modular structure in the 
global Covid-19 data, the Modular GLASSO unveils intriguing modular patterns. This 
situation resembles cases with high noise levels and many samples in the analysis of syn-
thetic data when the Standard GLASSO retains many spurious relations, resulting in a 
dense, module-free network.

Gene co-expression data. We analyze gene co-expression data obtained from the plant 
Arabidopsis thaliana under cold stress with included control samples (see Methods for 
details). We select the 1,000 genes with the highest variance across the 209 samples. 
Similar to the Covid-19 data, the correlations deviate significantly from what would be 
expected from pure noise (the Kolmogorov-Smirnov statistic is 0.39). In this case, how-
ever, the number of features exceeds the number of samples.

Cross-validating using the codelength savings to maximize the modular structure 
common to training and test data regularizes more. The Standard GLASSO applies min-
imal regularization ( �∗ ∼ 0.002 ) and finds seven modules in the data (Fig. 5a). In con-
trast, the Modular GLASSO suggests strong regularization ( �∗ ∼ 0.76 ) and disconnects 
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Fig. 4 Application of Standard and Modular GLASSO to Covid-19 incidence data. The Standard GLASSO 
(log-likelihood) and Modular GLASSO (codelength savings) suggest vastly different regularization strengths 
for the Covid-19 data (a). The Standard GLASSO reveals no modular structure in the resulting network, while 
the Modular GLASSO uncovers the 14 modules represented by different colors on the world map (b). The 
modules exhibit a geographical signal as adjacent countries tend to belong to the same module, with some 
interesting exceptions
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nodes, resulting in distinct network representations of the data (Fig. 5b, c). The stronger 
regularization can reveal additional structure in the underlying data, offering valuable 
insights into the gene regulation patterns.

Discussion
Regularizing Gaussian graphical models is challenging due to the presence of noise and 
the complexity of high-dimensional data. To tackle this issue, we introduce a regulariza-
tion method that capitalizes on the modular structure inherent in the data. The Modular 
GLASSO outperforms standard regularization approaches by applying stronger regular-
ization to retain only the connections that contribute significantly to the modular struc-
ture. In contrast, the Standard GLASSO, which maximizes the Gaussian log-likelihood, 
regularizes less when dealing with noisy data, retaining many noisy links and failing to 
detect modular structure. The differences between these two methods are crucial when 
analyzing real-world data sets. For example, when analyzing Covid-19 incidence data 
and gene co-expression data, the Modular GLASSO uncovered more modular struc-
ture in the data, providing deeper insights about the underlying system such as identi-
fying groups of countries with similar epidemic patterns and gene clusters with similar 
functions.

Constructing a network from correlational data requires many samples. When cross-
validating modules, both the training and test networks must contain modular struc-
ture present in the complete data set. Two-fold splitting offers a reliable approach but 
requires relatively many samples, leading to suboptimal results with Modular GLASSO 
for low-noise data (Fig. 2) and relatively large spread (Fig. 3). A potential solution to this 
data-splitting issue is to eliminate the need for splitting altogether by employing Bayes-
ian methods as an alternative to cross-validation. A Bayesian approach would make 
Modular GLASSO less data demanding.

Using codelength savings for model selection may result in selecting an overly sparse 
model when some modules have much larger link weights than others. In such cases, 
the codelength savings in the test network can be larger if the modules with smaller link 
weights are completely disintegrated into disconnected nodes. Partly washing out mod-
ular structure by excessive regularization in this way can, however, reveal potentially 
interesting structure through the remaining modules that can be difficult to discern with 
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Fig. 5 Application of Standard and Modular GLASSO to gene co-expression data. The Standard GLASSO 
(log-likelihood) and Modular GLASSO (codelength savings) suggest vastly different regularization strengths 
also for the gene co-expression data (a). The Standard GLASSO’s minimal regularization leads to a network 
with little modular structure (b). In contrast, Modular GLASSO disconnects nodes to maximize the modular 
structure during cross-validation, revealing more regularities in the underlying system (c)
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less regularization, as for the gene co-expression data (Fig. 5c). Since the disconnected 
nodes are weakly connected in the unregularized network, disconnecting them is sup-
ported in the data and in line with the module-based regularization.

In summary, we find that regularization based on modules effectively uncovers more 
structure in relational data sets. Because many downstream analysis tasks rely on iden-
tifying modular structure, including studying groups, communities, and clusters of 
observed features, many researchers may find it appealing and intuitive to base also their 
model selection criterion on modular structure. As we show, this approach is essential 
for detecting underlying modular structure in correlational data that would otherwise 
remain obscured by noise.

Methods
Optimization and randomness in the map equation

The relative codelength savings in the test network, Ltest(M�,train) , which depend on 
the regularization parameter � , are stochastic for two reasons: the two-fold splitting 
in the cross-validation and the inherent randomness in the search algorithm Infomap 
optimizing the non-convex map equation objective function (Calatayud et al. 2019). To 
overcome this stochasticity, we perform two-fold splitting ten times and average the 
results. To calculate the AMI in Fig.  2, we also perform a sample average approxima-
tion with ten runs. For simple partition comparisons, we only look for two-level solu-
tions with Infomap. When selecting the optimal � to calculate the AMI, we test a set of 
� ∈ {0.01, 0.06, . . . , 0.96} , and choose the � corresponding to the first maximum in the 
codelength savings. To avoid noise around zero at low � values, we use the additional 
condition that the codelength savings must exceed 0.01.

Analysis and real‑world data

We use the R packages GLASSO and CVGLASSO throughout the tests. To find the maxi-
mum log-likelihood, we increase or decrease the function parameters nlam and lam.
min.ratio if necessary.

Gene co-expression data come from the Sequence Read Archive (SRA), where we 
identified all available RNA-Seq samples relating to cold stress in the leaf tissue of Arabi-
dopsis thaliana ecotype Columbia-0. The selected data include both control and treated 
samples and were retrieved in April 2021. A full list of included samples can be found in 
the supplementary material. The data were quantified using salmon version 1.2.1 (Patro 
et al. 2017) against the Araport 11 release of the Arabidopsis thaliana genome. Pre-pro-
cessing and normalization were done in R using the variance stabilizing transform avail-
able in DESeq2 (Love et al. 2014).

To avoid constant values when analyzing the world Covid-19 data, we leave out coun-
tries belonging to the 10:th percentile with the lowest variance in daily incidence.

All data are standardized before analysis, and have zero mean and unit standard 
deviation.

Modular GLASSO algorithm

Algorithm 1 shows the pseudo code for Modular GLASSO. The code uses the R function 
GLASSO to estimate the precision matrix � with a given value of the the regularization 
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parameter � . The code uses the Infomap algorithm to infer the modules M in a network 
G(�) and to calculate the codelength savings l when a network is partitioned into a 
given modular structure. We have prepared a Jupyter notebook with code and examples 
("Modular GLASSO", 2024).

Algorithm 1 Modular GLASSO
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