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Introduction
While temporal networks represent the sequence of time-evolving interactions between 
entities, they also code the connected structure that lays behind many dynamical pro-
cesses like the spreading of an epidemic or an information cascade or the collective adop-
tion of behavioural norms or products. In static networks, connectivity is conventionally 
defined between two nodes if they are connected via a direct edge, or via a path building 
up from a sequence of adjacent edges that (pair-wise) share at least one node (Newman 
2018). In temporal networks, however, connectedness is coded by temporal paths that 
are constructed from adjacent temporal interactions, which are not simultaneous yet 
structurally adjacent, and respect the causal time order. They determine the set of reach-
able nodes that can be influenced in the future with information held by a given node at 
a given time (Badie-Modiri et al. 2020; Holme and Saramäki 2012). The set of reachable 
nodes by a node at a given time, also called its influence set, is the node’s temporal out-
component, whose structure and size are important indicators of any ongoing dynami-
cal processes. Indeed, no ongoing process can exhibit a larger collective pattern than 
the largest connected out-component in the underlying temporal network. However, the 
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characterisation of connected components in temporal networks is a computationally 
challenging task, as the temporal ordering of interactions introduces a degree of com-
plexity to detect time-respecting paths in an effective way. Here, we address this chal-
lenge by defining a component matrix that codes the in- and out-component size of 
any node in a temporal network. Using this matrix we apply network compression and 
reconstruction techniques via graph hashing, to estimate the distribution of the size of 
connected components of nodes. The proposed algorithm provides advancements in the 
computation efficiency of the largest node components compared to the state-of-the-art, 
specifically for temporal networks with a large number of interactions.

Calculation of the largest out-component Considering all nodes and timed interac-
tions in a temporal network, the most important component to characterise is, among 
other components, the largest out-component that ever emerged in the structure. Its 
identification can be approached using different ideas. A simple one would be to sim-
ulate a deterministic Susceptible-Infected (SI) process starting from every node at their 
first interaction time. In a deterministic SI process, nodes are either in a susceptible (S) 
or infected (I) state and a susceptible node certainly becomes infected when interact-
ing with an infected one. It is a conventional model to describe the fastest spreading 
process in a network, where starting from a single seed node at its first appearance, the 
downstream set of infected nodes determines its maximum out-component. Using this 
method, in a temporal network of n nodes and m events, the computation of the out-
component of a spreading seeded from a single source node, at its first appearance time 
would have O(n) space and O(m) time complexity (in terms of memory usage and com-
putation time). This results in O(n2) space and O(nm) time complexity when considering 
every node.

A more efficient method relies on a temporal Event Graph (EG), a higher-order rep-
resentation of temporal networks  (Mellor 2017; Kivelä et  al. 2018; Badie-Modiri et  al. 
2020). An EG is a static and lossless representation of a temporal network in the form of 
a weighted and directed acyclic graph (DAG). In this structure, temporal interactions are 
associated to nodes that are linked if their corresponding events are adjacent. For a more 
precise definition see Sect. "Methods". Computing a single traversal of this static event 
graph (in reversed time order) yields the out-component of any node at any time, with 
an evidently smaller computational complexity as compared to a direct computation on 
a temporal network. However, EGs appear with considerably larger size (having as many 
nodes as events in the original temporal network) and higher link density (by connect-
ing any events to all future adjacent others) that leads to increased memory complexity. 
In order to reduce memory complexity, a link reduction method has been proposed that 
eliminates path redundancy in the EG (Mellor 2017; Kivelä et al. 2018), leaving the con-
nectedness of the DAG intact. Relying on the reduced EG, the use of the approximate 
HyperLogLog (HLL) counting algorithm can further reduce the time complexity of the 
out-component detection to O(m log(m)+ η) , where η is the number of edges of the EG. 
However, this method provides only an estimate of the size of out-components, without 
giving any information about their detailed structure.

Graph compression for component inference Contrary to earlier solutions, our idea is 
to use graph compression methods to compute the out-component size distribution of 
a temporal network, with a reduced computational complexity. The compressibility of 
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static networks has been studied recently (Lynn and Bassett 2021), and has been shown 
to depend on the structure of the graph. This notion can be extended for temporal net-
works by interpreting them as a sequence of time-aggregated static network snapshots. 
Then compression can be formulated as finding a smaller diffusion-equivalent represen-
tation (Adhikari et al. 2017). Also, consecutive snapshots can be compressed depending 
on their chronological importance  (Allen et  al. 2022). Moreover, as pointed out by Li 
and Sharpnack (2017), in spatio-temporal networks, nodes can be compressed via local 
clustering, while reducing time instants to change-points. Compression can be formu-
lated using Minimum Description Length to also reduce the size of the graph (Liu et al. 
2018). Another compression approach has been proposed using information theory 
considerations, aiming to reduce the number of bytes required to describe a temporal 
network (Liakos et al. 2022; Caro et al. 2016; Bernardo et al. 2013). Reducing the size of 
the network via coarsening to compute spectral properties of a graph has also been stud-
ied (Loukas and Vandergheynst 2018). Sampling techniques have been largely used to 
reduce the complexity of computation over large graphs (Yousuf and Kim 2020).

Despite these numerous compression techniques proposed for temporal networks, 
none of them reduces effectively the number of nodes in a series of events. This reduc-
tion has a huge impact on the computational complexity of any of these algorithms, 
especially when they are characterised by quadratic complexity in the number of nodes. 
Thus, our central question remains: how to design an efficient compression scheme that 
reduces the number of nodes while keeping enough information about the network itself to 
reconstruct the statistics of its connected components?

To reduce the computational complexity of the out-component size distribution cal-
culation, we first propose a online streaming matrix algorithm that scans through the 
series of events only once, while it can also consider new events added later on, without 
re-starting the computation. In addition, we define a general purpose temporal network 
compression scheme using a graph hashing approach. This compression method reduces 
the total number of nodes, yet it requires a decompression scheme too, which provides 
only an approximate solution. The compression method can be used in conjunction with 
the matrix algorithm and, more generally, it can be applied on any temporal network 
algorithm.

To present our contributions, we organised the paper as follows. First, we formalise 
the problem of out-components computation in Sect. "Methods". We present the pro-
posed novel streaming matrix algorithm to compute the distribution of the size of out-
components in Sect. "Streaming matrix algorithm for out-component size calculations", 
including some numerical experiments. Then, we describe the hashing framework in 
Sect. "Hashing the temporal network", and we report also on the numerical studies car-
ried out to evaluate its ability to estimate the ground-truth out-components’ distribu-
tions in Sect. "Experimental evaluation". Finally, we discuss the proposed methods and 
the results.

Methods
The aim of the present work is to effectively compute the distribution of the maximum 
out-component size for all nodes in a temporal network. To establish our approach, we 
introduce first the definitions that are necessary to ground our methodology.
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Problem definition

We define a temporal network G := (V , E , T ) as a series of temporal events 
e = (u, v, t) ∈ E that record interactions between nodes u, v ∈ V at time steps t sam-
pled1 from a time period T  of length T. The network G is characterised by its number 
of nodes n = |V| and its number of events m = |E | . In G we call two events ei ∈ E , ej ∈ E 
adjacent if they share at least one node ({ui, vi} ∩ {uj , vj} �= ∅) and their inter-event time 
is �t = tj − ti > 0 , i.e. the two events are not simultaneous. Furthermore, we call two 
events to be δt-adjacent if they are adjacent and their inter-event time is �t ≤ δt . A 
sequence of adjacent events defines a time respecting path between nodes u and v start-
ing at time t, if the first event of the path starts from node u at time t, the last ends at 
node v, and each consecutive events in the sequence are pairwise adjacent (Holme and 
Saramäki 2012). The set of nodes that can be reached by any path starting from node u at 
time t defines the out-component. The size of the out-component of a node u at a given 
time t is measured as the number of unique nodes that can be reached by valid time 
respecting paths. Actually, it determines the largest possible phenonenon (e.g., largest 
epidemic or information cascade) that was initiated from that source node and evolved 
in the future. The computation of out-components is computationally challenging as it 
requires the tracking of each time-respecting path starting from each node at each time. 
However, an effective approximate solution has been proposed lately  (Badie-Modiri 
et al. 2020) to solve a partial challenge, to estimate only the size of all out-components 
without keeping track of the involved nodes.

Event graphs and the HyperLogLog algorithm

The proposed solution builds on the Event Graph (EG) representation  (Kivelä et  al. 
2018; Mellor 2017) of temporal networks. An event graph G := (V ,E,�t) is defined as 
a static weighted directed acyclic graph (DAG) representation of a temporal network G , 
where temporal events are associated to nodes in G (i.e., V = E ); directed edges in G 
correspond to �t-adjacent event pairs in the original temporal network, with direction 
indicating their temporal order. The �t weight of each link is defined as the inter-event 
time between the two adjacent events corresponding to the connected nodes in G. This 
way, an event graph has m = |E | vertices and η directed edges. This static graph repre-
sentation provides a losless description of a temporal network and can be exploited to 
infer several properties of G without computations on the temporal structure  (Kivelä 
et al. 2018). Indeed, thanks to the EG representation, the out-component size distribu-
tion of G can be precisely computed (Badie-Modiri et al. 2020), yet with high computa-
tional and memory costs.

To reduce this cost at the price of an inexact computation, Badie-Modiri et al. (2020) 
proposed an approximate solution to estimate the out-component size distribution 
of a temporal network using its EG representation combined with the HyperLogLog 
algorithm.

The HyperLogLog (HLL) algorithm takes as input a set, and it outputs an approxi-
mation of its size (Flajolet et  al. 2007). More precisely, an HLL structure uses a 

1 In these definitions, we neglect the duration of events for simplicity, but all definitions could incorporate durations in a 
straightforward way.
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representation on s registers each storing a number, initialised to zero to start with. 
Every element of the set is hashed into a binary vector that is then cut in two parts. The 
first part indicates the identifier of the register that will be used and the position of the 
leftmost 1 in the second part is stored in that register if it is larger than the current value. 
Finally, the size of the set is estimated with an ensemble indicator function based on the 
registers. The main advantage of the algorithm is that the whole set is not stored to esti-
mate its size and the estimation can be done with constant space and time complexity 
O(s). The error of the estimation is O(1/

√
s) . Moreover, the size of the union of two sets 

can also be estimated in constant time and space by merging two HLL structures. A final 
property is that each element of the set is considered one by one, hence compatible with 
a streaming approach. Let us stress that the hash functions used in HLL are not related 
to the ones we will use in Sect. "Hashing the temporal network" to compress the network 
representation.

The HLL algorithm can be used to estimate out-component sizes in an EG with-
out tracking the exact set of nodes involved  (Badie-Modiri et al. 2020). This approach 
reduces the time complexity of the out-component distribution computation to 
O(m log(m)+ η) up to some constant factors that depend on the hyper parameters s 
of the HLL algorithm, which sets the trade-off between computational efficiency and 
accuracy.

Streaming matrix algorithm for out‑component size calculations
We develop a streaming matrix algorithm as an exact solution for the question of com-
puting the largest out-component of each node in a temporal network. The proposed 
solution can process chronologically streamed nodes and events of a temporal network 
in real time, with a space complexity that does not depend on the number m of events.

To demonstrate the basic idea of the method, let us consider the simple example of an 
information spreading process on a temporal network between n nodes modelled by a 
deterministic SI process (a short definition is recalled in the Introduction). To follow-up 
on the evolving components during the SI process, we design a matrix with rows repre-
senting the in-component and columns representing the out-component of each node. 
At time t = 0 , when each node has a unique information that it has not propagated yet 
to any other nodes, we obtain the identity matrix with ones in the diagonal and zeros 
otherwise. Propagation happens between nodes u and v at the time of their interactions, 
when they mutually share all unique elements of information they already learned from 
others (including their own) during earlier times of the process.2 This propagation rule is 
associated to the “OR” operation between the corresponding lines of the matrix, which 
yields the union of the set of unique information known by the two nodes. By the last 
event of the temporal network, the unique information of a node u is known by all other 
nodes in its out-component (depicted by column of the matrix). Thus, to compute the 
size of u’s out-component, we simply have to count the number of unique nodes that are 
aware of u’s unique information, i.e., the number of ones in the corresponding column of 
the matrix.

2 Information sharing could be deemed non-mutual in case of directed interactions in the temporal network.
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The component matrix

The component matrix is a binary matrix of size n× n , where n is the number of nodes 
in G . An illustration is provided in Fig. 1. An element (i, j) of the matrix is 1 if and only 
if the node i is reachable from the node j by any temporal path. Thus, the i-th line of the 
component matrix is the in-component of the node i and the j-th column of the matrix 
is the out-component of the node j.

Algorithm 1 The matrix algorithm. Calculates S 

The precise algorithm to compute this component matrix is given as pseudo-code in 
Algorithm  1. It starts with the identity matrix. Then, for every event, the rows corre-
sponding to the interacting nodes are used to compute a binary OR operation, and those 
rows are replaced by that resulting OR. Finally, at the end of the series of events, the out-
put matrix is the component matrix. This algorithmic construction process is described 
in Fig. 2.

Complexity of the algorithm

Since we use an n× n matrix to store the intermediate results, the space complexity is 
O(n2) , which may be reduced using sparse matrices for storage. For time complexity, we 
can divide the algorithm into several steps. The initialisation of the identity matrix can 
be done in O(n) by simply setting the n diagonal elements to the “True” value at the 
outset. To update the matrix we perform the OR operation between two vectors of size 

Fig. 1 Left: a temporal network defined as a series of events ordered in time ( ti < tj for i < j ). The 
out-component of node 3 is circled in blue; the in-component of node 2 is circled in purple. Right: the 
corresponding component matrix. A row depicts the in-component of a node (we emphasise that of node 
2). A column depicts the out-component of a node (we emphasise that of node 3): a non-zero element in the 
uth column at coordinate v, means that node v belongs to the out-component of node u 
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n once for each of the m events. The complexity of each update is O(n), bounded by the 
maximum out-component sizes n, but could be further reduced with a sparse matrix 
format. Consequently, the total complexity of the updates is O(nm). Finally, counting the 
number of non-zero element (or non-“False” elements) can be done at the same time as 
the update without any added complexity. Thus, the overall time complexity of the com-
ponent matrix algorithm is O(n)+ O(nm) = O(nm).

Streaming computation of average out‑component size

One way to further reduce the complexity of the computation is to look for an approxi-
mation of the average size of a maximum out-component rather than its exact size. This 
can be implemented with the component matrix using the HyperLogLog counting algo-
rithm that has been recalled before. It allows us to approximately describe and count the 
“True” values on each row of the matrix. The rows of the component matrix describe a 
set of nodes: the in-component. An HLL structure of size s (arbitrarily chosen, indepen-
dently of n and m) can be used to estimate the size of an in-component. Thus, n HLL 
structures replace the former matrix. In its matrix form, the algorithm starts with the 
identity matrix. For the HLL structures, we simply initialise them with a single element: 
the i-th structure will be initialised with “i”. Then, for every event (i, j, t), the OR opera-
tion between the lines i and j of the matrix is computed, which is equivalent to the union 
of the two in-components. For the HLL structures, this results in merging them. Finally, 
every HLL structure can give an approximation of the size of its corresponding line in 
the component matrix.

Interestingly, the average size of the maximum out-components at time t is defined as:

where the sums are interchangeable. Thus it can be computed both as the average size of 
out-components or  in-components. Actually, the HyperLogLog structure can compute 
a size estimate with no additional cost in O(1) time complexity for each in-component, 
which are coded in the matrix as the number of “Trues” in a row. According to Eq. 1, 
the average value of these maximum in-component size values can give us an estimate 
directly for the average of the maximum out-component sizes. Thus, the HyperLogLog 
approach can reduce the algorithm’s space complexity to O(n) and the time complex-
ity to 3 O(m) . As an advantage, the matrix algorithm using HyperLogLog preserves the 

(1)s̄t =
1

n
u∈V v∈V

St(u, v),

Fig. 2 From a given temporal network (left graph), we compute the Component Matrix (right matrix) of size 
n× n , with n = 5 , by scanning the series of events. For each event, we compute the OR operation between 
the rows of the matrix corresponding to the interacting nodes and replace them by the result. Matrix S4 is the 
component matrix at the end of the streaming after m = 4 events

3 Remember, however, that the O(·) notation hides a constant, whose value results from a trade-off between cost and 
precision for the HLL algorithm.
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streaming aspect of the algorithm, assuming events arrive in chronological order. How-
ever, in turn, it does not provide the whole maximum out-component size distribution 
but only an estimate of its mean value.

Component size distribution from reversed event sequence

By reversing time, we can easily obtain a solution to compute the whole maximum out-
component size distribution. But it comes at the expense of losing the streaming prop-
erty of our algorithm, as this solution takes as input, the whole interaction sequence in 
reversed order, processing it from the end to the beginning. By reversing the order of 
the sequence of events, the in-components become the out-components. In this case the 
component matrix algorithm does not fuse the rows anymore but it has to be adjusted 
the fuse the columns instead.

Thanks to the reversal of the sequence of events, we can use the HyperLogLog count-
ing method to estimate the full distribution of the maximum out-component sizes at a 
lower cost.

More specifically, for every node, we initialise a HyperLogLog structure with constant 
size, which contains only the node itself as previously. Then, for every event (ui, vi, ti) , 
considered in reverse chronological order, we merge the structures of ui and vi (corre-
sponding to columns, i.e., to current estimates of out-components) in O(1) time. Finally, 
we approximate the size of the maximum out-component of every node with their 
HyperLogLog estimates. This results in an approximation of the whole distribution of 
out-components’ sizes in O(n) space complexity, O(m) time complexity, and scanning 
the events’ sequence only once. While this seems to be a very efficient solution, the con-
stants in the complexity evaluations are quite large in practice, setting back the effective 
performance of this solution in some regimes of n and m, while providing better results 
in others, as we demonstrate in the next section.

As a summary, the first part of Table 1 reports the complexity and properties of the 
methods described so far. The second part of the table also anticipates on the method to 
be described in the next section.

Experimental validation

We perform several computational experiments to demonstrate the effectiveness of the 
component matrix algorithm and to compare its performance to the corresponding EG 
based solution. The code used in our experiments is freely available (Vaudaine et  al. 
2023).

Experimental setting

For a fair comparison, both the EG based and the component matrix based methods 
were used to solve the same task, that is to compute the largest maximum out-compo-
nent size of a temporal network. While the EG based method solves a larger problem 
first, i.e. estimating the out-component size of any node at any event, one can extract 
the maximum out-component size for every node from its solution, simply by taking 
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the size that corresponds to the first emergence of a given node. The overall asymptotic 
memory and time complexity of this solution scales similarly to the EG+HLL algo-
rithm (Badie-Modiri et al. 2020), as it is summarised in Table 1. Taking this model as 
reference, we compare it with the performance of the proposed method based on the 
exact component matrix, as well as with its variant which uses HLL algorithms to obtain 
an approximation. In each method using HLL, we tune s to obtain less than 1% error for 
the average component size. Note that reversing time does not change neither the time 
nor the memory complexity of the component matrix algorithm with or without HLL as 
summarised in Table 1.

Results

To compare the different methods, we report in Fig. 3 the ratio of computation times 
and of memory usages between the compared algorithms. First, let us focus on the rela-
tive performance of the component matrix method in Fig. 3a and c. Interestingly, results 
depicted in panel (a) suggest that although this method provides an exact solution for 
the task, it performs always better than the EG+HLL algorithm in terms of computa-
tion time. A similar scaling is true in terms of memory complexity (panel (c)), although 
the large quadratic cost of the component matrix makes this method to perform worse 
than the reference for small numbers of events or for large numbers of nodes. Never-
theless, we can conclude that the component matrix method largely outperforms the 
event graph method in terms of computational time and memory for large numbers of 
events, especially with networks of smaller size, where the gain can reach several orders 
of magnitude.

Regarding the HLL variant of the component matrix algorithm shows more vari-
able performance. In terms of computational time (see panel (b) in Fig. 3), although it 
is worse for small numbers of events and large networks, the performance of our HLL 
variant is comparable to that of the exact matrix algorithm, for the other parameter val-
ues. However, regarding memory consumption (see panel (d)), our HLL matrix variant 

Table 1 Summary of methods used to compute the maximum out-component size distribution

Time and space complexity depends on the number of nodes n and events m, and number of edges η in the event graph 
(EG). Column entitled “Exact” indicates if the method provides exact (Yes) or approximate (No) solution. The column called 
“Stream” indicates if the method can stream events in chronological order. Column “OC” shows if the method can compute 
not only the out-component sizes but the involved nodes as well. The column “P(|OC|)” shows if the whole out-component 
distribution (Whole) or only its average (Average) can be computed. The hashing framework is described in the next section, 
with ns number of super-nodes, K number of hash functions, and // indicating the possible parallelisable method. Note 
about the Matrix method: its space complexity is in O(n2) but can be reduced to O(s̄n log n) where s̄ is the average size of 
out-components in the case of sparse matrices

Method Time cpx. Space cpx. Exact Stream OC P(|OC|)

EG + HLL O(m log(m)+ η) O(m+ η) No No No Whole

SI process O(mn) O(n2) Yes No Yes Whole

Matrix O(mn) O(n2) Yes Yes Yes Whole

Matrix + HLL O(m) O(n) No Yes No Average

Matrix + reverse t O(mn) O(n2) Yes No Yes Whole

Matrix + reverse t + HLL O(m) O(n) No No No Whole

Matrix + hashing (//) O(mns) O(n2s K) No Yes Yes Whole

Matrix + hashing O(mnsK) O(n2s ) No Yes Yes Whole
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is much more efficient, as it does not have to store the component matrix of size n2 . For 
large network sizes the model requires approximately the same memory size as the ref-
erence model, while it is doing significantly better for the rest of the parameter space.

Advantages and limitations

As stated before, a major advantage of the component matrix algorithm as compared to 
other methods is its space complexity that does not depend on the number m of events in 
the temporal network but scales as the square of its node set size n. Meanwhile, its time 
complexity scales only linearly with m. This is especially suitable for data streaming sce-
narios when nodes and events arrive in chronological order. Actually, adding a new node 
to the network requires only to add a new row and column to the component matrix set 
as “False”, except the diagonal element. As for new events, insertion follows the update 
rule discussed earlier, as the algorithm operates in a streaming manner. Furthermore, 
the component matrix method requires only one pass over the event sequence. At any 
time step t when a new event appears, it only requires information about the previous 

Fig. 3 Fraction of computational time (top row) and memory usage (bottom row) of the component matrix 
methods divided by the ones of the EG+HLL method. a, c Depict results for the exact component matrix 
method, while b, d are for its approximate solution using HLL. All scales are logarithmic with colour blue 
indicating when the component matrix method performs better (and red in the contrary case)
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state of the component matrix Si−1 at time t − 1 (or conversely in the case of reversed 
time). On the other hand, the exact component matrix method scales poorly in space 
complexity in terms of n, the number of nodes, as it operates on an n× n matrix. This 
shortcut can be addressed by the HLL method to obtain approximate results. A sparse 
matrix implementation can also be very beneficial to solve this problem, if the average 
out-component size is much smaller than n. Otherwise, when it is comparable to n and 
the number of non-zero elements in the matrix is in O(n2) , even a sparse matrix solution 
would scale quadratically.

Reference point

Figure 3 only gives the ratio between the computation times or the amount of memory 
required for the computations. We provide in Table  2 some concrete values  for each 
method. The smallest temporal network on Fig. 3 is for n = 100 and m = 100 . The larg-
est temporal network in Fig. 3 is for n = 104 and m = 108 . The associated computation 
times and memory usages are reported in Table 2.

Hashing the temporal network
Hashing the temporal network consists in reducing its number of nodes, thus compress-
ing it, by (randomly) assigning nodes of the initial temporal network to “super-nodes” 
of a hashed graph. An event, or an interaction, between two nodes at time t in the ini-
tial temporal network becomes a new event between their hashed representatives in the 
hashed graph at time t. Reducing the number of nodes is notably attractive because this 
reduces the complexity of various different algorithms including the computation of the 
component matrix, even though this may cause information loss about the initial graph 
because of some conflicts. More precisely, one hash function defines a mapping from 
nodes to super-nodes, and that can lead to a loss of information due to node collisions. 
To balance this effect, we propose to use several different hash functions and to fuse 
the obtained results together. Indeed, using multiple hash functions reduces such con-
flicts as it is very unlikely that two nodes are always merged in the same super node. The 
method is taking advantage of that. The overall framework is shown in Fig. 4.

Hash functions

To reduce the number of nodes of the static graph underlying the input temporal 
graph (in short: “the input static graph”), and therefore the computation complexity 
of the out-component size distribution, we use hash functions. These functions take 

Table 2 Computation times and memory usage for the EG + HLL, Matrix and Matrix + HLL 
methods for n = 100 and m = 100 (first and second line) and for for n = 104 and m = 108 (third and 
fourth line)

EG + HLL Matrix Matrix + HLL

Time (ms) 40.3 0.4 27.4

Memory (kB) 1 80 0.92

Time (s) 30,172 700 811

Memory (MB) 200,000 800 0.085
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as input a set of labels of n nodes, {1, . . . , n} = [n] , and hash them into ns super-nodes 
{1, . . . , ns} = [ns] . The labels are the nodes of the input static graph and the buckets 
are the super-nodes of the resulting hashed static graph. Since ns < n , some nodes 
will collide into the same super-node, reducing the overall cost of computation over 
the hashed temporal network associated to the hashed static graph, but reducing also 
the amount of available information.

There are many ways to design hash functions. In this work, we rely on classical 
approaches and we use existing universal hash functions as they ensure a low num-
ber of collisions whatever the original data. Indeed, the probability of this occurrence 
is controlled by the parameter k. We choose k = 4 , first because, for this value of k, 
there exists an analytical family of hash functions that are easily computable and sec-
ond because this value also ensures a reasonably small probability of collisions. A 
great advantage of using these hash functions is that the user does not have to design 
them explicitly depending on his goal. The functions are, by definition, blind to the 
structure of the network. Thus, the choice of the hash functions does not depend on 
the structure of the network. In fact, we draw multiple hash functions from the same 
class and use them regardless of the structure of the graph.

We use k-universal (randomised) hash functions (Thorup and Zhang 2004). A class 
H of random functions is k-universal if ∀x1, . . . , xk ∈ [n], ∀v1, . . . , vk ∈ [ns],

where the probability is on the draw of h. Qualitatively, this means that the probability 
that one node of the initial graph is assigned to the same super-node by two different 
hash functions is low and controlled by the choice of k.

In our work, we use k = 4 and the hash functions are based on a large prime num-
ber: Prime = 261 − 1 .  Their computation is divided into four steps. First, let us define 
a table A of size (3, order), where order is an order parameter defined as:

(2)Pr{h(xi) = vi, ∀i ∈ [k]} = 1/nks

Fig. 4 From a 5 nodes temporal network, several hashed version are computed with 3 nodes each. Then, 
every hashed graph can be used to compute a small component matrix thanks to our matrix algorithm. 
Finally, the different component matrices can be fused to compute an approximate solution of the 
component matrix of the initial temporal network
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where ≪ 32 denotes the shift of the binary representation 32 bits to the left.
Second, the number acc is computed recursively order − 1 times thanks to:

where j ∈ {1, . . . , order} , MultAddMod is a function defined in the paper and initially, 
acc(i,u) = A(i, 0).

Third, T0,T1,T2 are tables of size ns that are defined as:

Fourth, for every node, we define three quantities x0, x1, x2 as 
∀u ∈ [n], x0(u) = low(u), x1(u) = high(u), x2(u) = x0(u)+ x1(u) where low(u) outputs 
the 32 rightmost bits of the binary representation of u and high(u) outputs the 32 left-
most bits. Finally,

where ⋆ is the bitwise exclusive OR.
The hashed static graph is made of super-nodes defined by the output of a hash function 

and of “super”-edges connecting them: if u and v are connected in the initial static graph, 
then the super-nodes h(u) and h(v) become connected by a super-edge, whose weight is 
binary. Finally, for every event (u, v, t), a super-event is defined as (h(u), h(v), t).

Fusion to compute the distribution of out‑components

The main goal of our work is to compute the out-component, or its size, of every node 
in the input temporal network with lower complexity than existing methods reported in 
Table 1. To do so, we hash the set of n nodes of the input temporal network into ns super-
nodes with K different hash functions hj.

These hash functions are drawn independently at random.
Here, the hash functions hj , ∀j ∈ [K ] are not injective thus not invertible: there are usu-

ally several nodes mapped to the same super-node. We define the inverse of h as the func-
tion that, given a super-node of the hashed static graph, computes the set of corresponding 
nodes in the initial static graph:

Denote OC(u) (resp. OC(h(u)) ) the out-component of node u (resp. super-node v = h(u) ). 
Assuming we can compute (an estimate of ) the out component OC(v) of a super-node v 
in the hashed graph obtained with hash function hj , we can also define

(3)
∀i ∈ {0, 1, 2},∀j ∈ [order],

A(i, j) ≡ ((rand(231 − 1) ≪ 32)+ rand(231 − 1)) mod Prime

(4)acc(i,u) ≡ MultAddMod(u, acc(i,u),A(i, j)) mod Prime

(5)∀u ∈ [ns],Ti[u] = acc(i,u)

(6)∀u ∈ [n], h(u) = T0(x0(u)) ⋆ T1(x1(u)) ⋆ T2(x2(u))

(7)∀i ∈ [n] ∀j ∈ [K ], hj(ui) ∈ [ns]

(8)∀v ∈ [ns], h−1(v) = {u ∈ [n]/h(u) = v}

(9)h−1
j (OC(v)) =

⋃

x∈OC(v)
h−1(x)
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Instead of estimating the out-component for each of the n nodes in the temporal net-
work, we first hash the network into K hashed graphs of ns nodes and m events, then 
estimate the out-component for every node in the hashed graphs and finally aggregate 
the information by intersecting the (estimated) out-components given by each hashed 
graph. We then define

The estimated out-component necessarily contains the true out-component, i.e. 
OC(ui) ⊆ ÔC(ui) , yet if the number K of hash functions is too small the set ÔC(ui) may be 
much larger than the true out-component. Computing |ÔC(ui)| , where |A| is the number 
of elements of a set A, one can compute an approximation of the distribution of the out-
components’ sizes with any of the aforementioned algorithm that is able to compute the 
out-components (and not only their sizes) on the hashed graphs. We compare the result-
ing approximate distribution with the true distribution.

Properties of the algorithm

The structure of the resulting algorithm ensures that every step before the final fusion 
remains compatible with streamed events arriving in chronological order, and is also 
amenable to parallel/independent computations for each hash function.

Moreover, the complexity of the framework depends on the setup. In a parallel setting, 
i.e. when the S(k)i  are computed separately, we need O(K × n2s ) space to store the matri-
ces and O(mns) time to compute the small component matrices. In a non-parallel set-
ting, we need O(K × n2s ) to store the small matrices and O(Kmns) time to compute them.

Experimental evaluation

The compression framework that we propose can be used with several observables. 
Here, we focused on the computation of the out-components. The whole distribution 
of the size of the out-components describes the largest spreading phenomena possible 
starting from every node. The other quantity we are interested in is the tail of the distri-
bution, i.e. the set of nodes with largest out-component’ size. To experimentally prove 
the effectiveness of our work, we measure the precision of the approximate method with 
respect to the ground-truth for both the distribution and its tail.

Experimental setting

For simulations, temporal networks are generated exactly as in the previous Section, 
see Sect. "Component size distribution from reversed event sequence". In the generated 
data, the number of nodes, n, varies between {100, 200, 500, 1000, 2000, 5000, 10 000} 
and the number of events varies from 104 to 109 as powers of 10. The number of super-
nodes is always a fraction of the number of nodes: ns = 0.3× n and the number of hash 
functions is K = 5.

The baseline algorithm is our matrix method from the previous section since it pro-
vides the exact distribution of the size of the out-components, with a controlled memory 
and time complexity. The results will compare the hashing version to this baseline.

(10)∀i ∈ [n], ÔC(ui) =
⋂

j∈[K ]
h−1
j (OC(hj(ui))).
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In addition, some experiments have been conducted on real-world datasets freely 
available in Snap. The “Superuser” temporal network is a network of interactions on the 
stack exchange web site Super User. There are three kinds of interactions (edges): a user 
(node) answered a question of someone else, a user commented a question or a user 
commented an answer. The Superuser network is made of 194,085 nodes and 1,443,339 
events. The “Reddit” dataset is a temporal network of connections between subreddits 
(i.e., forum dedicated to a specific topic on the website Reddit), taken here as nodes. 
There is an event between two subreddits when there is a post from a source subred-
dit that links to a target subreddit. The Reddit temporal network has 35,776 nodes and 
286,560 events.

For real datasets, we split chronologically the events in 10 equal parts and compute the 
distribution of the largest out-component on {10%, 20%, . . . , 100%} of the events. As for 
generated datasets, we use ns = 0.3× n . We also use K = 1 and K = 5 . The baseline is 
still the matrix algorithm of the previous section.

Performance criteria

We evaluate the hashing framework based on three criteria: time, memory and accuracy. 
We compare the time required by the matrix algorithm to compute the true distribution 
of the largest out-components, D with the one required by the hashing framework to 
compute the approximate distribution of the largest out-components Ds . The computa-
tion time of the hashing framework includes both the computation of the hashed matri-
ces and their fusion.

We also compare the memory usage of the matrix algorithm, with a single big matrix, 
with the one of the hashing framework, with several smaller matrices.

Furthermore, to compare the ground-truth out-component’ size distribution D and 
the one computed thanks to the hashing framework Ds(ns,K ) , we simply use the Earth-
Mover distance, also called Wasserstein distance (Bonneel et al. 2011), computed thanks 
to the Python Optimal Transport library (Flamary et al. 2021). Among the other possible 
distances, we tried the Kullback-Leibler divergence, which proved less sensitive to subtle 
differences between the distributions. Thus we can define accuracy of the out-compo-
nent size distribution inference as:

where γ is the Earth-Mover distance. The lower Acc(ns,K ) , the closest are the two 
distributions.

Results

First, we present the results for the generated data. The relative computation time, rela-
tive memory usage and accuracy of the hashing framework are reported in Fig. 5. The 
relative computation time figure is red meaning that the hashing framework requires 
more time than the matrix method to compute the target distribution. However, we 
can clearly see that the relative computation time decreases quickly with the number of 
events and slowly with the number of nodes. Generally, for datasets with more events 
than m = 108 , the hashing framework with K = 5 and ns = 0.3× n requires less time 
than the full matrix method.

(11)Acc(ns,K ) = γ (D,Ds(ns,K ))

http://snap.stanford.edu/data/
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For the relative memory usage, the figure is blue meaning that we always gain memory. 
In fact, in this setup, only half the memory of the matrix method is required for the 
hashing framework.

As for the Earth-Mover distance, there is a regime for small datasets where the accu-
racy is not satisfactory but for the large majority of the generated datasets, the hashing 
framework performs very well.

For the real datasets, we first show the results of the relative computation time and 
the relative memory usage of the hashing framework compared to the matrix method 
in Fig. 6. Experimentally, we show that the hashing framework generally requires more 
time to compute the target distribution. Moreover, the relative computation time is lin-
ear with the number of hash functions. That is, for K = 5 , that time is approximately 
5 times higher than for K = 1 for both the Reddit dataset and the Superuser dataset. 
Overall, the general shape of the curves is in line with the results on generated data. 
For example, the relative computation time for the third point of the Reddit dataset, 
n = 15,370 and m = 85,968 , is 198, which coincides with the corresponding value on the 
generated datasets. Overall, the relative computation time decreases as the number of 
nodes increases, as expected.

Then, the memory required for the computation is linear with the number of hash 
functions. We clearly see that, for K = 5 , the memory usage is 5 times more than the 
one for K = 1 . The figures for real datasets are also in line with the figures for generated 
datasets. Obviously, with K = 1 and ns = 0.3× n , the computation requires less mem-
ory than with the full matrix algorithm for both real datasets by a factor 10. But, more 

Fig. 5 a Relative time and b relative memory usage for the computation of the distribution of the largest 
out-components compared to the ground-truth given by the matrix method on synthetic data. c Accuracy of 
the hashing framework given by the Earth-Mover distance

Fig. 6 Relative computation time and relative memory usage for the Reddit and Superuser datasets to 
compute the distribution of the largest out-components thanks to the hashing framework compared to the 
matrix
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importantly, with K = 5 and ns = 0.3× n , the hashing framework still requires only 
around 50% of the memory of the matrix method.

Finally, we report the accuracy of the hashing framework compared to the matrix 
method in terms of the Earth-Mover distance between the true distribution computed 
by the matrix method and the one estimated by the hashing method in Fig. 7. Indeed, 
the quality of the results is important to assess the quality of the hashing framework. 
For both datasets, lower dimensions lead to lower accuracy of the framework. We see 
that the first few points, corresponding to networks of small sizes, have a significantly 
higher Earth-Mover distance (thus, lower accuracy) than the remaining ones. Overall, 
the shape of the curves still confirms the results with the generated datasets: the larger 
the network, the better the approximation. Secondly, as expected, the distance is lower 
for higher values of K. The accuracy of the method increases as there are more hash 
functions.

Thus overall we can conclude that hashing is relevant in high dimension. There is a 
computation time gain for m ≥ 109 in the generated datasets while memory usage 
remains lower and accuracy is good. Also, increasing the number of hashes leads to 
a linear increase in the memory usage and a linear increase in the computation time. 
Obviously, this increases the accuracy of the method.

Conclusion
The continuous growth in the size of data bases requires new algorithms to process infor-
mation. Moreover, structured data evolving over time represents an important challenge 
since it differs a lot from usual tabular data. To that end, we proposed a matrix algorithm 
that is able to compute both the out-components for every node of a temporal network and 
their sizes. Furthermore, to reduce the complexity of the analysis, we proposed a compres-
sion scheme based on hash functions that reduces the number of nodes of the network at 
the cost of some uncertainty. Uncertainty is lifted thanks to the use of several hashes in 
parallel. On each hashed graph, the matrix algorithm can be computed and, finally, all the 
information is merged to approximate the component matrix of the input network. Our 
framework is online and allows parallelization. Indeed, new nodes and news events can be 
processed as they come. Moreover, the different hashed graphs allow parallelization since 
they are independent. Additionally, hashing can make the computation private. If we do 
not observe the temporal network directly but only hashed versions of it and if hashes have 
some external randomness, our framework allows ǫ-differential privacy (Dwork et al. 2006). 
By construction, hashing loses some information during the compression process. When 

Fig. 7 Accuracy for the Reddit dataset and the Superuser dataset to compute the distribution of the largest 
out-components thanks to the hashing framework compared to the matrix method
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the hashed graph is known to belong to a very small family of graphs, it is sometimes pos-
sible to reconstruct it exactly from its hashed version using this knowledge, but in general 
hashing is not designed for exact computations or any lossless calculations (of causal tem-
poral paths for example). Yet, for a large set of problems, exact computations may not be 
necessary. One example is the computation of the upper-bound of the size of any dynamical 
process. In the context of temporal network analysis, the scope of applicability of hashing 
is still under consideration by the research community. Here, we demonstrate that it can 
be applied to compute an approximation of the out-components in a temporal network. 
This method can be particularly useful in the contexts of network reduction, privacy and 
spreading on networks. Moreover, hashing allows to characterize some properties of the 
network without knowing the whole data, only its hashed version. More specifically, we 
believe that our work has a lot of potential applications. The first concrete user case is to use 
out-component sizes as the maximum number of nodes reachable during a spreading pro-
cess. For example, it can be the maximum number of people infected by a virus from a sin-
gle source. Or, on Twitter, it can be the maximum number of people a piece of news spreads 
to. Secondly, our framework can be extended to other cases. In our work, we focused on 
out-components but we believe that many other quantities can be computed thanks to our 
compression scheme such as pairwise distances between nodes. Also, we believe that the 
hashing framework can be rewritten with an algebraic formulation. This would open up the 
work to linear problems and linear solvers. In fact, the reconstruction of the matrix could 
be tackled in many different ways making the framework more flexible. Moreover, privacy 
preserving algorithms are particularly interesting for security or privacy reasons. The work 
we propose can efficiently make algorithms on temporal networks private. Indeed, adding 
randomness in the data can lead to prevent the identification of the source of the data. Most 
importantly, our hashing framework transforms a temporal network into a series of smaller 
datasets that can be used to infer properties of the initial dataset without direct access to it. 
This can be very beneficial in the processing of sensitive information.
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