
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Miller et al. Applied Network Science (2024) 9:5
https://doi.org/10.1007/s41109-024-00611-9

Applied Network Science

Complex network effects on the robustness
of graph convolutional networks
Benjamin A. Miller1*, Kevin Chan2 and Tina Eliassi‑Rad1

Abstract

Vertex classification using graph convolutional networks is susceptible to targeted
poisoning attacks, in which both graph structure and node attributes can be changed
in an attempt to misclassify a target node. This vulnerability decreases users’ confi‑
dence in the learning method and can prevent adoption in high‑stakes contexts.
Defenses have been proposed, focused on filtering edges before creating the model
or aggregating information from neighbors more robustly. This paper considers
an alternative: we investigate the ability to exploit network phenomena in the train‑
ing data selection process to improve classifier robustness. We propose two alterna‑
tive methods of selecting training data: (1) to select the highest‑degree nodes and (2)
to select nodes with many connections to the test data. In four real datasets, we
show that changing the training set often results in far more perturbations required
for a successful attack on the graph structure; often a factor of 2 over the random
training baseline. We also run a simulation study in which we demonstrate conditions
under which the proposed methods outperform random selection, finding that they
improve performance most when homophily is higher, clustering coefficient is higher,
node degrees are more homogeneous, and attributes are less informative. In addition,
we show that the methods are effective when applied to adaptive attacks, alleviating
concerns about generalizability.

Keywords: Graph convolutional networks, Poisoning attacks, Robust machine
learning

Introduction
Classification of vertices in graphs is an important problem in a variety of applications,
from e-commerce (classifying users for targeted advertising) to security (classifying com-
puter nodes as malicious or not) to bioinformatics (classifying roles in a protein inter-
action network). In the past several years, numerous methods have been developed for
this task (see, e.g., Hamilton et al. (2017) and Moore and Neville (2017)). More recently,
research has focused on attacks by adversaries (Zügner et al. 2018; Dai et al. 2018) and
robustness to such attacks (Wu et al. 2019b). If an adversary were able to insert mislead-
ing data into the training set (e.g., generate benign traffic during a data collection period
that could conceal its behavior during testing/inference time), the chance of successfully

*Correspondence:
miller.be@northeastern.edu

1 Northeastern University, Boston,
MA, USA
2 US Army Research Laboratory,
Adelphi, MD, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-024-00611-9&domain=pdf

Page 2 of 31Miller et al. Applied Network Science (2024) 9:5

evading detection would increase, leaving data analysts unable to respond to potential
threats.

To classify vertices in the presence of adversarial activity, we must implement learn-
ing systems that are robust to such potential manipulation. If such malicious behavior
has low cost to the attacker and imposes high cost on the data analyst, machine learning
systems will not be trusted and adopted for use in practice, especially in high-stakes sce-
narios such as network security and traffic safety. Understanding how to achieve robust-
ness is key to realizing the full potential of machine learning.

Adversaries, of course, will attempt to conceal their manipulation. The first published
poisoning attack against vertex classification was an adversarial technique called Net-
tack (Zügner et al. 2018), which can create perturbations that are subtle while still being
extremely effective in decreasing performance on the target vertices. The authors use
their poisoning attack against a graph convolutional network (GCN).

From a defender’s perspective, we aim to make it more difficult for the attacker to
cause node misclassification. In addition to changing the properties of the classifier
itself, there may be portions of a complex network that provide more information for
learning than others. Complex networks are highly heterogeneous and random sampling
may not be the best way to obtain labels. If there is flexibility in the means of obtaining
training data, the defender should leverage what is known about the graph topology.

This paper investigates the hypothesis that leveraging network properties can improve
robustness of GCNs in the presence of adversaries. In particular, we demonstrate that
increasing the number of labeled nodes in the unlabeled nodes’ neighborhoods does, in
some circumstances, increase the number of required perturbations for an attack to be
successful. The increase in robustness depends on aspects of the graph topology, such
as homophily, clustering coefficient, and degree distribution, as well as information pro-
vided by features. This phenomenon can be exploited when selecting training data when
conditions are favorable. We focus on two alternative techniques for training data selec-
tion. Both methods aim to train with a subset of nodes that are well connected to the
held out set. Here we see a benefit, often raising the number of perturbations required
for a given level of attack success by over a factor of 2. When it is possible to pick a spe-
cific subset on which to train, this can provide a significant advantage.

Scope and contributions

In this paper, we are specifically interested in targeted poisoning attacks against vertex
classifiers, where the data are modified at training time to cause a specific target node
to be misclassified. We consider attacks against the structure of the graph, rather than
against node attributes. We focus on classification methods where there is an implicit
assumption of homophily, and where the topology does not vary over time. Working
within this context, the contributions of this work are as follows:

• We propose two methods—StratDegree and GreedyCover—for selecting train-
ing data that are well-connected to the unlabeled vertices.

• We demonstrate that StratDegree and GreedyCover often result in a greater
burden on attackers that cannot be reliably obtained by simply increasing the amount
of randomly selected training data.

Page 3 of 31Miller et al. Applied Network Science (2024) 9:5

• We show that the most robust defenses—typically those based on singular value
decomposition of the adjacency matrix (Entezari et al. 2020) and Jaccard coefficient
of attributes (Wu et al. 2019b)—are often improved by working in conjunction with
GreedyCover.

• We show that there is no consistent tradeoff between the robustness gained from
StratDegree and GreedyCover and classification performance.

• In simulation, we study the effects of various generative models and report the
impact of class homophily, topological features, and node attribute similarity across
classes on classification performance and robustness to attack.

• We apply StratDegree and GreedyCover to an adaptive attack, demonstrating
that the proposed training methods improve robustness in a more general setting.

Paper organization

The remainder of this paper is organized as follows. In "Related work", we briefly con-
textualize our work within the current literature. In "Problem definition and proposed
methods" we describe the vertex classification problem, GCNs, and the Nettack method,
and outlines the techniques we investigate to select training data. The "Experiments and
results" section details the experimental setup—including datasets, attacks, and classifi-
cation methods—and results. Experimental results are included for real data, illustrating
the effectiveness of the proposed methods in several cases, and the results of a simula-
tion study in which we vary graph topology, node attributes, and homophily, and evalu-
ate robustness of the methods across the landscape. In "Conclusions" we conclude with a
summary and outline open problems and future work.

Related work
Adversarial examples in deep neural networks have received considerable attention since
they were documented several years ago (Szegedy et al. 2014). Since that time, numerous
attack methods have been proposed, largely focused on the image classification domain
(though there has been interest in natural language processing as well, e.g., from Jia and
Liang (2017)). In addition to documenting adversarial examples, Szegedy et al. (2014)
demonstrated that such examples can be generated using the limited-memory BFGS
(L-BFGS) algorithm, which identifies an adversarial example in an incorrect class with
minimal L2 norm distance to the true data. Later, Goodfellow et al. (2015) proposed the
fast gradient sign method (FGSM), where the attacker starts with a clean image and takes
small, equal-sized steps in each dimension (i.e., alters each pixel by the same amount) in
the direction maximizing the loss. Another proposed attack—the Jacobian-based Sali-
ency Map Attack (JSMA)—iteratively modifies the pixel with the largest impact on the
loss (Papernot et al. 2016a). DeepFool, like L-BFGS, minimizes the L2 distance from the
true instance while crossing a boundary into an incorrect class, but does so quickly by
approximating the classifier as linear, stepping to maximize the loss, then correcting for
the true classification surface (Moosavi-Dezfooli et al. 2016). Like Nettack, these meth-
ods all try to maintain closeness to the original data (L2 norm for L-BFGS and DeepFool,
L0 norm for JSMA, and L∞ norm for FGSM).

Page 4 of 31Miller et al. Applied Network Science (2024) 9:5

Some of these methods have been adapted for use with graph neural networks (GNNs).
Wu et al. (2019b) modify FGSM and JSMA to use integrated gradients and show it to
be effective against vertex classification. In addition, new attacks against vertex clas-
sification have been introduced, including a method that uses reinforcement learning
to identify modifications to graph structure for an evasion attack (Dai et al. 2018). To
increase the scale of attacks, Li et al. (2021) propose an attack that only considers a k-
hop neighborhood of the target. This method attacks a simplified GCN, introduced by
Wu et al. (2019a), which applies a logistic regression classifier after k rounds of feature
propagation.

Defenses to attacks such as FGSM and JSMA have been proposed, although several
prove to be insufficient against stronger attacks. A simple improvement is to include
adversarial examples in the training data (Goodfellow et al. 2015). Defensive distillation
is one such defense, in which a classifier is trained with high “temperature” in the soft-
max, which is reduced for classification (Papernot et al. 2016b). While this was effec-
tive against the methods from Szegedy et al. (2014), Goodfellow et al. (2015), Papernot
et al. (2016a), and Moosavi-Dezfooli et al. (2016), it was shown by Carlini and Wagner
(2017) that modifying the attack by changing the constraint function (which ensures the
adversarial example is in a given class) renders this defense ineffective. More defenses
have been proposed, such as pixel deflection (Prakash et al. 2018) and randomization
techniques (Xie et al. 2018), but many such methods are still found to be vulnerable to
attacks (Athalye and Carlini 2018; Athalye et al. 2018). Other work has focused on prov-
ably robust defenses (Wong and Kolter 2018), with empirical performance often close
to certifiable claims (Croce et al. 2019). Stochastic networks have also shown improved
robustness to various attacks (Dapello et al. 2021). In the wake of growing interest in
adversarial robustness, Carlini et al. (2019) have aggregated best practices for evaluation
of systems.

More recent work has focused on robustness of GCNs, including work on robustness
to attacks on attributes (Zügner and Günnemann 2019b) and more robust GCN vari-
ants (Zhu et al. 2019). Multiple authors have considered aggregation techniques that
are less sensitive to outliers (Geisler et al. 2020; Chen et al. 2021). One approach to a
more robust classifier incorporates an attention mechanism that learns the importance
of other nodes’ features to a node’s class (Veličković et al. 2018). Others have consid-
ered using a GCN with modified graph structure to improve robustness, such as using
a low-rank approximation for the graph (Entezari et al. 2020) and filtering edges based
on attribute values (Wu et al. 2019b). Another method also considers attribute values, in
this case creating a similarity graph from the attributes that augments the given graph
structure to preserve node similarity in feature space (Jin et al. 2021). The low-rank
structure and node similarity concepts are combined by Jin et al. (2020b) to create a neu-
ral network that aims to simultaneously learn the true graph structure from poisoned
data and learn a classifier of unlabeled nodes. Dai et al. (2022) explore a similar idea in
the context of noisy data and few labels, using link prediction to augment the observed
graph. Relations between attribute similarity and node class—including possible hetero-
phily—are also exploited in GNNGuard (Zhang and Zitnik 2020). More recent work
has shown that attacks that are adaptive to defenses easily undermine the robustness
increase observed when using non-adaptive attacks (Mujkanovic et al. 2022). Other

Page 5 of 31Miller et al. Applied Network Science (2024) 9:5

recent GCN developments include modifications to deal with heterophily, via classifier
design choices (Zhu et al. 2020) and by learning the level of homophily or heteroph-
ily in the graph as part of the training procedure (Zhu et al. 2021). Several attacks (Dai
et al. 2018; Zügner et al. 2018; Chen et al. 2018; Zügner and Günnemann 2019a; Wu
et al. b; Xu et al. 2019) and defenses (Goodfellow et al. 2015; Wu et al. 2019b; Zhu et al.
2019; Entezari et al. 2020; Jin et al. 2020b) have been incorporated into a software pack-
age called DeepRobust, enabling convenient experimentation across a variety of con-
ditions (Li et al. 2020; Jin et al. 2020a). As with neural networks more generally, there
has been work on certifiable robustness for GCNs (Bojchevski and Günnemann 2019;
Zügner and Günnemann 2020).

While this paper is focused on targeted attacks, several attacks, such as those pro-
posed by Zügner and Günnemann (2019a) and Xu et al. (2019), attack the whole graph
in order to degrade overall performance. Some attacks in this area have allowed adding
new nodes (Sun et al. 2019), flipping labels (Liu et al. 2019), and rewiring edges (Ma et al.
2019). In addition, there are many machine learning tasks on graphs other than vertex
classification, and work has been done on, for example, edge classification in an adver-
sarial context (Yu et al. 2018). Finally, altering a network by removing edges or nodes has
been studied well beyond the context of machine learning, focusing on altering shortest
paths (Miller et al. 2023) or disconnecting the graph (Albert et al. 2000), where there
has been recent work showing the impact of selecting nodes with particular features for
removal (Ficara et al. 2023).

Problem definition and proposed methods
Problem definition

We consider the same setting from Zügner et al. (2018). We are given an undirected
graph G = (V ,E) of size N = |V | and an N × d matrix of vertex attributes X. Each node
has an arbitrary numeric index from 1 to N. We consider only binary attributes. In addi-
tion to its d attributes, each node has a label denoting its class. We enumerate classes as
integers from 1 to C. Given a subset of labeled instances, the goal is to correctly classify
the unlabeled nodes.

We focus on GCNs, which make use of the adjacency matrix for the graph A = {aij} ,
where aij is 1 if there is an edge between node i and node j and is 0 otherwise. The GCN
applies a symmetrized one-hop graph convolution (Kipf and Welling 2017) to the input
layer. That is, if we let D be the diagonal matrix of vertex degrees—i.e., the ith diagonal
entry is the number of edges connected to vertex i, dii = N

j=1 aij—then the output of
the first layer of the network is expressed as

where W1 is a weight matrix, X is a feature matrix whose ith row is xTi (the attribute
vector for row vertex i), and σ is the rectifier function. We use GCNs with a single hid-
den layer. From the hidden layer to the output layer, a similar graph convolution is per-
formed, followed by a softmax output:

(1)H = σ

(

D−1/2AD−1/2XW1

)

,

Page 6 of 31Miller et al. Applied Network Science (2024) 9:5

where W2 is another matrix of learned weights. Each vertex is then classified according
to the largest entry in the corresponding row of Y.

Nettack—the vertex attack proposed by Zügner et al. (2018)—operates on a surrogate
model where the rectifier function is replaced by a linear function, thus approximating
the overall network as

Nettack uses a greedy algorithm to determine how to perturb both A and X to make
the GCN misclassify a target node. The changes are intended to be “unnoticeable,” i.e.,
the degree distribution of G and the co-occurrence of features are changed negligibly.
Using the approximation in (2), Nettack perturbs by either adding or removing edges
or turning off binary features so that the classification margin is reduced the most at
each step. Note that while it can change the topology and the features, Nettack does not
change the labels of any vertices. In this paper, we only consider structural perturba-
tions. Nettack allows either direct attacks, in which the target node itself has its edges
and features changed, or indirect influence attacks, where neighbors of the target have
their data altered.

The classifier is evaluated in a context where only some of the labels are known, and
the labeled data are split into training and validation sets. To train the GCN, 10% of
the data are selected at random (or by one of the alternative methods outlined in "Pro-
posed training data selection methods"), and another 10% is selected for validation. The
remaining 80% is the test data. After training, nodes are selected for attack among those
that are correctly classified. The goal of the defender is to make the a successful attack as
expensive as possible.

As we discuss in "Experimental setup", we also consider attacks other than Nettack,
and classifiers other than standard GCNs. While the details differ (e.g., using different
criteria to identify perturbations), the overall problem definition remains the same.

Proposed training data selection methods

As we investigated classification performance using Nettack, we noted that nodes in
the test set with many neighbors in the training set were more likely to be correctly
classified. This dependence on labeled neighbors is consistent with previous observa-
tions (Neville et al. 2009). We observed this effect using the standard method of training
data selection used in the original Nettack paper: randomly select 10% for training, 10%
for validation, and 80% for testing. This observation suggested that a training set where
the held-out nodes are well represented among neighborhoods of the training data—
providing a kind of “scaffolding” for the unlabeled data—could make the classification
more robust.

Y = softmax
(

D−1/2AD−1/2HW2

)

,

(2)
Y ≈ softmax

(

(

D−1/2AD−1/2
)2

XW1W2

)

= softmax

(

(

D−1/2AD−1/2
)2

XW

)

.

Page 7 of 31Miller et al. Applied Network Science (2024) 9:5

We considered two methods to test this hypothesis. The first simply chooses the
highest-degree nodes (stratified by class) to be in the training set. We refer to the
stratified degree-based thresholding method as StratDegree. The other method
uses a greedy approach in an attempt to ensure every node has at least a minimal
number of neighbors in the training set. Starting with an empty training set and a
threshold k = 0 , we iteratively add a node of a particular class with the largest num-
ber of neighbors that are connected to at most k nodes in the training set. The class is
randomly selected based on how many nodes of each class are currently in the train-
ing set and the number required to achieve class stratification (see the pseudo-code
for details). When there are no such neighbors, we increment k. This procedure con-
tinues until we have the desired proportion of the overall dataset for training. Algo-
rithm 1 provides the pseudo-code.

Algorithm 1 GreedyCover

Using StratDegree and GreedyCover has computational costs beyond random
sampling. StratDegree requires finding the highest-degree nodes, which, for a con-
stant fraction of the dataset size, will require O(|E| + |V | log |V |) time (for comput-
ing degrees and sorting), compared to O(|V|) time for random sampling. Each step in
GreedyCover requires finding the vertex with the most neighbors minimally con-
nected to the training set. As written in Algorithm 1, each iteration requires O(|E|) time

Page 8 of 31Miller et al. Applied Network Science (2024) 9:5

to count the number of such neighbors each node has, which would result in an overall
running time of O(|V||E|). This could be improved using a priority queue—such as a
Fibonacci heap—to achieve O(|E| + |V | log |V |) time (O(|V|) logarithmic-time extrac-
tions of the minimum and O(|E|) constant-time key updates). Thus, the two proposed
method require moderate overhead compared to the running time for the GCN.

Experiments and results
Experimental setup

Each experiment in our study involves (1) a graph dataset, (2) a method for selecting
training data, (3) a structure-based attack against vertex classification, and (4) a clas-
sification algorithm. We consider several options for each step in this process, as shown
in Fig. 1. This section details the methods and datasets we use across the experiments
in this paper. We use the DeepRobust library (Li et al. 2020) for datasets, attacks, and
classifiers.

Datasets

We use the three datasets used in the Nettack paper in our experiments, plus one larger
citation dataset:

• CiteSeer The CiteSeer dataset has 3312 scientific publications put into 6 classes. The
network has 4732 links representing citations between the publications. The features
of the nodes contain ones and zeros indicating the presence of the word in the paper.
There are 3703 unique words considered for the dictionary.

• Cora The Cora dataset consists of 2708 machine learning papers classified into one
of seven categories. The citation network consists of 5429 citations. For each paper
(vertex) in the network there is a feature vector of zeros and ones for whether it con-
tains one of 1433 unique words.

• PolBlogs The political blogs dataset consists of 1490 blogs labeled as either liberal or
conservative. A total of 19,025 links between blogs form the directed edges of the
graph. No attributes are used.

Select Dataset
Split

Train/Val./Test
Data

Apply Attack Apply
Classifier

● CiteSeer
● Cora
● PolBlogs
● PubMed
● Synthetic

● StratDegree
● GreedyCover
● Random (varied

proportions)

● Nettack
● SGA
● FGA
● IG-FGSM

● GCN
● GCN-Jaccard
● GCN-SVD
● SGC
● ChebNet
● GAT
● MedianGCN
● RGCN

Fig. 1 Processing chain for experiments. Each experiment takes a dataset, applies a method to split training,
validation, and test data, applies an attack to a set of target nodes, then applies a classifier to the attacked
dataset. We evaluate the robustness of vertex classification—‑in terms of required attacker budget at a given
attack success rate—across all possible combinations of dataset, selection methods, attacks, and classifier

Page 9 of 31Miller et al. Applied Network Science (2024) 9:5

• PubMed The PubMed dataset consists of 19,717 papers pertaining to diabetes clas-
sified into one of three classes. The citation network consists of 44,338 citations. For
each paper in the network there is a binary feature vector representing the presence
of 500 words.

We further evaluate performance using synthetic data. Synthetic network generation to
evaluate network effects on the performance of GNNs has recently received attention
in the research community (Palowitch et al. 2022). In this work, we consider synthetic
datasets that vary four key network features: degree distribution, level of clustering,
homophily with respect to labels, and information gained via node attributes. We use
four random graph models that exhibit different properties in terms of clustering and
degree distribution. In each case, we use 1200 nodes and an average degree of approxi-
mately 10.

• Erdős–Rényi (ER) Graphs: Each pair of nodes shares an edge with probability 1/120.
This model yields homogeneous degree distributions and very little clustering.

• Barabási–Albert (BA) Graphs: Each node enters the graph and connects 5 edges to
existing nodes with probability proportional to their degrees. The process is initial-
ized with a 6-node star. This model yields graphs with heterogeneous degree distri-
butions and very little clustering.

• Watts–Strogatz (WS) Graphs: A ring lattice—where each node is connected to
5 nodes on either side—has 10% of its edges randomly rewired. This model yields
graphs with substantial clustering and homogeneous degree distributions.

• Lancichinetti–Fortunato–Radicchi (LFR) Graphs: Generates a degree sequence with
degree distribution p(d) ∝ d−3, with average and minimum degree set to davg = 10
and dmax = 135 . Nodes are randomly assigned to communities, whose sizes are dis-
tributed according to p(|C|) ∝ |C|−2 , with the minimum community size being 10.
Nodes create 80% of their connections within the community and 20% outside the
community.

If the generated graph has multiple connected components, we use the largest con-
nected component for the experiment.

We also vary the homophily of the vertex labels, from no homophily to highly homo-
philous, and assign vertex attributes with varying levels of predictive power, from
completely uninformative about the vertex’s label to highly informative. Details on the
methods used to generate synthetic labels and attributes are provided in Appendix A.

Training data selection

To select training data, we use StratDegree and GreedyCover as described in "Pro-
posed training data selection methods", as well as random selection. For StratDegree
and GreedyCover, we use the proposed algorithms to select 10% of the data, stratified
by class. The remaining 90% of the data is randomly split (stratified by class) into valida-
tion (10%) and training data (80%). For random selection, we also want to determine
whether adding more random training data improves classification robustness. Thus, in
addition to using stratified random sampling to select 10% of the data for training, we

Page 10 of 31Miller et al. Applied Network Science (2024) 9:5

consider larger training sets, increasing to 30% in 5% increments. In all cases, 10% of the
data are used for validation and the remainder comprise the test set. We measure the
average number of neighbors connected to a node outside of the training set, i.e., for the
training set T ⊂ V , we record

This allows us to evaluate what impact the overall number of connections to the train-
ing data has on performance, and whether performance with the proposed training data
selection methods match any trend observed with random training.

Attacks

We use the following attacks, which are implemented in DeepRobust:

• Nettack The method from Zügner et al. (2018), briefly described in "Problem definition".
• Fast Gradient Attack (FGA) Computes the gradient of the loss function at the target

node with respect to the adjacency matrix, then perturb the entry with the largest gradi-
ent that points in the correct direction (Chen et al. 2018).

• Integrated Gradient Attack (IG-Attack) A similar method that integrates the gradient as
an entry in the adjacency matrix varies from 1 to 0 (for edge removal) or 0 to 1 (for edge
addition) (Wu et al. 2019b).

• Simplified Gradient Attack (SGA) In this case, gradients are computed that only con-
sider a k-hop subgraph around the target (Li et al. 2021).

For direct attacks, we use up to 20 edge additions and removals for a target. For influence
attacks, we allow up to 50 perturbations.

Classifiers

We consider the following eight classifier models, some of which were developed with the
explicit intent of improving robustness to adversarial attack:

• GCN The original GCN architecture as used in Zügner et al. (2018).
• Jaccard Before training the GCN, removes edges between nodes that have dissimilar

feature vectors before (Wu et al. 2019b).
• SVD Uses a GCN in which the adjacency matrix is replaced with a low-rank approxima-

tion via truncated singular value decomposition (Entezari et al. 2020).
• ChebNet Uses the spectral graph convolutions (Defferrard et al. 2016) of which the con-

volution operator (1) is a first-order approximation.
• Simple Graph Convolution (SGC) Applies a model similar to the surrogate (2),

where the matrix W is learned via logistic regression on the features defined by
(D−1/2AD−1/2)kX (Wu et al. 2019a).

• Graph Attention Network (GAT) Includes an attention mechanism based on the impor-
tance of each node’s neighbors’ features (Veličković et al. 2018).

(3)
1

|V \ T |

∑

i∈T

∑

j∈V \T

aij .

Page 11 of 31Miller et al. Applied Network Science (2024) 9:5

• Robust Graph Convolutional Network (RGCN) Uses Gaussian convolutions, in which
the output is drawn from a Gaussian distribution whose parameters the output of a
neural network (Zhu et al. 2019).

• MedianGCN Aggregates neighbors’ features based on their median values rather than
weighted averages (Chen et al. 2021).

Training

We tuned classifier hyperparameters for each (classifier, attack, training selection
method) triple, first performing a coarse grid search over all hyperparameters, then
performing some refinements: altering each single parameter 10% and choosing the
configuration with the best performance. The performance metric is a linear combi-
nation of the F1 score (macro averaged) before an attack takes place with the was the
average margin of 10 randomly selected targets after 5 perturbations with a direct
attack. The resulting hyperparameters were used in all cases with the corresponding
classifier, attack, and training selection method.

Evaluation

We evaluate performance based on 25 target nodes. The targets are randomly selected
from the set of nodes that are correctly classified when no attack takes place. This
procedure is repeated five times with the train/validation/test splits recomputed each
time. Our robustness metric is the adversary’s required budget to achieve a given
attack success rate. We compute this based on the number of perturbations required
to give a target a negative classification margin in its correct class. If the target is
never successfully misclassified, we set the required budget to the maximum number
of perturbations. The result is averaged across the five trials.

Computing platform

All experiments are run on a Linux cluster where each machine has 32 cores and 192
GB of memory. Each process is allocated 2 cores and 20 GB. If an attack or defense
experiment—considering all targets with a particular attack or defense and a particu-
lar training data selection method—does not complete in 24 h per trial, the result is
not recorded.

Results

Real data

We first consider influence attacks, where the target node’s neighbors are modified
rather than the target itself. We apply both Nettack and FGA, replacing Nettack with
SGA if the SGC-based classifier is used. We only obtained results using IG-FGSM
on the PolBlogs dataset, which can be seen in Appendix B.1. (IG-FGSM did not sub-
stantially outperform the other methods for the best-performing classifiers.) In all
other cases, IG-FGSM did not finish in the allotted time (24 h per trial). Results are
illustrated in Fig. 2. In addition to the results for standard GCNs, we plot the upper
envelope for each method: at a given attack success probability, the largest required

Page 12 of 31Miller et al. Applied Network Science (2024) 9:5

budget across all classifiers. See Appendix B.1 for details about the performance of
each individual classifier with each training scheme. CiteSeer has a particularly large
increase in the attacker’s required budget when using GreedyCover: more than dou-
bling it over several rates of attack success. In fact, at low attack success probabilities,
GreedyCover with a GCN provides similar robustness to any of the classifiers listed
in the "Classifiers" section with random selection. In addition, GreedyCover pro-
vides greater robustness when used in conjunction with the most robust defenses, as
shown by the upper envelope. There is a somewhat milder effect on the Cora data-
set. In this case, GreedyCover still performs best when using Nettack, but the best
performance when attacked with FGA comes from StratDegree (though Greedy-
Cover is within one standard error). With PolBlogs, we also see a benefit from both
methods, though we start from a much higher baseline in terms of required pertur-
bations. We see an exception with PubMed, where random training performs best.

Fig. 2 Robustness to influence attacks using GCNs (solid line) or with the best defense at a given attack
success probability (dash line). Results are shown for the CiteSeer, Cora, PolBlogs, and PubMed datasets,
each plotted in a subsequent row, and using both the Nettack/SGA (left column) and FGA (right column)
attacks. Results were not returned in the allotted time (24 h per trial) for IG‑FGSM on all datasets, and FGA
for PubMed. Each curve represents the average required budget over 25 randomly selected targets, and
error bars are standard errors. Higher is better for the defender. With the exception of the PubMed dataset,
GreedyCover performs at least as well as random training selection, and often performs much better

Page 13 of 31Miller et al. Applied Network Science (2024) 9:5

Looking deeper into the data, we see that the target nodes for random data tend to
have higher margins on the best-performing classifiers. In all other cases, Greedy-
Cover performs as well or better than the other training set selection methods.

Observation 4.1 Training with GreedyCover frequently outperforms other training
methods, both with GCNs and in conjunction with published defenses.

For direct attacks—where edges adjacent to the target can be added or removed—we
find that there is less improvement in robustness using the alternative methods than
indirect attacks. Ensuring that nodes have many neighbors in the training set appears
more effective when the neighbors are the nodes whose edges are perturbed. This may
be because direct attacks are able to remove connections from the target vertex to the
labeled neighbors. Detailed results on direct attacks are available in Appendix B.2.

Observation 4.2 Direct attacks typically benefit less than influence attacks from the
alternative training methods.

One additional possibility we considered is that robustness from the alternative train-
ing methods comes entirely from the average number of trained neighbors for nodes in
the test set. To test this possibility, we performed the same experiments with more ran-
domly selected training data, as described in "Training data selection". Results of these
experiments—which show no consistent improvement in robustness by increasing the
total number of labeled nodes—are provided in Appendix B.3 and lead to the following
observation.

Observation 4.3 Using more training data with random selection does not consistently
lead to higher robustness.

Another important consideration is whether increased robustness comes at the
expense of classification performance. In Appendix B.4, we provide classification results
on all 4 datasets using all defenses and training data selection methods. While StratDe-
gree often results in lower classification performance than random selection, this is not
the case for GreedyCover. This yields another datapoint in favor of GreedyCover: it
tends to yield the greatest robustness across datasets, and does not seem to greatly hin-
der overall classification performance.

Observation 4.4 Using GreedyCover yields no consistent reduction in classification
performance compared to random training set selection.

The results on real data show that GreedyCover often provides greater robustness
to attack, but they are by no means conclusive. In the next section, we further explore
the methods with simulated data to observe performance differences while controlling
network properties.

Page 14 of 31Miller et al. Applied Network Science (2024) 9:5

Synthetic Data

For each synthetic topology, we ran experiments using Nettack to perform influence
attacks against a GCN. We included classifiers trained with data selected via random
sampling, StratDegree, and GreedyCover. Robustness results for ER, BA, WS, and
LFR graphs are shown in Fig. 3. When no attributes are used and homophily is high, we
see a much larger performance difference using GreedyCover than StratDegree in
the WS graphs, but the two methods yield more similar performance with the other mod-
els. For all models, performance improvement gets more modest as homophily decreases.

When attributes with the same distribution are added to both classes (i.e., the case
of “uninformative” attributes), robustness suffers in most cases. The LFR graphs in
particular see a large decrease in robustness using random selection, with a much
smaller decrease using the alternative methods. As feature distributions become
more distinct between the classes, the difference between the methods becomes
smaller, suggesting that the robustness improvements we observe are likely due to
structural considerations. With highly informative attributes, we note that the models
with homogeneous degree distributions still gain a benefit from StratDegree and
GreedyCover when homophily is low, while the models with heterogeneous degree
distributions are somewhat hindered by these methods. Like in the real data, this is
because the targets have higher margins in the case of random training selection. This

Fig. 3 Robustness to influence attacks against GCNs on simulated data. Results are shown for ER (first
column), BA (second column), WS (third column), and LFR (fourth column) graphs, in cases with no attributes
(first row), uninformative attributes (second row), moderately informative attributes (third row), and highly
informative attributes (fourth row). Each curve represents the average required budget over 25 randomly
selected targets, and error bars are standard errors. Higher is better for the defender. Results are shown
for high homophily (solid line) and low homophily (dash line) cases. As attributes become more helpful in
classification, the advantage gained by the alternative training methods is substantially reduced

Page 15 of 31Miller et al. Applied Network Science (2024) 9:5

may happen due to low-degree nodes, which tend to connect to high-degree nodes:
When homophily is low, nodes may become more difficult to predict based on their
proximity to hubs, and are less likely to be selected to be labeled. We summarize our
observations here as follows:

Observation 4.5 With no attributes and high homophily, all models gain robustness
from the alternative methods.

Observation 4.6 With no attributes and low homophily, GreedyCover provides
robustness for all models, while for BA and LFR, StratDegree improves robustness
only at higher attack success rates.

Observation 4.7 The increase in robustness for the alternative methods decreases as
homophily decreases and as attributes become better class predictors.

Observation 4.8 With highly informative attributes and low homophily, GreedyCover
and StratDegree maintain some increased robustness for homogeneous degree distri-
butions, while they somewhat hinder performance for heterogeneous ones.

As with real data, we consider the possibility that classification performance may be
hindered by the alternative training data selection methods. We evaluated classifica-
tion performance in all cases, with results discussed in detail in Appendix B.5. There
are some cases where the alternative methods degrade performance: when homoph-
ily is low and degree distributions are heterogeneous. In the high-homophily case,
we also see some performance differences, with the alternative methods sometimes
yielding higher classification performance than random selection. Any such differ-
ences, however, dissipate as the attributes become more informative.

Observation 4.9 Graphs with skewed degree distributions and low homophily achieve
lower accuracy with GreedyCover and StratDegree than random selection, but per-
formance is similar in other cases.

Observation 4.10 For higher homophily graphs, performance differences between
methods decrease as attributes become more informative.

When there is no homophily in the graph (a node’s neighbor is not more likely to
have the same label as it is to have another), classification accuracy is very low without
informative attributes. Considering cases where there is at least some homophily and
at least moderately informative attributes, the simulation results where robustness does
not improve with StratDegree or GreedyCover are summarized in Fig. 4. As shown
in the table, the cases where there is no improvement all have heterogeneous degree dis-
tributions, while the homogeneous degree distributions always have some improvement
in robustness when attributes are at least moderately informative. In addition, the low
homophily cases result in lower accuracy with the alternative methods. Note also that
more informative attributes and lower clustering coefficient hinder the performance
benefit.

Page 16 of 31Miller et al. Applied Network Science (2024) 9:5

Relating the synthetic data to the real datasets, recall that StratDegree and Greedy-
Cover both failed to provide consistent improvement for PubMed, and struggled with
direct attacks against PolBlogs. Looking into the features of these datasets, there are two
interesting observations. First, PolBlogs has an especially heavy-tailed degree distribu-
tion: there are many nodes with hundreds of edges, which is rare in the other datasets.
In addition, the PubMed dataset has node attributes that are very useful in identifying
the class of the nodes: using a support vector machine with a radial basis function kernel
trained on the attribute vectors alone (50% of the nodes used for training), the F1 score
(macro averaged) for the Cora dataset is approximately 0.71, for CiteSeer is approxi-
mately 0.75, and for PubMed is about 0.87. As with the synthetic data, the cases with the
most informative node attributes are hindered by the alternative training methods.

Adaptive attacks

In the image classification literature, numerous published defenses were found to pri-
marily rely on model obfuscation and remain vulnerable to adaptive attacks that take the
new model into account (Athalye and Carlini 2018). Recent work has raised similar con-
cerns regarding the robustness of published defenses against GNN attacks (Mujkanovic
et al. 2022). If training set selection makes a classifier more robust, one advantage is
that it makes no changes to the model class, and thus should not be vulnerable to such
oversights.

We applied our training set selection methods to a demonstration provided by Muj-
kanovic and Geisler et al,1 which includes an adaptive attack based on projected gradient
descent (PGD) (Xu et al. 2019). The code applies the attack with the objective of reduc-
ing the overall classifier accuracy. We applied the demo to the same datasets used by the
authors—CiteSeer and Cora—and achieved the results shown in Fig. 5. While the SVD-
based method and GNNGuard are both effectively attacked by the PGD-based method,

Fig. 4 Summary of cases where StratdeGree and GreedyCover do not improve robustness when using
informative attributes on synthetic graphs. The alternative methods are considered less robust than random
training selection if the adversary’s budget decreases by at least 1 standard deviation for at least 10 out of 20
points on the associated curve in Fig. 3 (attack success probability in multiples of 0.05). They are considered
to be similarly robust if the budget is within 1 standard deviation of for over 10 such points. For accuracy, the
alternative methods result in lower accuracy if the average accuracy (see Fig. 9 in Appendix B.5) decreases
by at least 3% and similar accuracy if it is within 3%. All cases in the table have heterogeneous degree
distributions. All cases with lower accuracy have low homophily. The improvement from the alternatives is
also degraded as attributes become more informative (from 70% to 90% accuracy based on attributes alone)
and clustering coefficient decreases

1 Available at https:// github. com/ Loadi ngByte/ are- gnn- defen ses- robust.

https://github.com/LoadingByte/are-gnn-defenses-robust

Page 17 of 31Miller et al. Applied Network Science (2024) 9:5

using GreedyCover to select the training data (again using 10% for training, 10% for
validation, and 80% for testing) results in higher post-attack accuracy for with both clas-
sifiers. As defenses to new adaptive methods are published, it will be interesting to con-
sider their use in conjunction with alternative training set selection.

Conclusions
This paper explores the impact of complex network characteristics on the robustness
of vertex classification using GCNs. In particular, we investigate the hypothesis that the
structural relationship between the training data and the remainder of the network can
be exploited to improve classifier robustness. We propose two methods to select train-
ing data as alternatives to stratified random selection: using the highest degree nodes
(StratDegree) and using nodes that result in more connections to training nodes from
the test set (GreedyCover). We see the greatest improvement using GreedyCover
against influence attacks, though there are improvements in other cases as well. We
show that the robustness achieved against Nettack with the alternative training meth-
ods is not achieved by increasing the amount of randomly selected training data, and
that there is no significant tradeoff between classifier performance and robustness using
GreedyCover. In addition, we test StratDegree and GreedyCover against an adap-
tive global poisoning attack and show that GreedyCover yields better post-attack accu-
racy than random training.

In simulation, we see other interesting phenomena in the context of influence attacks:
GreedyCover increases robustness against Nettack for a diverse set of topologies when
label homophily is high and there are no node attributes. We find that GreedyCover
and StratDegree cease to be helpful when homophily is very low and degree distribu-
tions are heterogeneous, perhaps because there are fewer labels on low-degree nodes
that attach to hubs. In all cases, variation between training selection methods becomes
less pronounced as node attributes become more helpful in discriminating between
classes.

Fig. 5 Performance using an adaptive attack for global poisoning with all three training schemes. Results are
shown in terms of overall classifier accuracy using a GCN, an SVD‑based GCN, and GNNGuard on the CiteSeer
and Cora datasets. Bars showing accuracy before poisoning are desaturated, while accuracy after poisoning is
solid. Higher accuracy is better for the defender. In all cases, selecting training data using GreedyCover results
in better post‑attack accuracy

Page 18 of 31Miller et al. Applied Network Science (2024) 9:5

The work documented here points to several open problems and avenues of poten-
tial investigation. First, it is interesting that the integrated gradient method is fre-
quently the strongest attack against real data, regardless of how training data are
selected. Determining whether some network phenomenon can be exploited to
improve robustness against this attack would be an interesting topic for future work.
Considering additional models for topologies and attributes could yield additional
insight into where the various methods perform best, with Google’s GraphWorld
being an important enabling technology (Palowitch et al. 2022). Determining the
impact of these methods on dynamic GCNs (Pareja et al. 2020), and attacks against
dynamic graphs (Sharma et al. 2023), is another important area for future investiga-
tion. Another interesting question is whether there are certain topology–attribute
combinations where there is a true tradeoff between robustness and classification
performance. Identifying such cases—analogous to the work of Tsipras et al. (2019),
focused on graph data—would be important to understand what could make clas-
sification inherently vulnerable to attack. Another potential area to consider is
detectability. Attackers try to hide their manipulation of the data; what would be
necessary to determine that an attack has been performed on a graph? For example,
we observed that direct attacks from Nettack increase triangle count (Miller et al.
2019). There may be other network statistics that tend to change when an attack
is carried out. These are all interesting questions to consider as the research com-
munity continues to expand its knowledge of vulnerability and robustness in graph
machine learning.

Appendix A Synthetic dataset generation
A.1 Label assignment

We assign labels with varying levels of homophily. For the “high homophily” scenario,
we partition the nodes based on the normalized graph Laplacian

where A and D are the adjacency matrix and diagonal degree matrix as in the "Prob-
lem definition" section (Chung 1997). We select the eigenvector u2 associated with the
second-smallest eigenvalue of L. The nodes associated with the N/2 entries in u2 with the
smallest values (i.e., values closest to −∞) are labeled 0, and the other nodes are labeled
1. Let V0 and V1 be the respective subsets of vertices.

For lower homophily graphs, we first compute the difference between the number of
within-label edges and the number of cross-label edges, i.e., letting Eij be the set of edges
between nodes in Vi and nodes in Vj,

Depending on how homophilous we want the graph to be, we swap labels on pairs of
nodes until � reaches a given value, based on its value from the initial Laplacian-based
partition (e.g., half as homophilous as the original). The node swapping mechanism is
detailed in Algorithm 2.

L = I − D−1/2AD−1/2,

(4)� = |E00| + |E11| − |E01|.

Page 19 of 31Miller et al. Applied Network Science (2024) 9:5

Algorithm 2 Swap2reduCe

A.2 Synthetic attributes

As with the real graphs, we consider binary attribute vectors on the nodes of the syn-
thetic graphs. In each case, we consider nodes with 20 attributes, and we give each
attribute a probability of being true depending on its label. Probabilities are determined
by an exponentially decreasing function. We consider three scenarios. In the most diffi-
cult case, the probabilities are the same for both classes. As we make the problem easier,
we shift the function that determines the attribute probabilities so that high-probability
attributes in class 0 still have relatively high probabilities class 0, but there is not a per-
fect match. The shifts were chosen to create cases where a generalized likelihood ratio
test (with each attribute having an independent probability parameter, estimated based
on 60 cases for each class) achieves accuracy of approximately 0.5, 0.7, and 0.9. We refer
to these cases as having uninformative, moderately informative, and highly informative
attributes, respectively. In addition, each node has a one-hot encoded attribute indicat-
ing its index in the node set.

Appendix B Detailed experimental results
B.1 Extended robustness results

We present results for each classifier at various attacker budgets, and highlight the
best-performing pairing of a classifier with a training data selection method. Results on
influence attacks for CiteSeer, Cora, Polblogs, and PubMed are in Tables 1, 2, 3, and 4,
respectively. Results for direct attacks are likewise in Tables 5, 6, 7, and 8. As shown
in the "Real data" section, GreedyCover and StratDegree perform best for CiteSeer
and Cora, and for PolBlogs in the case of influence attacks.

Page 20 of 31Miller et al. Applied Network Science (2024) 9:5

B.2 Direct attacks against real datasets

When considering direct attacks, we use all four attacks, again with SGA replac-
ing Nettack in the appropriate case. Results of these experiments are shown in
Fig. 6. It is much more difficult to defend against direct attacks; note that the
attacker often only needs one or two perturbations to be successful. With the
CiteSeer dataset, we once again see higher robustness with GreedyCover and
StratDegree, in particular at low attack probabilities. With Nettack and FGA,
GreedyCover improves performance when combined with other defenses. With

Table 1 Results of influence attacks against each classifier with the CiteSeer dataset, with attacker
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The Jaccard-based
classifier performs best, both overall (with greeDyCover) and using random training

Budget 10 Budget 30 Budget 50

defense train. Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.248 0.224 N/A 0.432 0.336 N/A 0.504 0.408 N/A

Jaccard SD 0.28 0.24 N/A 0.4 0.36 N/A 0.448 0.368 N/A

Jaccard GC 0.152 0.168 N/A 0.176 0.288 N/A 0.192 0.36 N/A

RGCN Rand. 0.752 0.696 N/A 0.944 0.84 N/A 0.976 0.904 N/A

RGCN SD 0.504 0.328 N/A 0.768 0.592 N/A 0.816 0.744 N/A

RGCN GC 0.448 0.384 N/A 0.864 0.76 N/A 0.952 0.824 N/A

Cheb Rand. 0.304 0.384 N/A 0.496 0.464 N/A 0.552 0.544 N/A

Cheb SD 0.32 0.352 N/A 0.464 0.432 N/A 0.52 0.496 N/A

Cheb GC 0.352 0.272 N/A 0.52 0.424 N/A 0.552 0.512 N/A

SVD Rand. 0.536 0.424 N/A 0.816 0.696 N/A 0.904 0.88 N/A

SVD SD 0.624 0.6 N/A 0.912 0.776 N/A 0.968 0.928 N/A

SVD GC 0.344 0.376 N/A 0.624 0.6 N/A 0.808 0.688 N/A

median Rand. 0.584 0.44 N/A 0.816 0.84 N/A 0.864 0.88 N/A

median SD 0.424 0.376 N/A 0.8 0.784 N/A 0.88 0.912 N/A

median GC 0.392 0.304 N/A 0.768 0.768 N/A 0.88 0.864 N/A

GAT Rand. 0.624 0.568 N/A 0.928 0.848 N/A 0.976 0.936 N/A

GAT SD 0.552 0.392 N/A 0.816 0.728 N/A 0.912 0.896 N/A

GAT GC 0.424 0.328 N/A 0.864 0.752 N/A 0.936 0.888 N/A

GCN Rand. 0.68 0.568 N/A 0.848 0.856 N/A 0.872 0.904 N/A

GCN SD 0.472 0.464 N/A 0.792 0.728 N/A 0.84 0.768 N/A

GCN GC 0.408 0.368 N/A 0.728 0.768 N/A 0.832 0.872 N/A

SGC Rand. 0.616 N/A N/A 0.824 N/A N/A 0.872 N/A N/A

SGC SD 0.696 N/A N/A 0.8 N/A N/A 0.816 N/A N/A

SGC GC 0.6 N/A N/A 0.824 N/A N/A 0.912 N/A N/A

Page 21 of 31Miller et al. Applied Network Science (2024) 9:5

IG-FGSM, on the other hand, the alternative training methods provide little ben-
efit. Across datasets, this attack also has the lowest robustness across defenses,
which would suggest it is a preferred attack for adversaries. (Note that for Cit-
eSeer, we only obtained data for a GCN classifier when attacked with IG-FGSM
when using GreedyCover.) We once again see a detriment in performance with
PubMed, though in this case in the area where perturbing a single edge results in
an successful attack.

Table 2 Results of influence attacks against each classifier with the Cora dataset, with attacker
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The Jaccard-based
classifier performs best, both overall and using random training. If we focus on classifiers that achieve the best performance
in Fig. 8, (i.e., omitting Jaccard and SVD), the best performance is achieved by GCNs with the alternative training methods

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.296 0.24 N/A 0.472 0.432 N/A 0.592 0.504 N/A

Jaccard SD 0.264 0.192 N/A 0.352 0.312 N/A 0.4 0.424 N/A

Jaccard GC 0.224 0.256 N/A 0.36 0.392 N/A 0.448 0.456 N/A

RGCN Rand. 0.68 0.6 N/A 0.912 0.944 N/A 0.952 0.976 N/A

RGCN SD 0.448 0.408 N/A 0.848 0.784 N/A 0.904 0.888 N/A

RGCN GC 0.44 0.296 N/A 0.832 0.808 N/A 0.92 0.888 N/A

Cheb Rand. 0.448 0.448 N/A 0.784 0.808 N/A 0.872 0.896 N/A

Cheb SD 0.656 0.48 N/A 0.976 0.816 N/A 0.976 0.912 N/A

Cheb GC 0.488 0.448 N/A 0.864 0.88 N/A 0.928 0.912 N/A

SVD Rand. 0.224 0.32 N/A 0.536 0.72 N/A 0.76 0.872 N/A

SVD SD 0.296 0.216 N/A 0.568 0.536 N/A 0.76 0.728 N/A

SVD GC 0.264 0.264 N/A 0.584 0.528 N/A 0.84 0.768 N/A

median Rand. 0.544 0.424 N/A 0.872 0.808 N/A 0.944 0.912 N/A

median SD 0.4 0.424 N/A 0.8 0.784 N/A 0.912 0.888 N/A

median GC 0.24 0.312 N/A 0.784 0.84 N/A 0.896 0.912 N/A

GAT Rand. 0.544 0.552 N/A 0.904 0.88 N/A 0.96 0.952 N/A

GAT SD 0.608 0.48 N/A 0.88 0.816 N/A 0.968 0.872 N/A

GAT GC 0.48 0.352 N/A 0.872 0.768 N/A 0.952 0.952 N/A

GCN Rand. 0.568 0.448 N/A 0.896 0.896 N/A 0.936 0.952 N/A

GCN SD 0.456 0.32 N/A 0.752 0.696 N/A 0.856 0.872 N/A

GCN GC 0.384 0.32 N/A 0.816 0.776 N/A 0.896 0.896 N/A

SGC Rand. 0.568 N/A N/A 0.824 N/A N/A 0.888 N/A N/A

SGC SD 0.632 N/A N/A 0.84 N/A N/A 0.856 N/A N/A

SGC GC 0.584 N/A N/A 0.824 N/A N/A 0.88 N/A N/A

Page 22 of 31Miller et al. Applied Network Science (2024) 9:5

Table 3 Results of influence attacks against each classifier with the PolBlogs dataset, with attacker
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). Best results overall and
with random training are achieved with SVD, while RGCN performs equally well when using StratDegree

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.92 0.872 0.928 0.992 1.0 1.0 1.0 1.0 1.0

Jaccard SD 0.928 0.984 0.936 1.0 1.0 1.0 1.0 1.0 1.0

Jaccard GC 0.936 0.952 0.944 0.992 1.0 1.0 1.0 1.0 1.0

RGCN Rand. 0.08 0.128 0.032 0.224 0.248 0.056 0.32 0.304 0.064

RGCN SD 0.048 0.024 0.016 0.088 0.072 0.056 0.112 0.096 0.064

RGCN GC 0.088 0.096 0.04 0.192 0.176 0.048 0.232 0.272 0.056

Cheb Rand. 0.048 0.184 0.112 0.184 0.376 0.176 0.296 0.456 0.216

Cheb SD 0.128 0.128 0.168 0.256 0.232 0.288 0.368 0.32 0.336

Cheb GC 0.344 0.08 0.168 0.456 0.208 0.328 0.52 0.288 0.392

SVD Rand. 0.016 0.08 0.048 0.04 0.12 0.096 0.112 0.136 0.128

SVD SD 0.064 0.024 0.064 0.088 0.024 0.072 0.112 0.032 0.096

SVD GC 0.04 0.04 0.048 0.088 0.064 0.08 0.104 0.112 0.128

GAT Rand. 0.224 0.224 0.184 0.384 0.408 0.248 0.448 0.488 0.304

GAT SD 0.12 0.056 0.08 0.184 0.16 0.152 0.256 0.208 0.208

GAT GC 0.112 0.12 0.064 0.2 0.256 0.152 0.288 0.296 0.168

GCN Rand. 0.16 0.208 0.128 0.288 0.368 0.2 0.344 0.424 0.232

GCN SD 0.104 0.096 0.176 0.168 0.208 0.248 0.208 0.288 0.312

GCN GC 0.072 0.032 0.056 0.152 0.184 0.104 0.28 0.296 0.128

SGC Rand. N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC SD N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC GC 0.056 N/A N/A 0.12 N/A N/A 0.168 N/A N/A

Table 4 Results of influence attacks against each classifier with the PubMed dataset, with attacker
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries listed as N/A did not finish in the
allotted time (24 h per trial). Only results using Jaccard, GCN, and ChebNet were obtained in time. While StratDegree and
greeDyCover improve performance with the Jaccard-based classifier, the best performance is achieved by a ChebNet classifier
with random training. In our experiments, this classifier with the PubMed data typically has a much higher margin before
the attack takes place

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.224 N/A N/A 0.576 N/A N/A 0.744 N/A N/A

Jaccard SD 0.12 N/A N/A 0.136 N/A N/A 0.16 N/A N/A

Jaccard GC 0.128 N/A N/A 0.192 N/A N/A 0.2 N/A N/A

GCN Rand. 0.456 N/A N/A 0.76 N/A N/A 0.888 N/A N/A

GCN SD 0.6 N/A N/A 0.936 N/A N/A 0.976 N/A N/A

GCN GC 0.544 N/A N/A 0.88 N/A N/A 0.952 N/A N/A

Cheb Rand. 0.056 N/A N/A 0.072 N/A N/A 0.072 N/A N/A

Cheb SD 0.072 N/A N/A 0.128 N/A N/A 0.136 N/A N/A

Cheb GC 0.136 N/A N/A 0.16 N/A N/A 0.192 N/A N/A

Page 23 of 31Miller et al. Applied Network Science (2024) 9:5

B.3 Impact of additional training data

Results of experiments with greater proportions of labeled data are shown in Fig. 7,
using Nettack as an influence attack against a GCN. While using more randomly
selected training data does sometimes increase robustness, it is not consistent, and
in some cases more randomly selected training data results in a slightly less robust
classifier. The one case where additional training data consistently outperforms
GreedyCover in terms of robustness is Cora, where training using 30% of the
dataset, randomly selected, outperforms the alternatives. In this case, the average
number of neighbors per target for GreedyCover and StratDegree are 1.084 and

Table 5 Results of direct attacks against each classifier with the CiteSeer dataset, with attacker
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). As with influence
attacks, the Jaccard-based classifier performs best, though ChebNet also performs well for all training methods

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.384 0.256 0.296 0.592 0.392 0.368 0.752 0.464 0.472

Jaccard SD 0.432 0.32 0.256 0.672 0.416 0.32 0.808 0.52 0.432

Jaccard GC 0.2 0.184 0.224 0.264 0.336 0.336 0.408 0.52 0.456

RGCN Rand. 0.976 0.848 0.8 0.992 0.936 0.936 1.0 0.968 0.96

RGCN SD 0.88 0.568 0.912 0.992 0.856 0.976 1.0 0.944 0.976

RGCN GC 0.896 0.712 0.808 1.0 0.88 0.936 1.0 0.952 0.976

Cheb Rand. 0.224 0.28 0.264 0.344 0.352 0.384 0.424 0.44 0.464

Cheb SD 0.264 0.24 0.304 0.32 0.336 0.392 0.4 0.376 0.448
Cheb GC 0.288 0.24 0.256 0.376 0.312 0.328 0.472 0.4 0.4

SVD Rand. 0.552 0.392 0.768 0.76 0.576 0.936 0.944 0.856 0.952

SVD SD 0.84 0.544 0.936 0.984 0.696 0.976 1.0 0.856 0.976

SVD GC 0.408 0.312 0.864 0.688 0.488 0.952 0.968 0.792 0.992

median Rand. 0.808 0.792 0.792 0.96 0.936 0.96 0.984 0.952 0.984

median SD 0.904 0.84 0.872 0.992 0.952 0.952 1.0 0.96 0.952

median GC 0.856 0.832 0.848 0.96 0.952 0.96 0.992 0.968 0.976

GAT Rand. 0.92 0.864 0.84 0.984 0.952 0.936 1.0 0.96 0.952

GAT SD 0.944 0.808 0.952 1.0 0.952 0.992 1.0 0.984 1.0

GAT GC 0.936 0.808 0.832 1.0 0.952 0.92 1.0 0.984 0.96

GCN Rand. 0.944 0.872 N/A 0.992 0.952 N/A 1.0 0.976 N/A

GCN SD 0.984 0.832 N/A 1.0 0.968 N/A 1.0 0.992 N/A

GCN GC 0.912 0.904 0.936 1.0 0.976 0.992 1.0 0.976 0.992

SGC Rand. 0.832 N/A N/A 0.944 N/A N/A 1.0 N/A N/A

SGC SD 0.936 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC GC 0.88 N/A N/A 0.96 N/A N/A 1.0 N/A N/A

Page 24 of 31Miller et al. Applied Network Science (2024) 9:5

1.135, both between the values for 25% random training (1.029) and 30% (1.237).
Thus, increasing the number of neighbors in the training set by adding more ran-
domly selected training data does not necessarily increase classifier robustness to
the same extent.

B.4 Robustness vs. Classification performance

In Fig. 8, we show the macro-averaged F1 score for each method using all classifiers.
Performance does occasionally vary. In particular, StratDegree results in some-
what lower performance than random training among most classifiers for all datasets.

Table 6 Results of direct attacks against each classifier with the Cora dataset, with attacker budgets
of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). While random training
with the SVD classifier works best at a low attack budget, Jaccard with StratDegree performs better against better-resourced
attackers

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.504 0.328 N/A 0.712 0.48 N/A 0.952 0.68 N/A

Jaccard SD 0.448 0.216 N/A 0.656 0.36 N/A 0.776 0.552 N/A

Jaccard GC 0.528 0.296 N/A 0.76 0.424 N/A 0.912 0.616 N/A

RGCN Rand. 0.936 0.896 N/A 0.984 0.992 N/A 0.992 0.992 N/A

RGCN SD 0.944 0.832 N/A 1.0 0.952 N/A 1.0 0.96 N/A

RGCN GC 0.976 0.84 0.832 1.0 0.96 0.976 1.0 0.96 0.976

Cheb Rand. 0.88 0.728 N/A 0.976 0.928 N/A 0.984 0.96 N/A

Cheb SD 0.96 0.752 N/A 1.0 0.928 N/A 1.0 0.936 N/A

Cheb GC 0.944 0.816 N/A 0.992 0.952 N/A 1.0 0.96 N/A

SVD Rand. 0.36 0.24 N/A 0.776 0.592 N/A 0.992 0.928 N/A

SVD SD 0.696 0.288 N/A 0.936 0.632 N/A 1.0 0.92 N/A

SVD GC 0.432 0.184 N/A 0.792 0.448 N/A 1.0 0.84 N/A

median Rand. 0.936 0.768 0.824 0.992 0.96 0.968 1.0 0.976 0.992

median SD 0.968 0.864 0.864 1.0 0.952 0.984 1.0 0.952 0.984

median GC 0.912 0.824 0.824 1.0 0.968 0.976 1.0 0.968 0.976

GAT Rand. 0.944 0.856 N/A 1.0 0.96 N/A 1.0 0.968 N/A

GAT SD 0.928 0.736 N/A 1.0 0.92 N/A 1.0 0.968 N/A

GAT GC 0.92 0.824 N/A 1.0 0.952 N/A 1.0 0.984 N/A

GCN Rand. 0.928 0.888 N/A 0.992 0.976 N/A 1.0 0.976 N/A

GCN SD 0.928 0.624 0.904 0.992 0.944 0.992 1.0 0.968 0.992

GCN GC 0.904 0.832 0.808 0.992 0.976 0.984 1.0 0.984 0.992

SGC Rand. 0.896 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC SD 0.944 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC GC 0.904 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

Page 25 of 31Miller et al. Applied Network Science (2024) 9:5

Table 7 Results of direct attacks against each classifier with the PolBlogs dataset, with attacker
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The best-performing
cases for attacks with 10 or 20 perturbations use random sampling with an SGC classifier, though in these cases FGA and
IG-FGSM were unavailable to the attacker. (If we only consider Nettack, SVD with greeDyCover consistently performs best.)

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.672 0.616 0.688 0.896 0.848 0.856 0.992 0.968 0.976

Jaccard SD 0.752 0.8 0.808 0.936 0.928 0.952 1.0 0.984 1.0

Jaccard GC 0.768 0.76 0.872 0.904 0.92 0.976 0.992 1.0 1.0

RGCN Rand. 0.48 0.464 0.312 0.632 0.664 0.504 0.784 0.872 0.704

RGCN SD 0.304 0.28 0.344 0.4 0.44 0.52 0.648 0.568 0.736

RGCN GC 0.56 0.488 0.336 0.72 0.648 0.456 0.832 0.832 0.64

Cheb Rand. 0.376 0.352 0.448 0.536 0.552 0.544 0.72 0.68 0.744

Cheb SD 0.408 0.376 0.432 0.624 0.544 0.584 0.784 0.688 0.768

Cheb GC 0.576 0.424 0.472 0.68 0.568 0.592 0.8 0.728 0.768

SVD Rand. 0.184 0.056 0.336 0.368 0.104 0.552 0.496 0.192 0.704

SVD SD 0.288 0.016 0.368 0.416 0.024 0.536 0.496 0.064 0.808

SVD GC 0.12 0.04 0.32 0.36 0.04 0.512 0.464 0.048 0.768

GAT Rand. 0.456 0.52 0.376 0.624 0.792 0.52 0.824 0.912 0.672

GAT SD 0.32 0.24 0.36 0.464 0.384 0.504 0.664 0.648 0.752

GAT GC 0.552 0.528 0.336 0.744 0.84 0.576 0.856 0.936 0.84

GCN Rand. 0.472 0.624 0.408 0.68 0.784 0.52 0.816 0.92 0.76

GCN SD 0.424 0.344 0.408 0.568 0.528 0.544 0.76 0.76 0.672

GCN GC 0.496 0.552 0.312 0.72 0.768 0.512 0.88 0.912 0.728

SGC Rand. 0.36 N/A N/A 0.464 N/A N/A 0.6 N/A N/A

SGC SD N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC GC 0.528 N/A N/A 0.736 N/A N/A 0.856 N/A N/A

Table 8 Results of direct attacks against each classifier with the PubMed dataset, with attacker
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). While StratDegree
and greeDyCover work well in conjunction with the Jaccard classifier, a disparity in the classification margin hinders their
performance in the best case, using a ChebNet classifier

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.784 N/A N/A 0.952 N/A N/A 0.992 N/A N/A

Jaccard SD 0.208 N/A N/A 0.248 N/A N/A 0.328 N/A N/A

Jaccard GC 0.208 N/A N/A 0.328 N/A N/A 0.456 N/A N/A

GCN Rand. 0.92 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

GCN SD 0.952 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

GCN GC 0.936 N/A N/A 0.984 N/A N/A 1.0 N/A N/A

Cheb Rand. 0.056 N/A N/A 0.088 N/A N/A 0.088 N/A N/A

Cheb SD 0.072 N/A N/A 0.088 N/A N/A 0.104 N/A N/A

Cheb GC 0.088 N/A N/A 0.112 N/A N/A 0.152 N/A N/A

GAT Rand. 0.792 N/A N/A 0.896 N/A N/A 0.992 N/A N/A

GAT SD 0.936 N/A N/A 0.992 N/A N/A 1.0 N/A N/A

GAT GC 0.92 N/A N/A 0.984 N/A N/A 0.992 N/A N/A

Page 26 of 31Miller et al. Applied Network Science (2024) 9:5

GreedyCover, on the other hand, typically yields similar performance to random
selection and occasionally outperforms it, e.g., using SGC on CiteSeer and ChebNet
on Cora.

B.5 Robustness vs. Classification performance—synthetic data

We consider the potential impact of the alternative training data on classifier perfor-
mance as well. Results are shown in Fig. 9. Since we use two balanced classes in all cases,

Fig. 6 Robustness to direct attacks using GCNs (solid line) or with the best defense at a given attack success
probability (dash line). Results are shown for the CiteSeer, Cora, PolBlogs, and PubMed datasets, attacked
with Nettack/SGA (left column), FGA (center column), and IG‑FGSM (right column). Results were not returned
in the allotted time (24 h per trial) for IG‑FGSM and FGA on the PubMed dataset, or for IG‑FGSM on the
CiteSeer dataset when using a GCN with random training or StratdeGree. (CiteSeer/IG‑FGSM experiments
with StratdeGree and random selection completed for other classifiers; see Table 5 for details.) Each curve
represents the average required budget over 25 randomly selected targets, and error bars are standard errors.
Higher is better for the defender. While GreedyCover performs better when paired with defenses on CiteSeer
when attacked with Nettack or FGA, the alternative methods generally increase robustness less than with
indirect attacks

Page 27 of 31Miller et al. Applied Network Science (2024) 9:5

we use accuracy as the classification metric. For each case, we plot accuracy as a func-
tion of heterophilicity Park and Barabási (2007), computed as

The denominator in (5) is the expected number of edges between V0 and V1 after random
rewiring. A high-homophily graph will have relatively low heterophilicity. Note that both
ER and BA graphs span the same range of heterophilicity, while LFR graph can achieve
lower heterophilicity and WS can be almost perfectly homophilous. When no attributes
are used, performance is similar across methods in the high-homophily (low-heterophi-
licity) cases, while the alternative methods perform worse in the low-homophily cases.

(5)
H =

#{edges between V0andV1}

|V0||V1|M/

(

N

2

) .

Fig. 7 Robustness to influence attacks using GCNs when training data are selected using GreedyCover,
StratdeGree, or varying amounts of random selection. Results are shown for the CiteSeer (upper left), Cora
(upper right), PolBlogs (lower left), and PubMed (lower right) datasets. Each curve represents the average
required budget over 25 randomly selected targets, and error bars are standard errors. Higher is better for the
defender. Of the datasets where robustness improves using GreedyCover (i.e., CiteSeer, Cora, and PolBlogs), the
only case that consistently performs better than GreedyCover is 30% random selection on the Cora dataset

Page 28 of 31Miller et al. Applied Network Science (2024) 9:5

This yields a significant gap in the in the cases with skewed degree distributions. In par-
ticular, LFR graphs maintain 75% accuracy with random training even in the case where
there is no homophily (heterophilicity is 1). As in the analogous results in Fig. 3, this may
be due to low-degree nodes that are unlikely to be chosen as training data, but are more
difficult to classify in a less homogeneous setting.

As attributes are added to the graphs, we see a decrease in performance when the
uninformative attributes are added, though the difference is very small using Greedy-
Cover for the clustered models. As we expect, accuracy increases as the attributes
become more informative. As we observed in the robustness results, we see differences
between methods diminish as attributes help discriminate the classes.

Fig. 8 Classifier performance across datasets when training data are selected using GreedyCover, StratdeGree,
or varying amounts of random selection. Results are shown for the CiteSeer (upper left), Cora (upper right),
PolBlogs (lower left), and PubMed (lower right) datasets. Each bar height represents the average F1 score
(macro averaged) across 5 separate train/validation/test sets, and error bars are standard errors. Performance
is shown for each classifier where experiments completed within the allotted time (24 h per trial). Higher is
better for the defender. While StratdeGree often underperforms random selection, GreedyCover typically shows
similar performance

Page 29 of 31Miller et al. Applied Network Science (2024) 9:5

Acknowledgements
The authors wish to thank Mustafa Çamurcu and Alexander J. Gomez for their assistance with the initial experiments on
StratdeGree and GreedyCover

Authors’ contributions
This manuscript would not exist without BAM; he was the lead contributor in all aspects of the manuscript. TER super‑
vised the work and contributed to methodology and experimental design. KC was involved in the development and
analysis of the methods. BAM was the lead developer of the code and conducted all the experiments. BAM was the lead
contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding
Open access funding provided by Northeastern University Library. This material is based upon work supported by the
United States Air Force under Air Force Contract No. FA8702‑15‑D‑0001 and the Combat Capabilities Development Com‑
mand Army Research Laboratory (under Cooperative Agreement Number W911NF‑13‑2‑0045). Any opinions, findings,
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the United States Air Force or Army Research Laboratory.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 18 November 2023 Accepted: 30 January 2024

References
Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

Fig. 9 Classification accuracy as a function of heterophilicity using GCNs on simulated data. Results are
shown for ER (first column), BA (second column), WS (third column), and LFR (fourth column) graphs, in cases
with no attributes (first row), uninformative attributes (second row), moderately informative attributes (third
row), and highly informative attributes (fourth row). Each curve represents the average required budget over
5 train/validation/test splits, and error bars are standard errors. Higher is better for the defender. The principal
performance differences occur with skewed degree distributions when homophily is low

Page 30 of 31Miller et al. Applied Network Science (2024) 9:5

Athalye A, Carlini N (2018) On the robustness of the CVPR 2018 white‑box adversarial example defenses. CoRR
abs/1804.03286

Athalye A, Carlini N, Wagner D (2018) Obfuscated gradients give a false sense of security: Circumventing defenses to
adversarial examples. In: ICML, pp 274–283

Bojchevski A, Günnemann S (2019) Certifiable robustness to graph perturbations. In: NeurIPS, pp 8317–8328
Carlini N et al (2019) On evaluating adversarial robustness. arXiv preprint arXiv: 1902. 06705
Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: SP, pp 39–57
Chen L, Li J, Peng Q et al (2021) Understanding structural vulnerability in graph convolutional networks. In: IJCAI
Chen J, Wu Y, Xu X et al (2018) Fast gradient attack on network embedding. arXiv preprint arXiv: 1809. 02797
Chung FR (1997) Spectral Graph Theory. American Mathematical Soc
Croce F, Andriushchenko M, Hein M (2019) Provable robustness of relu networks via maximization of linear regions. In:

AISTATS, pp 2057–2066
Dai E, Jin W, Liu H et al (2022) Towards robust graph neural networks for noisy graphs with sparse labels. In: WSDM, pp

181–191
Dai H, Li H, Tian T et al (2018) Adversarial attack on graph structured data. In: ICML, pp 1115–1124
Dapello J, Feather J, Le H et al (2021) Neural population geometry reveals the role of stochasticity in robust perception.

In: Ranzato M, Beygelzimer A, Dauphin Y, et al (eds) NeurIPS, vol 34. Curran Associates, Inc., pp 15595–15607, https://
proce edings. neuri ps. cc/ paper/ 2021/ file/ 8383f 931b0 cefcc 631f0 70480 ef340 e1‑ Paper. pdf

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral
filtering. In: Lee D, Sugiyama M, Luxburg U et al (eds) NeurIPS, https:// proce edings. neuri ps. cc/ paper/ 2016/ file/ 04df4
d434d 481c5 bb723 be1b6 df1ee 65‑ Paper. pdf

Entezari N, Al‑Sayouri SA, Darvishzadeh A et al (2020) All you need is low (rank): defending against adversarial attacks on
graphs. In: WSDM, pp 169–177

Ficara A, Curreri F, Fiumara G et al (2023) Human and social capital strategies for mafia network disruption. IEEE Trans Inf
Forensics Secur 18:1926–1936

Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via robust aggregation. In: NeurIPS, pp
13272–13284

Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: NeurIPS, pp 1025–1035
Jia R, Liang P (2017) Adversarial examples for evaluating reading comprehension systems. In: EMNLP, pp 2021–2031
Jin W, Derr T, Wang Y et al (2021) Node similarity preserving graph convolutional networks. In: WSDM, pp 148–156
Jin W, Li Y, Xu H et al (2020a) Adversarial attacks and defenses on graphs: a review, a tool and empirical studies. arXiv

preprint arXiv: 2003. 00653
Jin W, Ma Y, Liu X et al (2020b) Graph structure learning for robust graph neural networks. In: KDD, pp 66–74
Kipf TN, Welling M (2017) Semi‑supervised classification with graph convolutional networks. In: ICLR, https:// openr eview.

net/ forum? id= SJU4a yYgl
Li J, Xie T, Liang C et al (2021) Adversarial attack on large scale graph. IEEE Trans Knowl Data Eng 35(1):82–95
Li Y, Jin W, Xu H et al (2020) DeepRobust: A PyTorch library for adversarial attacks and defenses. arXiv preprint arXiv: 2005.

06149
Liu X, Si S, Zhu J et al (2019) A unified framework for data poisoning attack to graph‑based semi‑supervised learning.

NeurIPS
Ma Y, Wang S, Derr T et al (2019) Attacking graph convolutional networks via rewiring. arXiv preprint arXiv: 1906. 03750
Miller BA, Çamurcu M, Gomez AJ et al (2019) Improving robustness to attacks against vertex classification. In: MLG

Workshop
Miller BA, Shafi Z, Ruml W et al (2023) Attacking shortest paths by cutting edges. ACM Trans Knowl Discov Data

18(2):1–42
Moore J, Neville J (2017) Deep collective inference. In: AAAI, pp 2364–2372
Moosavi‑Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep neural networks.

In: CVPR, pp 2574–2582
Mujkanovic F, Geisler S, Günnemann S et al (2022) Are defenses for graph neural networks robust? In: NeurIPS, https://

openr eview. net/ forum? id= yCJVk ELVT9d
Neville J, Gallagher B, Eliassi‑Rad T (2009) Evaluating statistical tests for within‑network classifiers of relational data. In:

ICDM, pp 397–406
Palowitch J, Tsitsulin A, Mayer B et al (2022) GraphWorld: fake graphs bring real insights for GNNs. In: KDD, pp 3691–3701
Papernot N, McDaniel P, Jha S et al (2016a) The limitations of deep learning in adversarial settings. In: EuroSP, pp 372–387
Papernot N, McDaniel P, Wu X et al (2016b) Distillation as a defense to adversarial perturbations against deep neural

networks. In: SP, pp 582–597
Pareja A, Domeniconi G, Chen J et al (2020) EvolveGCN: evolving graph convolutional networks for dynamic graphs. In:

AAAI, pp 5363–5370
Park J, Barabási AL (2007) Distribution of node characteristics in complex networks. Proc Nat Acad Sci 104(46):17916–

17920. https:// doi. org/ 10. 1073/ pnas. 07050 81104
Prakash A, Moran N, Garber S et al (2018) Deflecting adversarial attacks with pixel deflection. In: CVPR, pp 8571–8580
Sharma K, Trivedi R, Sridhar R et al (2023) Temporal dynamics‑aware adversarial attacks on discrete‑time dynamic graph

models. In: KDD, p 2023–2035
Sun Y, Wang S, Tang X et al (2019) Node injection attacks on graphs via reinforcement learning. arXiv preprint arXiv: 1909.

06543
Szegedy C, Zaremba W, Sutskever I et al (2014) Intriguing properties of neural networks. In: ICLR
Tsipras D, Santurkar S, Engstrom L et al (2019) Robustness may be at odds with accuracy. In: ICLR
Veličković P, Cucurull G, Casanova A et al (2018) Graph attention networks. In: ICLR
Wong E, Kolter Z (2018) Provable defenses against adversarial examples via the convex outer adversarial polytope. In:

ICML, pp 5286–5295

http://arxiv.org/abs/1902.06705
http://arxiv.org/abs/1809.02797
https://proceedings.neurips.cc/paper/2021/file/8383f931b0cefcc631f070480ef340e1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/8383f931b0cefcc631f070480ef340e1-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
http://arxiv.org/abs/2003.00653
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/2005.06149
http://arxiv.org/abs/2005.06149
http://arxiv.org/abs/1906.03750
https://openreview.net/forum?id=yCJVkELVT9d
https://openreview.net/forum?id=yCJVkELVT9d
https://doi.org/10.1073/pnas.0705081104
http://arxiv.org/abs/1909.06543
http://arxiv.org/abs/1909.06543

Page 31 of 31Miller et al. Applied Network Science (2024) 9:5

Wu F, Souza A, Zhang T et al (2019a) Simplifying graph convolutional networks. In: ICML, pp 6861–6871
Wu H, Wang C, Tyshetskiy Y et al (2019b) Adversarial examples for graph data: deep insights into attack and defense. In:

IJCAI, pp 4816–4823
Xie C, Wang J, Zhang Z et al (2018) Mitigating adversarial effects through randomization. In: ICLR
Xu K, Chen H, Liu S et al (2019) Topology attack and defense for graph neural networks: an optimization perspective. In:

IJCAI, pp 3961–3967
Yu S, Vorobeychik Y, Alfeld S (2018) Adversarial classification on social networks. In: AAMAS, pp 211–219
Zhang X, Zitnik M (2020) GNNGuard: Defending graph neural networks against adversarial attacks. In: NeurIPS, pp

9263–9275
Zhu J, Rossi RA, Rao AB et al (2021) Graph neural networks with heterophily. In: AAAI, pp 11168–11176
Zhu J, Yan Y, Zhao L et al (2020) Beyond homophily in graph neural networks: Current limitations and effective designs.

In: NeurIPS, pp 7793–7804
Zhu D, Zhang Z, Cui P et al (2019) Robust graph convolutional networks against adversarial attacks. In: KDD, pp

1399–1407
Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In: KDD, pp

2847–2856
Zügner D, Günnemann S (2019a) Adversarial attacks on graph neural networks via meta learning. In: ICLR
Zügner D, Günnemann S (2019b) Certifiable robustness and robust training for graph convolutional networks. In: KDD,

pp 246–256
Zügner D, Günnemann S (2020) Certifiable robustness of graph convolutional networks under structure perturbations.

In: KDD, pp 1656–1665

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Complex network effects on the robustness of graph convolutional networks
	Abstract
	Introduction
	Scope and contributions
	Paper organization

	Related work
	Problem definition and proposed methods
	Problem definition
	Proposed training data selection methods

	Experiments and results
	Experimental setup
	Datasets
	Training data selection
	Attacks
	Classifiers
	Training
	Evaluation
	Computing platform

	Results
	Real data
	Synthetic Data

	Adaptive attacks

	Conclusions
	Appendix A Synthetic dataset generation
	A.1 Label assignment
	A.2 Synthetic attributes

	Appendix B Detailed experimental results
	B.1 Extended robustness results
	B.2 Direct attacks against real datasets
	B.3 Impact of additional training data
	B.4 Robustness vs. Classification performance
	B.5 Robustness vs. Classification performance—synthetic data

	Acknowledgements
	References

