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Abstract 

Vertex classification using graph convolutional networks is susceptible to targeted 
poisoning attacks, in which both graph structure and node attributes can be changed 
in an attempt to misclassify a target node. This vulnerability decreases users’ confi‑
dence in the learning method and can prevent adoption in high‑stakes contexts. 
Defenses have been proposed, focused on filtering edges before creating the model 
or aggregating information from neighbors more robustly. This paper considers 
an alternative: we investigate the ability to exploit network phenomena in the train‑
ing data selection process to improve classifier robustness. We propose two alterna‑
tive methods of selecting training data: (1) to select the highest‑degree nodes and (2) 
to select nodes with many connections to the test data. In four real datasets, we 
show that changing the training set often results in far more perturbations required 
for a successful attack on the graph structure; often a factor of 2 over the random 
training baseline. We also run a simulation study in which we demonstrate conditions 
under which the proposed methods outperform random selection, finding that they 
improve performance most when homophily is higher, clustering coefficient is higher, 
node degrees are more homogeneous, and attributes are less informative. In addition, 
we show that the methods are effective when applied to adaptive attacks, alleviating 
concerns about generalizability.

Keywords: Graph convolutional networks, Poisoning attacks, Robust machine 
learning

Introduction
Classification of vertices in graphs is an important problem in a variety of applications, 
from e-commerce (classifying users for targeted advertising) to security (classifying com-
puter nodes as malicious or not) to bioinformatics (classifying roles in a protein inter-
action network). In the past several years, numerous methods have been developed for 
this task (see, e.g., Hamilton et al. (2017) and Moore and Neville (2017)). More recently, 
research has focused on attacks by adversaries (Zügner et al. 2018; Dai et al. 2018) and 
robustness to such attacks (Wu et al. 2019b). If an adversary were able to insert mislead-
ing data into the training set (e.g., generate benign traffic during a data collection period 
that could conceal its behavior during testing/inference time), the chance of successfully 
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evading detection would increase, leaving data analysts unable to respond to potential 
threats.

To classify vertices in the presence of adversarial activity, we must implement learn-
ing systems that are robust to such potential manipulation. If such malicious behavior 
has low cost to the attacker and imposes high cost on the data analyst, machine learning 
systems will not be trusted and adopted for use in practice, especially in high-stakes sce-
narios such as network security and traffic safety. Understanding how to achieve robust-
ness is key to realizing the full potential of machine learning.

Adversaries, of course, will attempt to conceal their manipulation. The first published 
poisoning attack against vertex classification was an adversarial technique called Net-
tack (Zügner et al. 2018), which can create perturbations that are subtle while still being 
extremely effective in decreasing performance on the target vertices. The authors use 
their poisoning attack against a graph convolutional network (GCN).

From a defender’s perspective, we aim to make it more difficult for the attacker to 
cause node misclassification. In addition to changing the properties of the classifier 
itself, there may be portions of a complex network that provide more information for 
learning than others. Complex networks are highly heterogeneous and random sampling 
may not be the best way to obtain labels. If there is flexibility in the means of obtaining 
training data, the defender should leverage what is known about the graph topology.

This paper investigates the hypothesis that leveraging network properties can improve 
robustness of GCNs in the presence of adversaries. In particular, we demonstrate that 
increasing the number of labeled nodes in the unlabeled nodes’ neighborhoods does, in 
some circumstances, increase the number of required perturbations for an attack to be 
successful. The increase in robustness depends on aspects of the graph topology, such 
as homophily, clustering coefficient, and degree distribution, as well as information pro-
vided by features. This phenomenon can be exploited when selecting training data when 
conditions are favorable. We focus on two alternative techniques for training data selec-
tion. Both methods aim to train with a subset of nodes that are well connected to the 
held out set. Here we see a benefit, often raising the number of perturbations required 
for a given level of attack success by over a factor of 2. When it is possible to pick a spe-
cific subset on which to train, this can provide a significant advantage.

Scope and contributions

In this paper, we are specifically interested in targeted poisoning attacks against vertex 
classifiers, where the data are modified at training time to cause a specific target node 
to be misclassified. We consider attacks against the structure of the graph, rather than 
against node attributes. We focus on classification methods where there is an implicit 
assumption of homophily, and where the topology does not vary over time. Working 
within this context, the contributions of this work are as follows:

• We propose two methods—StratDegree and GreedyCover—for selecting train-
ing data that are well-connected to the unlabeled vertices.

• We demonstrate that StratDegree and GreedyCover often result in a greater 
burden on attackers that cannot be reliably obtained by simply increasing the amount 
of randomly selected training data.
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• We show that the most robust defenses—typically those based on singular value 
decomposition of the adjacency matrix (Entezari et al. 2020) and Jaccard coefficient 
of attributes (Wu et al. 2019b)—are often improved by working in conjunction with 
GreedyCover.

• We show that there is no consistent tradeoff between the robustness gained from 
StratDegree and GreedyCover and classification performance.

• In simulation, we study the effects of various generative models and report the 
impact of class homophily, topological features, and node attribute similarity across 
classes on classification performance and robustness to attack.

• We apply StratDegree and GreedyCover to an adaptive attack, demonstrating 
that the proposed training methods improve robustness in a more general setting.

Paper organization

The remainder of this paper is organized as follows. In "Related work", we briefly con-
textualize our work within the current literature. In "Problem definition and proposed 
methods" we describe the vertex classification problem, GCNs, and the Nettack method, 
and outlines the techniques we investigate to select training data. The "Experiments and 
results" section details the experimental setup—including datasets, attacks, and classifi-
cation methods—and results. Experimental results are included for real data, illustrating 
the effectiveness of the proposed methods in several cases, and the results of a simula-
tion study in which we vary graph topology, node attributes, and homophily, and evalu-
ate robustness of the methods across the landscape. In "Conclusions" we conclude with a 
summary and outline open problems and future work.

Related work
Adversarial examples in deep neural networks have received considerable attention since 
they were documented several years ago (Szegedy et al. 2014). Since that time, numerous 
attack methods have been proposed, largely focused on the image classification domain 
(though there has been interest in natural language processing as well, e.g., from Jia and 
Liang (2017)). In addition to documenting adversarial examples, Szegedy et  al. (2014) 
demonstrated that such examples can be generated using the limited-memory BFGS 
(L-BFGS) algorithm, which identifies an adversarial example in an incorrect class with 
minimal L2 norm distance to the true data. Later, Goodfellow et al. (2015) proposed the 
fast gradient sign method (FGSM), where the attacker starts with a clean image and takes 
small, equal-sized steps in each dimension (i.e., alters each pixel by the same amount) in 
the direction maximizing the loss. Another proposed attack—the Jacobian-based Sali-
ency Map Attack (JSMA)—iteratively modifies the pixel with the largest impact on the 
loss (Papernot et al. 2016a). DeepFool, like L-BFGS, minimizes the L2 distance from the 
true instance while crossing a boundary into an incorrect class, but does so quickly by 
approximating the classifier as linear, stepping to maximize the loss, then correcting for 
the true classification surface (Moosavi-Dezfooli et al. 2016). Like Nettack, these meth-
ods all try to maintain closeness to the original data ( L2 norm for L-BFGS and DeepFool, 
L0 norm for JSMA, and L∞ norm for FGSM).
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Some of these methods have been adapted for use with graph neural networks (GNNs). 
Wu et al. (2019b) modify FGSM and JSMA to use integrated gradients and show it to 
be effective against vertex classification. In addition, new attacks against vertex clas-
sification have been introduced, including a method that uses reinforcement learning 
to identify modifications to graph structure for an evasion attack  (Dai et al. 2018). To 
increase the scale of attacks, Li et al. (2021) propose an attack that only considers a k-
hop neighborhood of the target. This method attacks a simplified GCN, introduced by 
Wu et al. (2019a), which applies a logistic regression classifier after k rounds of feature 
propagation.

Defenses to attacks such as FGSM and JSMA have been proposed, although several 
prove to be insufficient against stronger attacks. A simple improvement is to include 
adversarial examples in the training data (Goodfellow et al. 2015). Defensive distillation 
is one such defense, in which a classifier is trained with high “temperature” in the soft-
max, which is reduced for classification  (Papernot et  al. 2016b). While this was effec-
tive against the methods from Szegedy et al. (2014), Goodfellow et al. (2015), Papernot 
et al. (2016a), and Moosavi-Dezfooli et al. (2016), it was shown by Carlini and Wagner 
(2017) that modifying the attack by changing the constraint function (which ensures the 
adversarial example is in a given class) renders this defense ineffective. More defenses 
have been proposed, such as pixel deflection  (Prakash et  al. 2018) and randomization 
techniques (Xie et al. 2018), but many such methods are still found to be vulnerable to 
attacks (Athalye and Carlini 2018; Athalye et al. 2018). Other work has focused on prov-
ably robust defenses  (Wong and Kolter 2018), with empirical performance often close 
to certifiable claims (Croce et al. 2019). Stochastic networks have also shown improved 
robustness to various attacks  (Dapello et  al. 2021). In the wake of growing interest in 
adversarial robustness, Carlini et al. (2019) have aggregated best practices for evaluation 
of systems.

More recent work has focused on robustness of GCNs, including work on robustness 
to attacks on attributes  (Zügner and Günnemann 2019b) and more robust GCN vari-
ants  (Zhu et  al. 2019). Multiple authors have considered aggregation techniques that 
are less sensitive to outliers  (Geisler et  al. 2020; Chen et al. 2021). One approach to a 
more robust classifier incorporates an attention mechanism that learns the importance 
of other nodes’ features to a node’s class  (Veličković et  al. 2018). Others have consid-
ered using a GCN with modified graph structure to improve robustness, such as using 
a low-rank approximation for the graph (Entezari et al. 2020) and filtering edges based 
on attribute values (Wu et al. 2019b). Another method also considers attribute values, in 
this case creating a similarity graph from the attributes that augments the given graph 
structure to preserve node similarity in feature space  (Jin et  al. 2021). The low-rank 
structure and node similarity concepts are combined by Jin et al. (2020b) to create a neu-
ral network that aims to simultaneously learn the true graph structure from poisoned 
data and learn a classifier of unlabeled nodes. Dai et al. (2022) explore a similar idea in 
the context of noisy data and few labels, using link prediction to augment the observed 
graph. Relations between attribute similarity and node class—including possible hetero-
phily—are also exploited in GNNGuard  (Zhang and Zitnik 2020). More recent work 
has shown that attacks that are adaptive to defenses easily undermine the robustness 
increase observed when using non-adaptive attacks  (Mujkanovic et  al. 2022). Other 
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recent GCN developments include modifications to deal with heterophily, via classifier 
design choices  (Zhu et  al. 2020) and by learning the level of homophily or heteroph-
ily in the graph as part of the training procedure (Zhu et al. 2021). Several attacks (Dai 
et  al. 2018; Zügner et  al. 2018; Chen et  al. 2018; Zügner and Günnemann 2019a; Wu 
et al. b; Xu et al. 2019) and defenses (Goodfellow et al. 2015; Wu et al. 2019b; Zhu et al. 
2019; Entezari et al. 2020; Jin et al. 2020b) have been incorporated into a software pack-
age called DeepRobust, enabling convenient experimentation across a variety of con-
ditions  (Li et al. 2020; Jin et al. 2020a). As with neural networks more generally, there 
has been work on certifiable robustness for GCNs  (Bojchevski and Günnemann 2019; 
Zügner and Günnemann 2020).

While this paper is focused on targeted attacks, several attacks, such as those pro-
posed by Zügner and Günnemann (2019a) and Xu et al. (2019), attack the whole graph 
in order to degrade overall performance. Some attacks in this area have allowed adding 
new nodes (Sun et al. 2019), flipping labels (Liu et al. 2019), and rewiring edges (Ma et al. 
2019). In addition, there are many machine learning tasks on graphs other than vertex 
classification, and work has been done on, for example, edge classification in an adver-
sarial context (Yu et al. 2018). Finally, altering a network by removing edges or nodes has 
been studied well beyond the context of machine learning, focusing on altering shortest 
paths  (Miller et  al. 2023) or disconnecting the graph  (Albert et  al. 2000), where there 
has been recent work showing the impact of selecting nodes with particular features for 
removal (Ficara et al. 2023).

Problem definition and proposed methods
Problem definition

We consider the same setting from Zügner et  al. (2018). We are given an undirected 
graph G = (V ,E) of size N = |V | and an N × d matrix of vertex attributes X. Each node 
has an arbitrary numeric index from 1 to N. We consider only binary attributes. In addi-
tion to its d attributes, each node has a label denoting its class. We enumerate classes as 
integers from 1 to C. Given a subset of labeled instances, the goal is to correctly classify 
the unlabeled nodes.

We focus on GCNs, which make use of the adjacency matrix for the graph A = {aij} , 
where aij is 1 if there is an edge between node i and node j and is 0 otherwise. The GCN 
applies a symmetrized one-hop graph convolution (Kipf and Welling 2017) to the input 
layer. That is, if we let D be the diagonal matrix of vertex degrees—i.e., the ith diagonal 
entry is the number of edges connected to vertex i, dii = N

j=1 aij—then the output of 
the first layer of the network is expressed as

where W1 is a weight matrix, X is a feature matrix whose ith row is xTi  (the attribute 
vector for row vertex i), and σ is the rectifier function. We use GCNs with a single hid-
den layer. From the hidden layer to the output layer, a similar graph convolution is per-
formed, followed by a softmax output:

(1)H = σ

(

D−1/2AD−1/2XW1

)

,
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where W2 is another matrix of learned weights. Each vertex is then classified according 
to the largest entry in the corresponding row of Y.

Nettack—the vertex attack proposed by Zügner et al. (2018)—operates on a surrogate 
model where the rectifier function is replaced by a linear function, thus approximating 
the overall network as

Nettack uses a greedy algorithm to determine how to perturb both A and X to make 
the GCN misclassify a target node. The changes are intended to be “unnoticeable,” i.e., 
the degree distribution of G and the co-occurrence of features are changed negligibly. 
Using the approximation in (2), Nettack perturbs by either adding or removing edges 
or turning off binary features so that the classification margin is reduced the most at 
each step. Note that while it can change the topology and the features, Nettack does not 
change the labels of any vertices. In this paper, we only consider structural perturba-
tions. Nettack allows either direct attacks, in which the target node itself has its edges 
and features changed, or indirect influence attacks, where neighbors of the target have 
their data altered.

The classifier is evaluated in a context where only some of the labels are known, and 
the labeled data are split into training and validation sets. To train the GCN, 10% of 
the data are selected at random (or by one of the alternative methods outlined in "Pro-
posed training data selection methods"), and another 10% is selected for validation. The 
remaining 80% is the test data. After training, nodes are selected for attack among those 
that are correctly classified. The goal of the defender is to make the a successful attack as 
expensive as possible.

As we discuss in "Experimental setup", we also consider attacks other than Nettack, 
and classifiers other than standard GCNs. While the details differ (e.g., using different 
criteria to identify perturbations), the overall problem definition remains the same.

Proposed training data selection methods

As we investigated classification performance using Nettack, we noted that nodes in 
the test set with many neighbors in the training set were more likely to be correctly 
classified. This dependence on labeled neighbors is consistent with previous observa-
tions (Neville et al. 2009). We observed this effect using the standard method of training 
data selection used in the original Nettack paper: randomly select 10% for training, 10% 
for validation, and 80% for testing. This observation suggested that a training set where 
the held-out nodes are well represented among neighborhoods of the training data—
providing a kind of “scaffolding” for the unlabeled data—could make the classification 
more robust.

Y = softmax
(

D−1/2AD−1/2HW2

)

,

(2)
Y ≈ softmax

(

(

D−1/2AD−1/2
)2

XW1W2

)

= softmax

(

(

D−1/2AD−1/2
)2

XW

)

.



Page 7 of 31Miller et al. Applied Network Science             (2024) 9:5  

We considered two methods to test this hypothesis. The first simply chooses the 
highest-degree nodes (stratified by class) to be in the training set. We refer to the 
stratified degree-based thresholding method as StratDegree. The other method 
uses a greedy approach in an attempt to ensure every node has at least a minimal 
number of neighbors in the training set. Starting with an empty training set and a 
threshold k = 0 , we iteratively add a node of a particular class with the largest num-
ber of neighbors that are connected to at most k nodes in the training set. The class is 
randomly selected based on how many nodes of each class are currently in the train-
ing set and the number required to achieve class stratification (see the pseudo-code 
for details). When there are no such neighbors, we increment k. This procedure con-
tinues until we have the desired proportion of the overall dataset for training. Algo-
rithm 1 provides the pseudo-code.

Algorithm 1 GreedyCover 

Using StratDegree and GreedyCover has computational costs beyond random 
sampling. StratDegree requires finding the highest-degree nodes, which, for a con-
stant fraction of the dataset size, will require O(|E| + |V | log |V |) time (for comput-
ing degrees and sorting), compared to O(|V|) time for random sampling. Each step in 
GreedyCover requires finding the vertex with the most neighbors minimally con-
nected to the training set. As written in Algorithm 1, each iteration requires O(|E|) time 
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to count the number of such neighbors each node has, which would result in an overall 
running time of O(|V||E|). This could be improved using a priority queue—such as a 
Fibonacci heap—to achieve O(|E| + |V | log |V |) time (O(|V|) logarithmic-time extrac-
tions of the minimum and O(|E|) constant-time key updates). Thus, the two proposed 
method require moderate overhead compared to the running time for the GCN.

Experiments and results
Experimental setup

Each experiment in our study involves (1) a graph dataset, (2) a method for selecting 
training data, (3) a structure-based attack against vertex classification, and (4) a clas-
sification algorithm. We consider several options for each step in this process, as shown 
in Fig. 1. This section details the methods and datasets we use across the experiments 
in this paper. We use the DeepRobust library (Li et al. 2020) for datasets, attacks, and 
classifiers.

Datasets

We use the three datasets used in the Nettack paper in our experiments, plus one larger 
citation dataset:

• CiteSeer The CiteSeer dataset has 3312 scientific publications put into 6 classes. The 
network has 4732 links representing citations between the publications. The features 
of the nodes contain ones and zeros indicating the presence of the word in the paper. 
There are 3703 unique words considered for the dictionary.

• Cora The Cora dataset consists of 2708 machine learning papers classified into one 
of seven categories. The citation network consists of 5429 citations. For each paper 
(vertex) in the network there is a feature vector of zeros and ones for whether it con-
tains one of 1433 unique words.

• PolBlogs The political blogs dataset consists of 1490 blogs labeled as either liberal or 
conservative. A total of 19,025 links between blogs form the directed edges of the 
graph. No attributes are used.

Select Dataset
Split 

Train/Val./Test 
Data

Apply Attack Apply 
Classifier

● CiteSeer
● Cora
● PolBlogs
● PubMed
● Synthetic

● StratDegree
● GreedyCover
● Random (varied 

proportions)

● Nettack
● SGA
● FGA
● IG-FGSM

● GCN
● GCN-Jaccard
● GCN-SVD
● SGC
● ChebNet
● GAT
● MedianGCN
● RGCN

Fig. 1 Processing chain for experiments. Each experiment takes a dataset, applies a method to split training, 
validation, and test data, applies an attack to a set of target nodes, then applies a classifier to the attacked 
dataset. We evaluate the robustness of vertex classification—‑in terms of required attacker budget at a given 
attack success rate—across all possible combinations of dataset, selection methods, attacks, and classifier
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• PubMed The PubMed dataset consists of 19,717 papers pertaining to diabetes clas-
sified into one of three classes. The citation network consists of 44,338 citations. For 
each paper in the network there is a binary feature vector representing the presence 
of 500 words.

We further evaluate performance using synthetic data. Synthetic network generation to 
evaluate network effects on the performance of GNNs has recently received attention 
in the research community (Palowitch et al. 2022). In this work, we consider synthetic 
datasets that vary four key network features: degree distribution, level of clustering, 
homophily with respect to labels, and information gained via node attributes. We use 
four random graph models that exhibit different properties in terms of clustering and 
degree distribution. In each case, we use 1200 nodes and an average degree of approxi-
mately 10.

• Erdős–Rényi (ER) Graphs: Each pair of nodes shares an edge with probability 1/120. 
This model yields homogeneous degree distributions and very little clustering.

• Barabási–Albert (BA) Graphs: Each node enters the graph and connects 5 edges to 
existing nodes with probability proportional to their degrees. The process is initial-
ized with a 6-node star. This model yields graphs with heterogeneous degree distri-
butions and very little clustering.

• Watts–Strogatz (WS) Graphs: A ring lattice—where each node is connected to 
5 nodes on either side—has 10% of its edges randomly rewired. This model yields 
graphs with substantial clustering and homogeneous degree distributions.

• Lancichinetti–Fortunato–Radicchi (LFR) Graphs: Generates a degree sequence with 
degree distribution p(d) ∝ d−3, with average and minimum degree set to davg = 10 
and dmax = 135 . Nodes are randomly assigned to communities, whose sizes are dis-
tributed according to p(|C|) ∝ |C|−2 , with the minimum community size being 10. 
Nodes create 80% of their connections within the community and 20% outside the 
community.

If the generated graph has multiple connected components, we use the largest con-
nected component for the experiment.

We also vary the homophily of the vertex labels, from no homophily to highly homo-
philous, and assign vertex attributes with varying levels of predictive power, from 
completely uninformative about the vertex’s label to highly informative. Details on the 
methods used to generate synthetic labels and attributes are provided in Appendix A.

Training data selection

To select training data, we use StratDegree and GreedyCover as described in "Pro-
posed training data selection methods", as well as random selection. For StratDegree 
and GreedyCover, we use the proposed algorithms to select 10% of the data, stratified 
by class. The remaining 90% of the data is randomly split (stratified by class) into valida-
tion (10%) and training data (80%). For random selection, we also want to determine 
whether adding more random training data improves classification robustness. Thus, in 
addition to using stratified random sampling to select 10% of the data for training, we 
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consider larger training sets, increasing to 30% in 5% increments. In all cases, 10% of the 
data are used for validation and the remainder comprise the test set. We measure the 
average number of neighbors connected to a node outside of the training set, i.e., for the 
training set T ⊂ V  , we record

This allows us to evaluate what impact the overall number of connections to the train-
ing data has on performance, and whether performance with the proposed training data 
selection methods match any trend observed with random training.

Attacks

We use the following attacks, which are implemented in DeepRobust:

• Nettack The method from Zügner et al. (2018), briefly described in "Problem definition".
• Fast Gradient Attack (FGA) Computes the gradient of the loss function at the target 

node with respect to the adjacency matrix, then perturb the entry with the largest gradi-
ent that points in the correct direction (Chen et al. 2018).

• Integrated Gradient Attack (IG-Attack) A similar method that integrates the gradient as 
an entry in the adjacency matrix varies from 1 to 0 (for edge removal) or 0 to 1 (for edge 
addition) (Wu et al. 2019b).

• Simplified Gradient Attack (SGA) In this case, gradients are computed that only con-
sider a k-hop subgraph around the target (Li et al. 2021).

For direct attacks, we use up to 20 edge additions and removals for a target. For influence 
attacks, we allow up to 50 perturbations.

Classifiers

We consider the following eight classifier models, some of which were developed with the 
explicit intent of improving robustness to adversarial attack:

• GCN The original GCN architecture as used in Zügner et al. (2018).
• Jaccard Before training the GCN, removes edges between nodes that have dissimilar 

feature vectors before (Wu et al. 2019b).
• SVD Uses a GCN in which the adjacency matrix is replaced with a low-rank approxima-

tion via truncated singular value decomposition (Entezari et al. 2020).
• ChebNet Uses the spectral graph convolutions (Defferrard et al. 2016) of which the con-

volution operator (1) is a first-order approximation.
• Simple Graph Convolution (SGC) Applies a model similar to the surrogate (2), 

where the matrix W is learned via logistic regression on the features defined by 
(D−1/2AD−1/2)kX (Wu et al. 2019a).

• Graph Attention Network (GAT) Includes an attention mechanism based on the impor-
tance of each node’s neighbors’ features (Veličković et al. 2018).

(3)
1

|V \ T |

∑

i∈T

∑

j∈V \T

aij .
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• Robust Graph Convolutional Network (RGCN) Uses Gaussian convolutions, in which 
the output is drawn from a Gaussian distribution whose parameters the output of a 
neural network (Zhu et al. 2019).

• MedianGCN Aggregates neighbors’ features based on their median values rather than 
weighted averages (Chen et al. 2021).

Training

We tuned classifier hyperparameters for each (classifier, attack, training selection 
method) triple, first performing a coarse grid search over all hyperparameters, then 
performing some refinements: altering each single parameter 10% and choosing the 
configuration with the best performance. The performance metric is a linear combi-
nation of the F1 score (macro averaged) before an attack takes place with the was the 
average margin of 10 randomly selected targets after 5 perturbations with a direct 
attack. The resulting hyperparameters were used in all cases with the corresponding 
classifier, attack, and training selection method.

Evaluation

We evaluate performance based on 25 target nodes. The targets are randomly selected 
from the set of nodes that are correctly classified when no attack takes place. This 
procedure is repeated five times with the train/validation/test splits recomputed each 
time. Our robustness metric is the adversary’s required budget to achieve a given 
attack success rate. We compute this based on the number of perturbations required 
to give a target a negative classification margin in its correct class. If the target is 
never successfully misclassified, we set the required budget to the maximum number 
of perturbations. The result is averaged across the five trials.

Computing platform

All experiments are run on a Linux cluster where each machine has 32 cores and 192 
GB of memory. Each process is allocated 2 cores and 20 GB. If an attack or defense 
experiment—considering all targets with a particular attack or defense and a particu-
lar training data selection method—does not complete in 24 h per trial, the result is 
not recorded.

Results

Real data

We first consider influence attacks, where the target node’s neighbors are modified 
rather than the target itself. We apply both Nettack and FGA, replacing Nettack with 
SGA if the SGC-based classifier is used. We only obtained results using IG-FGSM 
on the PolBlogs dataset, which can be seen in Appendix B.1. (IG-FGSM did not sub-
stantially outperform the other methods for the best-performing classifiers.) In all 
other cases, IG-FGSM did not finish in the allotted time (24 h per trial). Results are 
illustrated in Fig. 2. In addition to the results for standard GCNs, we plot the upper 
envelope for each method: at a given attack success probability, the largest required 
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budget across all classifiers. See Appendix  B.1 for details about the performance of 
each individual classifier with each training scheme. CiteSeer has a particularly large 
increase in the attacker’s required budget when using GreedyCover: more than dou-
bling it over several rates of attack success. In fact, at low attack success probabilities, 
GreedyCover with a GCN provides similar robustness to any of the classifiers listed 
in the  "Classifiers"  section with random selection. In addition, GreedyCover pro-
vides greater robustness when used in conjunction with the most robust defenses, as 
shown by the upper envelope. There is a somewhat milder effect on the Cora data-
set. In this case, GreedyCover still performs best when using Nettack, but the best 
performance when attacked with FGA comes from StratDegree (though Greedy-
Cover is within one standard error). With PolBlogs, we also see a benefit from both 
methods, though we start from a much higher baseline in terms of required pertur-
bations. We see an exception with PubMed, where random training performs best. 

Fig. 2 Robustness to influence attacks using GCNs (solid line) or with the best defense at a given attack 
success probability (dash line). Results are shown for the CiteSeer, Cora, PolBlogs, and PubMed datasets, 
each plotted in a subsequent row, and using both the Nettack/SGA (left column) and FGA (right column) 
attacks. Results were not returned in the allotted time (24 h per trial) for IG‑FGSM on all datasets, and FGA 
for PubMed. Each curve represents the average required budget over 25 randomly selected targets, and 
error bars are standard errors. Higher is better for the defender. With the exception of the PubMed dataset, 
GreedyCover performs at least as well as random training selection, and often performs much better
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Looking deeper into the data, we see that the target nodes for random data tend to 
have higher margins on the best-performing classifiers. In all other cases, Greedy-
Cover performs as well or better than the other training set selection methods.

Observation 4.1 Training with GreedyCover frequently outperforms other training 
methods, both with GCNs and in conjunction with published defenses.

For direct attacks—where edges adjacent to the target can be added or removed—we 
find that there is less improvement in robustness using the alternative methods than 
indirect attacks. Ensuring that nodes have many neighbors in the training set appears 
more effective when the neighbors are the nodes whose edges are perturbed. This may 
be because direct attacks are able to remove connections from the target vertex to the 
labeled neighbors. Detailed results on direct attacks are available in Appendix B.2.

Observation 4.2 Direct attacks typically benefit less than influence attacks from the 
alternative training methods.

One additional possibility we considered is that robustness from the alternative train-
ing methods comes entirely from the average number of trained neighbors for nodes in 
the test set. To test this possibility, we performed the same experiments with more ran-
domly selected training data, as described in "Training data selection". Results of these 
experiments—which show no consistent improvement in robustness by increasing the 
total number of labeled nodes—are provided in Appendix B.3 and lead to the following 
observation.

Observation 4.3 Using more training data with random selection does not consistently 
lead to higher robustness.

Another important consideration is whether increased robustness comes at the 
expense of classification performance. In Appendix B.4, we provide classification results 
on all 4 datasets using all defenses and training data selection methods. While StratDe-
gree often results in lower classification performance than random selection, this is not 
the case for GreedyCover. This yields another datapoint in favor of GreedyCover: it 
tends to yield the greatest robustness across datasets, and does not seem to greatly hin-
der overall classification performance.

Observation 4.4 Using GreedyCover yields no consistent reduction in classification 
performance compared to random training set selection.

The results on real data show that GreedyCover often provides greater robustness 
to attack, but they are by no means conclusive. In the next section, we further explore 
the methods with simulated data to observe performance differences while controlling 
network properties.
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Synthetic Data

For each synthetic topology, we ran experiments using Nettack to perform influence 
attacks against a GCN. We included classifiers trained with data selected via random 
sampling, StratDegree, and GreedyCover. Robustness results for ER, BA, WS, and 
LFR graphs are shown in Fig. 3. When no attributes are used and homophily is high, we 
see a much larger performance difference using GreedyCover than StratDegree in 
the WS graphs, but the two methods yield more similar performance with the other mod-
els. For all models, performance improvement gets more modest as homophily decreases.

When attributes with the same distribution are added to both classes (i.e., the case 
of “uninformative” attributes), robustness suffers in most cases. The LFR graphs in 
particular see a large decrease in robustness using random selection, with a much 
smaller decrease using the alternative methods. As feature distributions become 
more distinct between the classes, the difference between the methods becomes 
smaller, suggesting that the robustness improvements we observe are likely due to 
structural considerations. With highly informative attributes, we note that the models 
with homogeneous degree distributions still gain a benefit from StratDegree and 
GreedyCover when homophily is low, while the models with heterogeneous degree 
distributions are somewhat hindered by these methods. Like in the real data, this is 
because the targets have higher margins in the case of random training selection. This 

Fig. 3 Robustness to influence attacks against GCNs on simulated data. Results are shown for ER (first 
column), BA (second column), WS (third column), and LFR (fourth column) graphs, in cases with no attributes 
(first row), uninformative attributes (second row), moderately informative attributes (third row), and highly 
informative attributes (fourth row). Each curve represents the average required budget over 25 randomly 
selected targets, and error bars are standard errors. Higher is better for the defender. Results are shown 
for high homophily (solid line) and low homophily (dash line) cases. As attributes become more helpful in 
classification, the advantage gained by the alternative training methods is substantially reduced
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may happen due to low-degree nodes, which tend to connect to high-degree nodes: 
When homophily is low, nodes may become more difficult to predict based on their 
proximity to hubs, and are less likely to be selected to be labeled. We summarize our 
observations here as follows:

Observation 4.5 With no attributes and high homophily, all models gain robustness 
from the alternative methods.

Observation 4.6 With no attributes and low homophily, GreedyCover provides 
robustness for all models, while for BA and LFR, StratDegree improves robustness 
only at higher attack success rates.

Observation 4.7 The increase in robustness for the alternative methods decreases as 
homophily decreases and as attributes become better class predictors.

Observation 4.8 With highly informative attributes and low homophily, GreedyCover 
and StratDegree maintain some increased robustness for homogeneous degree distri-
butions, while they somewhat hinder performance for heterogeneous ones.

As with real data, we consider the possibility that classification performance may be 
hindered by the alternative training data selection methods. We evaluated classifica-
tion performance in all cases, with results discussed in detail in Appendix B.5. There 
are some cases where the alternative methods degrade performance: when homoph-
ily is low and degree distributions are heterogeneous. In the high-homophily case, 
we also see some performance differences, with the alternative methods sometimes 
yielding higher classification performance than random selection. Any such differ-
ences, however, dissipate as the attributes become more informative.

Observation 4.9 Graphs with skewed degree distributions and low homophily achieve 
lower accuracy with GreedyCover and StratDegree than random selection, but per-
formance is similar in other cases.

Observation 4.10 For higher homophily graphs, performance differences between 
methods decrease as attributes become more informative.

When there is no homophily in the graph (a node’s neighbor is not more likely to 
have the same label as it is to have another), classification accuracy is very low without 
informative attributes. Considering cases where there is at least some homophily and 
at least moderately informative attributes, the simulation results where robustness does 
not improve with StratDegree or GreedyCover are summarized in Fig. 4. As shown 
in the table, the cases where there is no improvement all have heterogeneous degree dis-
tributions, while the homogeneous degree distributions always have some improvement 
in robustness when attributes are at least moderately informative. In addition, the low 
homophily cases result in lower accuracy with the alternative methods. Note also that 
more informative attributes and lower clustering coefficient hinder the performance 
benefit.
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Relating the synthetic data to the real datasets, recall that StratDegree and Greedy-
Cover both failed to provide consistent improvement for PubMed, and struggled with 
direct attacks against PolBlogs. Looking into the features of these datasets, there are two 
interesting observations. First, PolBlogs has an especially heavy-tailed degree distribu-
tion: there are many nodes with hundreds of edges, which is rare in the other datasets. 
In addition, the PubMed dataset has node attributes that are very useful in identifying 
the class of the nodes: using a support vector machine with a radial basis function kernel 
trained on the attribute vectors alone (50% of the nodes used for training), the F1 score 
(macro averaged) for the Cora dataset is approximately 0.71, for CiteSeer is approxi-
mately 0.75, and for PubMed is about 0.87. As with the synthetic data, the cases with the 
most informative node attributes are hindered by the alternative training methods.

Adaptive attacks

In the image classification literature, numerous published defenses were found to pri-
marily rely on model obfuscation and remain vulnerable to adaptive attacks that take the 
new model into account (Athalye and Carlini 2018). Recent work has raised similar con-
cerns regarding the robustness of published defenses against GNN attacks (Mujkanovic 
et  al. 2022). If training set selection makes a classifier more robust, one advantage is 
that it makes no changes to the model class, and thus should not be vulnerable to such 
oversights.

We applied our training set selection methods to a demonstration provided by Muj-
kanovic and Geisler et al,1 which includes an adaptive attack based on projected gradient 
descent (PGD) (Xu et al. 2019). The code applies the attack with the objective of reduc-
ing the overall classifier accuracy. We applied the demo to the same datasets used by the 
authors—CiteSeer and Cora—and achieved the results shown in Fig. 5. While the SVD-
based method and GNNGuard are both effectively attacked by the PGD-based method, 

Fig. 4 Summary of cases where StratdeGree and GreedyCover do not improve robustness when using 
informative attributes on synthetic graphs. The alternative methods are considered less robust than random 
training selection if the adversary’s budget decreases by at least 1 standard deviation for at least 10 out of 20 
points on the associated curve in Fig. 3 (attack success probability in multiples of 0.05). They are considered 
to be similarly robust if the budget is within 1 standard deviation of for over 10 such points. For accuracy, the 
alternative methods result in lower accuracy if the average accuracy (see Fig. 9 in Appendix B.5) decreases 
by at least 3% and similar accuracy if it is within 3%. All cases in the table have heterogeneous degree 
distributions. All cases with lower accuracy have low homophily. The improvement from the alternatives is 
also degraded as attributes become more informative (from 70% to 90% accuracy based on attributes alone) 
and clustering coefficient decreases

1 Available at https:// github. com/ Loadi ngByte/ are- gnn- defen ses- robust.

https://github.com/LoadingByte/are-gnn-defenses-robust
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using GreedyCover to select the training data (again using 10% for training, 10% for 
validation, and 80% for testing) results in higher post-attack accuracy for with both clas-
sifiers. As defenses to new adaptive methods are published, it will be interesting to con-
sider their use in conjunction with alternative training set selection.

Conclusions
This paper explores the impact of complex network characteristics on the robustness 
of vertex classification using GCNs. In particular, we investigate the hypothesis that the 
structural relationship between the training data and the remainder of the network can 
be exploited to improve classifier robustness. We propose two methods to select train-
ing data as alternatives to stratified random selection: using the highest degree nodes 
(StratDegree) and using nodes that result in more connections to training nodes from 
the test set (GreedyCover). We see the greatest improvement using GreedyCover 
against influence attacks, though there are improvements in other cases as well. We 
show that the robustness achieved against Nettack with the alternative training meth-
ods is not achieved by increasing the amount of randomly selected training data, and 
that there is no significant tradeoff between classifier performance and robustness using 
GreedyCover. In addition, we test StratDegree and GreedyCover against an adap-
tive global poisoning attack and show that GreedyCover yields better post-attack accu-
racy than random training.

In simulation, we see other interesting phenomena in the context of influence attacks: 
GreedyCover increases robustness against Nettack for a diverse set of topologies when 
label homophily is high and there are no node attributes. We find that GreedyCover 
and StratDegree cease to be helpful when homophily is very low and degree distribu-
tions are heterogeneous, perhaps because there are fewer labels on low-degree nodes 
that attach to hubs. In all cases, variation between training selection methods becomes 
less pronounced as node attributes become more helpful in discriminating between 
classes.

Fig. 5 Performance using an adaptive attack for global poisoning with all three training schemes. Results are 
shown in terms of overall classifier accuracy using a GCN, an SVD‑based GCN, and GNNGuard on the CiteSeer 
and Cora datasets. Bars showing accuracy before poisoning are desaturated, while accuracy after poisoning is 
solid. Higher accuracy is better for the defender. In all cases, selecting training data using GreedyCover results 
in better post‑attack accuracy
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The work documented here points to several open problems and avenues of poten-
tial investigation. First, it is interesting that the integrated gradient method is fre-
quently the strongest attack against real data, regardless of how training data are 
selected. Determining whether some network phenomenon can be exploited to 
improve robustness against this attack would be an interesting topic for future work. 
Considering additional models for topologies and attributes could yield additional 
insight into where the various methods perform best, with Google’s GraphWorld 
being an important enabling technology  (Palowitch et  al. 2022). Determining the 
impact of these methods on dynamic GCNs (Pareja et al. 2020), and attacks against 
dynamic graphs (Sharma et al. 2023), is another important area for future investiga-
tion. Another interesting question is whether there are certain topology–attribute 
combinations where there is a true tradeoff between robustness and classification 
performance. Identifying such cases—analogous to the work of Tsipras et al. (2019), 
focused on graph data—would be important to understand what could make clas-
sification inherently vulnerable to attack. Another potential area to consider is 
detectability. Attackers try to hide their manipulation of the data; what would be 
necessary to determine that an attack has been performed on a graph? For example, 
we observed that direct attacks from Nettack increase triangle count  (Miller et  al. 
2019). There may be other network statistics that tend to change when an attack 
is carried out. These are all interesting questions to consider as the research com-
munity continues to expand its knowledge of vulnerability and robustness in graph 
machine learning.

Appendix A Synthetic dataset generation
A.1 Label assignment

We assign labels with varying levels of homophily. For the “high homophily” scenario, 
we partition the nodes based on the normalized graph Laplacian

where A and D are the adjacency matrix and diagonal degree matrix as in the  "Prob-
lem definition" section (Chung 1997). We select the eigenvector u2 associated with the 
second-smallest eigenvalue of L. The nodes associated with the N/2 entries in u2 with the 
smallest values (i.e., values closest to −∞ ) are labeled 0, and the other nodes are labeled 
1. Let V0 and V1 be the respective subsets of vertices.

For lower homophily graphs, we first compute the difference between the number of 
within-label edges and the number of cross-label edges, i.e., letting Eij be the set of edges 
between nodes in Vi and nodes in Vj,

Depending on how homophilous we want the graph to be, we swap labels on pairs of 
nodes until � reaches a given value, based on its value from the initial Laplacian-based 
partition (e.g., half as homophilous as the original). The node swapping mechanism is 
detailed in Algorithm 2.

L = I − D−1/2AD−1/2,

(4)� = |E00| + |E11| − |E01|.
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Algorithm 2 Swap2reduCe 

A.2 Synthetic attributes

As with the real graphs, we consider binary attribute vectors on the nodes of the syn-
thetic graphs. In each case, we consider nodes with 20 attributes, and we give each 
attribute a probability of being true depending on its label. Probabilities are determined 
by an exponentially decreasing function. We consider three scenarios. In the most diffi-
cult case, the probabilities are the same for both classes. As we make the problem easier, 
we shift the function that determines the attribute probabilities so that high-probability 
attributes in class 0 still have relatively high probabilities class 0, but there is not a per-
fect match. The shifts were chosen to create cases where a generalized likelihood ratio 
test (with each attribute having an independent probability parameter, estimated based 
on 60 cases for each class) achieves accuracy of approximately 0.5, 0.7, and 0.9. We refer 
to these cases as having uninformative, moderately informative, and highly informative 
attributes, respectively. In addition, each node has a one-hot encoded attribute indicat-
ing its index in the node set.

Appendix B Detailed experimental results
B.1 Extended robustness results

We present results for each classifier at various attacker budgets, and highlight the 
best-performing pairing of a classifier with a training data selection method. Results on 
influence attacks for CiteSeer, Cora, Polblogs, and PubMed are in Tables 1, 2, 3, and 4, 
respectively. Results for direct attacks are likewise in Tables  5,  6,   7, and 8. As shown 
in the "Real data" section, GreedyCover and StratDegree perform best for CiteSeer 
and Cora, and for PolBlogs in the case of influence attacks.
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B.2 Direct attacks against real datasets

When considering direct attacks, we use all four attacks, again with SGA replac-
ing Nettack in the appropriate case. Results of these experiments are shown in 
Fig.  6. It is much more difficult to defend against direct attacks; note that the 
attacker often only needs one or two perturbations to be successful. With the 
CiteSeer dataset, we once again see higher robustness with GreedyCover and 
StratDegree, in particular at low attack probabilities. With Nettack and FGA, 
GreedyCover improves performance when combined with other defenses. With 

Table 1 Results of influence attacks against each classifier with the CiteSeer dataset, with attacker 
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The Jaccard-based 
classifier performs best, both overall (with greeDyCover) and using random training

Budget 10 Budget 30 Budget 50

defense train. Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.248 0.224 N/A 0.432 0.336 N/A 0.504 0.408 N/A

Jaccard SD 0.28 0.24 N/A 0.4 0.36 N/A 0.448 0.368 N/A

Jaccard GC 0.152 0.168 N/A 0.176 0.288 N/A 0.192 0.36 N/A

RGCN Rand. 0.752 0.696 N/A 0.944 0.84 N/A 0.976 0.904 N/A

RGCN SD 0.504 0.328 N/A 0.768 0.592 N/A 0.816 0.744 N/A

RGCN GC 0.448 0.384 N/A 0.864 0.76 N/A 0.952 0.824 N/A

Cheb Rand. 0.304 0.384 N/A 0.496 0.464 N/A 0.552 0.544 N/A

Cheb SD 0.32 0.352 N/A 0.464 0.432 N/A 0.52 0.496 N/A

Cheb GC 0.352 0.272 N/A 0.52 0.424 N/A 0.552 0.512 N/A

SVD Rand. 0.536 0.424 N/A 0.816 0.696 N/A 0.904 0.88 N/A

SVD SD 0.624 0.6 N/A 0.912 0.776 N/A 0.968 0.928 N/A

SVD GC 0.344 0.376 N/A 0.624 0.6 N/A 0.808 0.688 N/A

median Rand. 0.584 0.44 N/A 0.816 0.84 N/A 0.864 0.88 N/A

median SD 0.424 0.376 N/A 0.8 0.784 N/A 0.88 0.912 N/A

median GC 0.392 0.304 N/A 0.768 0.768 N/A 0.88 0.864 N/A

GAT Rand. 0.624 0.568 N/A 0.928 0.848 N/A 0.976 0.936 N/A

GAT SD 0.552 0.392 N/A 0.816 0.728 N/A 0.912 0.896 N/A

GAT GC 0.424 0.328 N/A 0.864 0.752 N/A 0.936 0.888 N/A

GCN Rand. 0.68 0.568 N/A 0.848 0.856 N/A 0.872 0.904 N/A

GCN SD 0.472 0.464 N/A 0.792 0.728 N/A 0.84 0.768 N/A

GCN GC 0.408 0.368 N/A 0.728 0.768 N/A 0.832 0.872 N/A

SGC Rand. 0.616 N/A N/A 0.824 N/A N/A 0.872 N/A N/A

SGC SD 0.696 N/A N/A 0.8 N/A N/A 0.816 N/A N/A

SGC GC 0.6 N/A N/A 0.824 N/A N/A 0.912 N/A N/A
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IG-FGSM, on the other hand, the alternative training methods provide little ben-
efit. Across datasets, this attack also has the lowest robustness across defenses, 
which would suggest it is a preferred attack for adversaries. (Note that for Cit-
eSeer, we only obtained data for a GCN classifier when attacked with IG-FGSM 
when using GreedyCover.) We once again see a detriment in performance with 
PubMed, though in this case in the area where perturbing a single edge results in 
an successful attack.

Table 2 Results of influence attacks against each classifier with the Cora dataset, with attacker 
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The Jaccard-based 
classifier performs best, both overall and using random training. If we focus on classifiers that achieve the best performance 
in Fig. 8, (i.e., omitting Jaccard and SVD), the best performance is achieved by GCNs with the alternative training methods

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.296 0.24 N/A 0.472 0.432 N/A 0.592 0.504 N/A

Jaccard SD 0.264 0.192 N/A 0.352 0.312 N/A 0.4 0.424 N/A

Jaccard GC 0.224 0.256 N/A 0.36 0.392 N/A 0.448 0.456 N/A

RGCN Rand. 0.68 0.6 N/A 0.912 0.944 N/A 0.952 0.976 N/A

RGCN SD 0.448 0.408 N/A 0.848 0.784 N/A 0.904 0.888 N/A

RGCN GC 0.44 0.296 N/A 0.832 0.808 N/A 0.92 0.888 N/A

Cheb Rand. 0.448 0.448 N/A 0.784 0.808 N/A 0.872 0.896 N/A

Cheb SD 0.656 0.48 N/A 0.976 0.816 N/A 0.976 0.912 N/A

Cheb GC 0.488 0.448 N/A 0.864 0.88 N/A 0.928 0.912 N/A

SVD Rand. 0.224 0.32 N/A 0.536 0.72 N/A 0.76 0.872 N/A

SVD SD 0.296 0.216 N/A 0.568 0.536 N/A 0.76 0.728 N/A

SVD GC 0.264 0.264 N/A 0.584 0.528 N/A 0.84 0.768 N/A

median Rand. 0.544 0.424 N/A 0.872 0.808 N/A 0.944 0.912 N/A

median SD 0.4 0.424 N/A 0.8 0.784 N/A 0.912 0.888 N/A

median GC 0.24 0.312 N/A 0.784 0.84 N/A 0.896 0.912 N/A

GAT Rand. 0.544 0.552 N/A 0.904 0.88 N/A 0.96 0.952 N/A

GAT SD 0.608 0.48 N/A 0.88 0.816 N/A 0.968 0.872 N/A

GAT GC 0.48 0.352 N/A 0.872 0.768 N/A 0.952 0.952 N/A

GCN Rand. 0.568 0.448 N/A 0.896 0.896 N/A 0.936 0.952 N/A

GCN SD 0.456 0.32 N/A 0.752 0.696 N/A 0.856 0.872 N/A

GCN GC 0.384 0.32 N/A 0.816 0.776 N/A 0.896 0.896 N/A

SGC Rand. 0.568 N/A N/A 0.824 N/A N/A 0.888 N/A N/A

SGC SD 0.632 N/A N/A 0.84 N/A N/A 0.856 N/A N/A

SGC GC 0.584 N/A N/A 0.824 N/A N/A 0.88 N/A N/A



Page 22 of 31Miller et al. Applied Network Science             (2024) 9:5 

Table 3 Results of influence attacks against each classifier with the PolBlogs dataset, with attacker 
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). Best results overall and 
with random training are achieved with SVD, while RGCN performs equally well when using StratDegree

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.92 0.872 0.928 0.992 1.0 1.0 1.0 1.0 1.0

Jaccard SD 0.928 0.984 0.936 1.0 1.0 1.0 1.0 1.0 1.0

Jaccard GC 0.936 0.952 0.944 0.992 1.0 1.0 1.0 1.0 1.0

RGCN Rand. 0.08 0.128 0.032 0.224 0.248 0.056 0.32 0.304 0.064

RGCN SD 0.048 0.024 0.016 0.088 0.072 0.056 0.112 0.096 0.064

RGCN GC 0.088 0.096 0.04 0.192 0.176 0.048 0.232 0.272 0.056

Cheb Rand. 0.048 0.184 0.112 0.184 0.376 0.176 0.296 0.456 0.216

Cheb SD 0.128 0.128 0.168 0.256 0.232 0.288 0.368 0.32 0.336

Cheb GC 0.344 0.08 0.168 0.456 0.208 0.328 0.52 0.288 0.392

SVD Rand. 0.016 0.08 0.048 0.04 0.12 0.096 0.112 0.136 0.128

SVD SD 0.064 0.024 0.064 0.088 0.024 0.072 0.112 0.032 0.096

SVD GC 0.04 0.04 0.048 0.088 0.064 0.08 0.104 0.112 0.128

GAT Rand. 0.224 0.224 0.184 0.384 0.408 0.248 0.448 0.488 0.304

GAT SD 0.12 0.056 0.08 0.184 0.16 0.152 0.256 0.208 0.208

GAT GC 0.112 0.12 0.064 0.2 0.256 0.152 0.288 0.296 0.168

GCN Rand. 0.16 0.208 0.128 0.288 0.368 0.2 0.344 0.424 0.232

GCN SD 0.104 0.096 0.176 0.168 0.208 0.248 0.208 0.288 0.312

GCN GC 0.072 0.032 0.056 0.152 0.184 0.104 0.28 0.296 0.128

SGC Rand. N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC SD N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC GC 0.056 N/A N/A 0.12 N/A N/A 0.168 N/A N/A

Table 4 Results of influence attacks against each classifier with the PubMed dataset, with attacker 
budgets of 10, 30, and 50 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries listed as N/A did not finish in the 
allotted time (24 h per trial). Only results using Jaccard, GCN, and ChebNet were obtained in time. While StratDegree and 
greeDyCover improve performance with the Jaccard-based classifier, the best performance is achieved by a ChebNet classifier 
with random training. In our experiments, this classifier with the PubMed data typically has a much higher margin before 
the attack takes place

Budget 10 Budget 30 Budget 50

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.224 N/A N/A 0.576 N/A N/A 0.744 N/A N/A

Jaccard SD 0.12 N/A N/A 0.136 N/A N/A 0.16 N/A N/A

Jaccard GC 0.128 N/A N/A 0.192 N/A N/A 0.2 N/A N/A

GCN Rand. 0.456 N/A N/A 0.76 N/A N/A 0.888 N/A N/A

GCN SD 0.6 N/A N/A 0.936 N/A N/A 0.976 N/A N/A

GCN GC 0.544 N/A N/A 0.88 N/A N/A 0.952 N/A N/A

Cheb Rand. 0.056 N/A N/A 0.072 N/A N/A 0.072 N/A N/A

Cheb SD 0.072 N/A N/A 0.128 N/A N/A 0.136 N/A N/A

Cheb GC 0.136 N/A N/A 0.16 N/A N/A 0.192 N/A N/A
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B.3 Impact of additional training data

Results of experiments with greater proportions of labeled data are shown in Fig. 7, 
using Nettack as an influence attack against a GCN. While using more randomly 
selected training data does sometimes increase robustness, it is not consistent, and 
in some cases more randomly selected training data results in a slightly less robust 
classifier. The one case where additional training data consistently outperforms 
GreedyCover in terms of robustness is Cora, where training using 30% of the 
dataset, randomly selected, outperforms the alternatives. In this case, the average 
number of neighbors per target for GreedyCover and StratDegree are 1.084 and 

Table 5 Results of direct attacks against each classifier with the CiteSeer dataset, with attacker 
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). As with influence 
attacks, the Jaccard-based classifier performs best, though ChebNet also performs well for all training methods

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.384 0.256 0.296 0.592 0.392 0.368 0.752 0.464 0.472

Jaccard SD 0.432 0.32 0.256 0.672 0.416 0.32 0.808 0.52 0.432

Jaccard GC 0.2 0.184 0.224 0.264 0.336 0.336 0.408 0.52 0.456

RGCN Rand. 0.976 0.848 0.8 0.992 0.936 0.936 1.0 0.968 0.96

RGCN SD 0.88 0.568 0.912 0.992 0.856 0.976 1.0 0.944 0.976

RGCN GC 0.896 0.712 0.808 1.0 0.88 0.936 1.0 0.952 0.976

Cheb Rand. 0.224 0.28 0.264 0.344 0.352 0.384 0.424 0.44 0.464

Cheb SD 0.264 0.24 0.304 0.32 0.336 0.392 0.4 0.376 0.448
Cheb GC 0.288 0.24 0.256 0.376 0.312 0.328 0.472 0.4 0.4

SVD Rand. 0.552 0.392 0.768 0.76 0.576 0.936 0.944 0.856 0.952

SVD SD 0.84 0.544 0.936 0.984 0.696 0.976 1.0 0.856 0.976

SVD GC 0.408 0.312 0.864 0.688 0.488 0.952 0.968 0.792 0.992

median Rand. 0.808 0.792 0.792 0.96 0.936 0.96 0.984 0.952 0.984

median SD 0.904 0.84 0.872 0.992 0.952 0.952 1.0 0.96 0.952

median GC 0.856 0.832 0.848 0.96 0.952 0.96 0.992 0.968 0.976

GAT Rand. 0.92 0.864 0.84 0.984 0.952 0.936 1.0 0.96 0.952

GAT SD 0.944 0.808 0.952 1.0 0.952 0.992 1.0 0.984 1.0

GAT GC 0.936 0.808 0.832 1.0 0.952 0.92 1.0 0.984 0.96

GCN Rand. 0.944 0.872 N/A 0.992 0.952 N/A 1.0 0.976 N/A

GCN SD 0.984 0.832 N/A 1.0 0.968 N/A 1.0 0.992 N/A

GCN GC 0.912 0.904 0.936 1.0 0.976 0.992 1.0 0.976 0.992

SGC Rand. 0.832 N/A N/A 0.944 N/A N/A 1.0 N/A N/A

SGC SD 0.936 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC GC 0.88 N/A N/A 0.96 N/A N/A 1.0 N/A N/A
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1.135, both between the values for 25% random training (1.029) and 30% (1.237). 
Thus, increasing the number of neighbors in the training set by adding more ran-
domly selected training data does not necessarily increase classifier robustness to 
the same extent.

B.4 Robustness vs. Classification performance

In Fig. 8, we show the macro-averaged F1 score for each method using all classifiers. 
Performance does occasionally vary. In particular, StratDegree results in some-
what lower performance than random training among most classifiers for all datasets. 

Table 6 Results of direct attacks against each classifier with the Cora dataset, with attacker budgets 
of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). While random training 
with the SVD classifier works best at a low attack budget, Jaccard with StratDegree performs better against better-resourced 
attackers

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.504 0.328 N/A 0.712 0.48 N/A 0.952 0.68 N/A

Jaccard SD 0.448 0.216 N/A 0.656 0.36 N/A 0.776 0.552 N/A

Jaccard GC 0.528 0.296 N/A 0.76 0.424 N/A 0.912 0.616 N/A

RGCN Rand. 0.936 0.896 N/A 0.984 0.992 N/A 0.992 0.992 N/A

RGCN SD 0.944 0.832 N/A 1.0 0.952 N/A 1.0 0.96 N/A

RGCN GC 0.976 0.84 0.832 1.0 0.96 0.976 1.0 0.96 0.976

Cheb Rand. 0.88 0.728 N/A 0.976 0.928 N/A 0.984 0.96 N/A

Cheb SD 0.96 0.752 N/A 1.0 0.928 N/A 1.0 0.936 N/A

Cheb GC 0.944 0.816 N/A 0.992 0.952 N/A 1.0 0.96 N/A

SVD Rand. 0.36 0.24 N/A 0.776 0.592 N/A 0.992 0.928 N/A

SVD SD 0.696 0.288 N/A 0.936 0.632 N/A 1.0 0.92 N/A

SVD GC 0.432 0.184 N/A 0.792 0.448 N/A 1.0 0.84 N/A

median Rand. 0.936 0.768 0.824 0.992 0.96 0.968 1.0 0.976 0.992

median SD 0.968 0.864 0.864 1.0 0.952 0.984 1.0 0.952 0.984

median GC 0.912 0.824 0.824 1.0 0.968 0.976 1.0 0.968 0.976

GAT Rand. 0.944 0.856 N/A 1.0 0.96 N/A 1.0 0.968 N/A

GAT SD 0.928 0.736 N/A 1.0 0.92 N/A 1.0 0.968 N/A

GAT GC 0.92 0.824 N/A 1.0 0.952 N/A 1.0 0.984 N/A

GCN Rand. 0.928 0.888 N/A 0.992 0.976 N/A 1.0 0.976 N/A

GCN SD 0.928 0.624 0.904 0.992 0.944 0.992 1.0 0.968 0.992

GCN GC 0.904 0.832 0.808 0.992 0.976 0.984 1.0 0.984 0.992

SGC Rand. 0.896 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC SD 0.944 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

SGC GC 0.904 N/A N/A 1.0 N/A N/A 1.0 N/A N/A
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Table 7 Results of direct attacks against each classifier with the PolBlogs dataset, with attacker 
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). The best-performing 
cases for attacks with 10 or 20 perturbations use random sampling with an SGC classifier, though in these cases FGA and 
IG-FGSM were unavailable to the attacker. (If we only consider Nettack, SVD with greeDyCover consistently performs best.)

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.672 0.616 0.688 0.896 0.848 0.856 0.992 0.968 0.976

Jaccard SD 0.752 0.8 0.808 0.936 0.928 0.952 1.0 0.984 1.0

Jaccard GC 0.768 0.76 0.872 0.904 0.92 0.976 0.992 1.0 1.0

RGCN Rand. 0.48 0.464 0.312 0.632 0.664 0.504 0.784 0.872 0.704

RGCN SD 0.304 0.28 0.344 0.4 0.44 0.52 0.648 0.568 0.736

RGCN GC 0.56 0.488 0.336 0.72 0.648 0.456 0.832 0.832 0.64

Cheb Rand. 0.376 0.352 0.448 0.536 0.552 0.544 0.72 0.68 0.744

Cheb SD 0.408 0.376 0.432 0.624 0.544 0.584 0.784 0.688 0.768

Cheb GC 0.576 0.424 0.472 0.68 0.568 0.592 0.8 0.728 0.768

SVD Rand. 0.184 0.056 0.336 0.368 0.104 0.552 0.496 0.192 0.704

SVD SD 0.288 0.016 0.368 0.416 0.024 0.536 0.496 0.064 0.808

SVD GC 0.12 0.04 0.32 0.36 0.04 0.512 0.464 0.048 0.768

GAT Rand. 0.456 0.52 0.376 0.624 0.792 0.52 0.824 0.912 0.672

GAT SD 0.32 0.24 0.36 0.464 0.384 0.504 0.664 0.648 0.752

GAT GC 0.552 0.528 0.336 0.744 0.84 0.576 0.856 0.936 0.84

GCN Rand. 0.472 0.624 0.408 0.68 0.784 0.52 0.816 0.92 0.76

GCN SD 0.424 0.344 0.408 0.568 0.528 0.544 0.76 0.76 0.672

GCN GC 0.496 0.552 0.312 0.72 0.768 0.512 0.88 0.912 0.728

SGC Rand. 0.36 N/A N/A 0.464 N/A N/A 0.6 N/A N/A

SGC SD N/A N/A N/A N/A N/A N/A N/A N/A N/A

SGC GC 0.528 N/A N/A 0.736 N/A N/A 0.856 N/A N/A

Table 8 Results of direct attacks against each classifier with the PubMed dataset, with attacker 
budgets of 5, 10, and 20 edge perturbations

Results are included for Nettack (Net), FGA, and IG-FGSM (IG). For each classifier, we train with random (Rand.), StratDegree 
(SD), and greeDyCover (GC). Each entry is a probability of attack success, thus higher is better for the attacker and lower is 
better for the defender. To yield the most robust classifier, the defender picks the classifier/training method combination 
that minimizes the worst-case attack probability. These entries are listed in bold. Entries representing the most robust case 
for random training are in italic. Entries listed as N/A did not finish in the allotted time (24 h per trial). While StratDegree 
and greeDyCover work well in conjunction with the Jaccard classifier, a disparity in the classification margin hinders their 
performance in the best case, using a ChebNet classifier

Budget 5 Budget 10 Budget 20

Defense Training Net FGA IG Net FGA IG Net FGA IG

Jaccard Rand. 0.784 N/A N/A 0.952 N/A N/A 0.992 N/A N/A

Jaccard SD 0.208 N/A N/A 0.248 N/A N/A 0.328 N/A N/A

Jaccard GC 0.208 N/A N/A 0.328 N/A N/A 0.456 N/A N/A

GCN Rand. 0.92 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

GCN SD 0.952 N/A N/A 1.0 N/A N/A 1.0 N/A N/A

GCN GC 0.936 N/A N/A 0.984 N/A N/A 1.0 N/A N/A

Cheb Rand. 0.056 N/A N/A 0.088 N/A N/A 0.088 N/A N/A

Cheb SD 0.072 N/A N/A 0.088 N/A N/A 0.104 N/A N/A

Cheb GC 0.088 N/A N/A 0.112 N/A N/A 0.152 N/A N/A

GAT Rand. 0.792 N/A N/A 0.896 N/A N/A 0.992 N/A N/A

GAT SD 0.936 N/A N/A 0.992 N/A N/A 1.0 N/A N/A

GAT GC 0.92 N/A N/A 0.984 N/A N/A 0.992 N/A N/A
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GreedyCover, on the other hand, typically yields similar performance to random 
selection and occasionally outperforms it, e.g., using SGC on CiteSeer and ChebNet 
on Cora.

B.5 Robustness vs. Classification performance—synthetic data

We consider the potential impact of the alternative training data on classifier perfor-
mance as well. Results are shown in Fig. 9. Since we use two balanced classes in all cases, 

Fig. 6 Robustness to direct attacks using GCNs (solid line) or with the best defense at a given attack success 
probability (dash line). Results are shown for the CiteSeer, Cora, PolBlogs, and PubMed datasets, attacked 
with Nettack/SGA (left column), FGA (center column), and IG‑FGSM (right column). Results were not returned 
in the allotted time (24 h per trial) for IG‑FGSM and FGA on the PubMed dataset, or for IG‑FGSM on the 
CiteSeer dataset when using a GCN with random training or StratdeGree. (CiteSeer/IG‑FGSM experiments 
with StratdeGree and random selection completed for other classifiers; see Table 5 for details.) Each curve 
represents the average required budget over 25 randomly selected targets, and error bars are standard errors. 
Higher is better for the defender. While GreedyCover performs better when paired with defenses on CiteSeer 
when attacked with Nettack or FGA, the alternative methods generally increase robustness less than with 
indirect attacks
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we use accuracy as the classification metric. For each case, we plot accuracy as a func-
tion of heterophilicity Park and Barabási (2007), computed as

The denominator in (5) is the expected number of edges between V0 and V1 after random 
rewiring. A high-homophily graph will have relatively low heterophilicity. Note that both 
ER and BA graphs span the same range of heterophilicity, while LFR graph can achieve 
lower heterophilicity and WS can be almost perfectly homophilous. When no attributes 
are used, performance is similar across methods in the high-homophily (low-heterophi-
licity) cases, while the alternative methods perform worse in the low-homophily cases. 

(5)
H =

#{edges between V0andV1}

|V0||V1|M/

(

N

2

) .

Fig. 7 Robustness to influence attacks using GCNs when training data are selected using GreedyCover, 
StratdeGree, or varying amounts of random selection. Results are shown for the CiteSeer (upper left), Cora 
(upper right), PolBlogs (lower left), and PubMed (lower right) datasets. Each curve represents the average 
required budget over 25 randomly selected targets, and error bars are standard errors. Higher is better for the 
defender. Of the datasets where robustness improves using GreedyCover (i.e., CiteSeer, Cora, and PolBlogs), the 
only case that consistently performs better than GreedyCover is 30% random selection on the Cora dataset
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This yields a significant gap in the in the cases with skewed degree distributions. In par-
ticular, LFR graphs maintain 75% accuracy with random training even in the case where 
there is no homophily (heterophilicity is 1). As in the analogous results in Fig. 3, this may 
be due to low-degree nodes that are unlikely to be chosen as training data, but are more 
difficult to classify in a less homogeneous setting.

As attributes are added to the graphs, we see a decrease in performance when the 
uninformative attributes are added, though the difference is very small using Greedy-
Cover for the clustered models. As we expect, accuracy increases as the attributes 
become more informative. As we observed in the robustness results, we see differences 
between methods diminish as attributes help discriminate the classes.

Fig. 8 Classifier performance across datasets when training data are selected using GreedyCover, StratdeGree, 
or varying amounts of random selection. Results are shown for the CiteSeer (upper left), Cora (upper right), 
PolBlogs (lower left), and PubMed (lower right) datasets. Each bar height represents the average F1 score 
(macro averaged) across 5 separate train/validation/test sets, and error bars are standard errors. Performance 
is shown for each classifier where experiments completed within the allotted time (24 h per trial). Higher is 
better for the defender. While StratdeGree often underperforms random selection, GreedyCover typically shows 
similar performance
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