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Introduction
Modeling data as random graphs is ubiquitous in many application domains of statis-
tics. For example, in neuroscience, it is common to view a connectome as a graph with 
vertices representing neurons, and edges representing synapses (Priebe et al. 2017). In 
document analysis, the corpus of text can be viewed as a graph with vertices taken to 
be documents or authors, and edges as the citations (de Solla Price 1965). In social net-
work analysis, a network can be modeled as a graph with vertices being individual actors 
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or organizations, and edges being representing the degree of communication between 
them (Wasserman and Faust 1994).

The first random graph model was proposed in 1959 by E. N. Gilbert. In his short 
paper, he considered a graph in which the probability of an edge between any two verti-
ces was a Bernoulli random variable with common probability p (Gilbert 1959). Almost 
concurrently, Erdös and Rényi developed a similar random graph model with a con-
strained number of edges that are randomly allocated in a graph. They also provided 
a detailed analysis of the probabilities of the emergence of certain types of subgraphs 
within graphs developed both by them and Gilbert (Erdös and Rényi 1960). Nowadays, 
the graphs in which edges arise independently and with common probability p are 
known as Erdös–Rényi (ER) graphs.

Latent position random graph models consitute a diverse class of random graph mod-
els that are much more flexible than the ER model. A vertex in a latent position graph is 
associated with an element in a latent space X  , and the probability of an edge between 
any two vertices is given by a link function g : X × X → [0, 1] (Hoff et  al. 2002). The 
model draws inspiration from social network analysis, in which the members are 
thought of as vertices, and the latent positions are differing “interests”. Latent position 
random graphs are a submodel of the independent edge graphs, that is, graphs in which 
the edge probabilities are indpendent, conditioned on a matrix of probabilities. The the-
ory of latent positions graphs is also closely related to that of graphons (Lovász 2012); for 
discussion on this relationship, see, for example, Lei (2018) or Rubin-Delanchy (2020).

One example of latent position graphs relevant to this discussion is the random dot 
product graph (RDPG). An RDPG is a latent position graph in which the latent space 
is an appropriately constrained Euclidian space Rd , and the link function is the inner 
product of the d-dimensional latent positions (Athreya et al. 2018). Despite their relative 
simplicity, suitably high-dimensional RDPGs can provide useful approximations of gen-
eral latent position and independent edge graphs, as long as their matrix of probabilities 
is positive semidefinite (Tang et al. 2013).

The well-known stochastic blockmodel (SBM), in which each vertex belongs to one of 
K blocks, with connection probabilities determined solely by block membership (Hol-
land et al. 1983), can be represented as an RDPG for which all vertices in a given block 
have the same latent positions. Furthermore, common extensions of SBMs, namely 
degree-corrected SBMs (Karrer and Newman 2011), mixed membership SBMs (Airoldi 
et  al. 2008), and degree-corrected mixed membership SBMs (Jin et  al. 2017) can also 
be framed as RDPG. There is, however, a caveat, similar to the one for approximating 
independent edge graphs with RDPG: only SBM graphs with positive semidefinite block 
probability matrix can be formulated in the context of RDPG. Rubin-Delanchy et  al. 
(2022) present a generalization of RDPGs, called the generalized random dot product 
graph (GRDPG) that allows to drop the positive semidefiniteness requirements in both 
cases. Although the generalization of many estimation and inference procedures from 
RDPGs to GRDPGs is straightforward, their theory, particularly of latent distribution 
testing, is not yet as developed as that of RDPG. Thus, we limit the scope of this work to 
RDPG.

The problem of whether the two graphs are “similar” in some appropriate sense arises 
naturally in many fields. For example, two different brain graphs may be tested for 
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the similarity of the connectivity structure (Chung et  al. 2022), or user behavior may 
be compared between different social media platforms. Testing for similarity also has 
applications in more intricate network analysis techniques, such as hierarchical commu-
nity detection (Lyzinski et al. 2017; Li et al. 2020). Despite the multitude of applications, 
network comparison is a relatively nascent field, and comparatively few techniques cur-
rently exist (Lyzinski et  al. 2017). There have been several tests assuming the random 
graphs have the same set of nodes, such as Tang et al. (2017); Levin et al. (2017); Ghosh-
dastidar et al. (2017); Li and Li (2018); Levin and Levin (2019), and Arroyo et al. (2021). 
Other approaches designed for fixed models and related problems, include Rukhin and 
Priebe (2011); Asta and Shalizi (2015); Lei (2016); Bickel and Sarkar (2016); Maugis et al. 
(2020); Chen and Lei (2018); Gangrade et al. (2019) and Fan et al. (2022), to name a few. 
In Ghoshdastidar et al. (2020), the authors formulate the two-sample testing problem for 
graphs of different orders more generally.

Of particular interest is Tang et al. (2017), in which the authors propose a nonpara-
metric test for the equality of the generating distributions for a pair of random dot prod-
uct graphs. This test does not require the graphs to have the same set of nodes or be of 
the same order. It relies on embedding the adjacency matrices of the graphs into Euclid-
ean space, followed by a kernel two-sample test of Gretton et al. (2012) performed on 
these embeddings. The exact finite-sample distribution of the test statistics is unknown, 
but it can be estimated using a permutation test, or approximated using the χ2-distribu-
tion. Unfortunately, despite the theorem stating that in the limit, even for graphs of dif-
fering orders, the statistic using the two embeddings converges to the statistic obtained 
using the true but unknown latent positions, the test is not always valid for finite graphs 
of differing orders.

The invalidity arises from the fact that the approximate finite-sample variance of the 
adjacency spectral embedding depends on the number of vertices (Athreya et al. 2016). 
Hence, the distributions of the estimates of the latent positions for the two graphs might 
not be the same, even if the true distributions of the latent positions are equivalent. The 
test of Gretton et al. (2012) is sensitive to the differences induced by this incongruity and 
as a result may reject more often than the intended significance level. In this work, we 
present a method for modifying the embeddings before computing of the test statistic. 
Using this correction makes the test for the equivalence of latent distributions valid even 
when the two graphs have an unequal number of vertices.

The remainder of the paper is structured as follows. In Sect. 2, we review the random 
dot product graph, and discuss its relationship with Erdös–Rényi, stochastic blockmodel 
and other random graph models. We also discuss results associated with the adjacency 
spectral embedding of an RDPG, such as consistency for the true latent positions and 
asymptotic normality, and we review the original nonparametric two-sample hypothesis 
test for the equality of the latent distributions. There we also briefly discuss generaliz-
ing the ASE procedure to weighted and/or directed graphs. Then, in Sect. 3, we give an 
intuition as to why this test increases in size as the orders of the two graphs diverge from 
each other. We also present our approach to correcting the adjacency spectral embed-
dings in a way that makes them exchangeable under the null hypothesis of the test for 
the equivalence of the latent distribution. We demonstrate the validity and consistency 
of the test that uses the corrected adjacency spectral embeddings across a variety of 
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settings in Sect. 4. In Sect. 5, we demonstrate that failing to correct for the difference in 
distributions can lead to significant inferential consequences in real world applications, 
such as the setting of brain graphs obtained from diffusion magnetic resonance imaging 
(dMRI). Furthermore, we show that the test is able to meaningfully differentiate between 
scans within the same subject and different subjects. We conclude and discuss our find-
ings in Sect. 6.

Notation

We use the terminology “order” for the number of vertices in a graph. We denote scalars 
by lowercase letters, vectors by bold lowercase letters and matrices by bold capital let-
ters. For example, c is a scalar, x is a vector, and H is a matrix. For any matrix H , we let 
H ij denote its i, jth entry. For ease of notation, we also denote H i to be the column vec-
tor obtained by transposing the i-th row of H . Formally, H i = (H i·)T . In the case where 
we need to consider a sequence of matrices, we will denote such a sequence by H (n) , 
where n is the index of the sequence. Whether a particular scalar, vector or a matrix is 
a constant or a random variable will be stated explicitly or be apparent from context. 
Unbold capital letters denote sets or probability distributions. For example, F is a prob-
ability distribution. The exception to this rule is K which is always used to denote the 
number of blocks in a stochastic blockmodel.

Preliminaries
Models

We begin by defining random dot product graphs.

Definition 1 (d-dimensional random dot product graph (RDPG)) Let F be a dis-
tribution on a set X ⊂ R

d such that �x, x′� ∈ [0, 1] for all x, x′ ∈ X  . We say that 
(X ,A) ∼ RDPG(F , n) is an instance of a random dot product graph (RDPG) if 
X = [X1, . . . ,Xn]T with X1. . . . ,Xn

iid∼F  and A ∈ {0, 1}n×n is a symmetric hollow matrix 
whose entries in the upper triangle are conditionally independent given X and satisfy

We refer to X1. . . . ,Xn as the latent positions of the corresponding vertices.

Remark 1 It is easy to see that if (X ,A) ∼ RDPG(F , n) , then E[A|X] = XXT.

Remark 2 Nonidentifiability is an intrinsic property of random dot product graphs. 
For any matrix X and any orthogonal matrix W  , the inner product between any rows i, j 
of X is identical to that between the rows i, j of XW  . Hence, for any probability distri-
bution F on X  and orthogonal operator W  , the adjacency matrices A and B , generated 
according to (X ,A) ∼ RDPG(F , n) and (Y ,B) ∼ RDPG(F ◦W , n) , respectively, are iden-
tically distributed.
Here, the notation F ◦W  means that if X ∼ F  , then XW ∼ F ◦W .

Constraining all latent positions to a single value leads to an Erdös–Rényi (ER) random 
graph.

Aij|X ∼ Bernoulli(XT
i X j)i < j.
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Definition 2 (Erdös–Rényi graphs (ER)) We say that a graph (X ,A) ∼ RDPG(F , n) is 
an Erdös–Rényi (ER) graph with an edge probability p2 if F is a pointmass at p. In this 
case, we write A ∼ ER(n, p2).

Another random graph model that can be framed in the context of random dot 
product graphs is the stochastic blockmodel (SBM) (Holland et al. 1983). In the SBM, 
the vertex set is thought of as being partitioned into K groups, called blocks, and the 
probability of an edge between two vertices is determined by their block member-
ships. The partitioning, or assignment, of the vertices is usually itself random and 
mutually independent. Formally, we can define SBMs in terms of the RDPG model as 
follows.

Definition 3 [(Positive semidefinite) stochastic blockmodel (SBM)] Denote δz as the 
Dirac delta measure at z . We say that a graph (X ,A) ∼ RDPG(F , n) is a (positive sem-
idefinite) stochastic blockmodel (SBM) with K blocks if the distribution F is a mixture of 
K point masses,

where π = [π1, . . . ,πK ] ∈ (0, 1)K  satisfying K
i=1 πi = 1 , and the distinct latent posi-

tions are given by Z = [Z1, . . . ,ZK ]
T ∈ R

K×d , with ZT
i Z j ∈ [0, 1] ∀i, j . In this case we 

also write A ∼ SBM(n,π ,P) , where P := ZZT ∈ R
K×K  . The matrix P is often referred 

to as block probability matrix.

Remark 3 We note that almost everywhere below we use the terms SBM and positive 
semidefinite SBM interchangeably, as only positive semidefinite block probability matri-
ces can be represented as a product of a matrix of latent positions with transpose of 
itself, and thus only they can be defined in terms of the RDPG model. We emphasize, 
however, that the work of Rubin-Delanchy et al. (2022) on the generalized random dot 
product (GRDPG) extends the construction of RDPG via the indefinite inner product to 
encompass indefinite SBM and the generalizations thereof.

There are two common generalizations of the stochastic blockmodel: degree-corrected 
stochastic blockmodel (Karrer and Newman 2011) and mixed-membership stochastic 
blockmodel (Airoldi et al. 2008). We present these two models below. The presentations 
are different from the ones many readers may be familiar with because we present them 
under the RDPG framework. These definitions coincide with the ones in literature, as 
covered in Lyzinski et al. (2014); Rubin-Delanchy et al. (2017, 2022).

The degree-corrected stochastic blockmodel allows for vertices within each block 
to have different expected degrees, which makes it more flexible than the standard 
SBM and a popular choice to model network data (Karrer and Newman 2011; Lyzin-
ski et al. 2014).

Definition 4 (Degree-corrected SBM) We say that a graph (X ,A) ∼ RDPG(F , n) is a 
degree-corrected SBM (DCSBM) with K blocks, if there exists a distribution Fm , which 

(1)F =
K∑

i=1

πiδZi ,
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is a mixture of K point-masses Z1, . . . ,ZK  , as in Definition 3, and a distribution Fc on 
[0, 1], such that for all X i , there exists Y i ∼ Fm and ci ∼ Fc , such that X i = ciY i.

That is, any latent position of a vertex in a DCSBM graph can be decomposed into 
a point Y i , chosen among one of the K shared points Z1, . . . ,ZK  , and a scalar ci . Note 
that there is no requirement on Y i and ci to be independent from each other. In other 
words, the distributions on degree corrections can depend on the block assignments. 
In essence, the DCSBM generalizes the SBM from an RDPG with a distribution of 
latent positions over a finite number of points to an RDPG with a distribution of 
latent positions over a finite number of rays from the origin. Of course, not every 
point on these rays needs to be in the support of this distribution. Restraining Fc to a 
point-mass at unity recovers the regular SBM. See left and central panels of Fig. 1 for 
a visualization comparing the latent distributions of SBM and DCSBM.

On the other hand, the mixed membership SBM offers more flexibility in block 
memberships by allowing each vertex to be in a mixture of blocks (Airoldi et al. 2008).

Definition 5 (Mixed-membership SBM) Denote �d×1 to be the space of the (d + 1)

-dimensional column vectors starting at the origin and terminating in the d-dimensional 
unit simplex. We say that a graph (X ,A) ∼ RDPG(F , n) is a mixed-membership SBM 
(MMSBM) with K blocks, if there exists a matrix Z = [Z1, . . . ,ZK ]

T ∈ R
K×d and a dis-

tribution over �(K−1)×1 , denoted as Fm , such that for each Xi , there exists vi ∼ Fm and 
Xi = ZTvi.

That is, any latent position of a vertex in an MMSBM is a convex combination of 
K shared points, Z1, . . . ,ZK  . The MMSBM generalizes the SBM from an RDPG with 
latent positions coming from a finite-dimensional mixture of point-masses to an 
RDPG with latent positions having a distribution over a convex hull formed by a finite 
number of points. See left and right panels of Fig.  1 for a visualization of thereof. 
Once again, the whole convex hull needs not be in the support of this distribution. 
If one constrains Fm to only have support on a finite set of vectors with 1 in a single 
entry and 0 in all other, Fm collapses to a distribution of point-masses and the model 
agrees exactly with SBM.

Fig. 1 Visualization of the valid latent positions of an arbitrary 2-dimensional SBM with K = 4 (left), valid 
latent positions of a DCSBM with the same Z (center) and valid latent positions of an MMSBM with the same 
Z (right). All three are examples of RDPGs
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Remark 4 For graphs with one-dimensional latent positions, any RDPG model is both 
a DCSBM with a single block and an MMSBM with two blocks. To see this, note that 
the latent positions all take values in [0, 1] (or equivalently [−1, 0] ). This region can be 
thought of as either a single line segment starting from the origin or as a one-dimen-
sional convex hull between 0 and 1.

Remark 5 Jin et al. (2017) introduced a model that has both the degree heterogeneity 
of the DCSBM and the flexible memberships of MMSBM. This model can also be for-
mulated in terms of the RDPG. See, for example, Definition 6 of Agterberg et al. (2020).

We reiterate that the SBM with K blocks is a submodel of both the K-block DCSBM 
and the K-block MMSBM. Furthermore, both the K-block DCSBM and the K-block 
MMSBM are submodels of an RDPG with latent positions in at most K dimensions. 
Hence, any test for the equality of the latent distributions that is consistent in the RDPG 
setting will be able to meaningfully distinguish between two graphs generated from two 
different model subspaces, or between graphs from the same model subspace but with 
different parameters; for example, between a MMSBM and an SBM, or between two 
SBMs with different block-probability matrices.

Adjacency spectral embedding

Inference on random dot product graphs relies on having good estimates of the latent 
positions of the vertices. One way to estimate the latent positions is to use the adjacency 
spectral embedding of the graph, defined as follows.

Definition 6 (Adjacency spectral embedding (ASE)) Let A have eigendecomposition

where U  and � consist of the top d eigenvectors and eigenvalues (arranged by decreas-
ing magnitude) respectively, and U⊥ and �⊥ consist of the bottom n− d eigenvectors 
and eigenvalues respectively. The adjacency spectral embedding of A into Rd is the n× d 
matrix

where the operator | · | takes the entrywise absolute value.

It has been proven in Sussman et al. (2012, 2014) and Lyzinski et al. (2014) that the 
adjacency spectral embedding provides a consistent estimate of the true latent positions 
in random dot product graphs. The key to this result is tight concentrations, in both 
Frobenius and 2 → ∞ norms, of the ASE about the true latent positions.

Athreya et al. (2016) show that for a d-dimensional RDPG with i.i.d. latent positions, 
the ASE is not only consistent, but also asymptotically normal, in the sense that there 
exists a sequence of d × d real orthogonal matrices W (n) such that for any row index i, √
n
(
W (n)X̂

(n)

i − X
(n)
i

)
 converges to a (possibly infinite) mixture of multivariate 

normals.

A = U�U⊤ +U⊥�⊥U
T
⊥

X̂ := U |�|1/2,
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Theorem  2.1 (RDPG Central Limit Theorem) Let (X (n),A(n)) ∼ RDPG(F , n) be a 
sequence of latent positions and associated adjacency matrices of a d-dimensional RDPG 
according to a distribtuion F in an appropriately constrained region of Rd . Also let X̂

(n) be 
the adjacency spectral embedding of A(n) into Rd . Let �(z,�) denote the cumulative dis-
tribution function for the multivariate normal, with mean zero and covariance matrix � , 
evaluated at z . Then there exists a sequence of orthogonal d × d matrices 

(
W (n)

)∞
n=1

 such 
that for each component i and any z ∈ R

d,

where

and � = E
[
X1X

T
1

]
 is the second moment matrix.

An intuitive way to restate this result is by identifying that each row X̂ i of the ASEs 
X̂  is approximately normal around the true but unknown realization of the latent 
position of the vertex:

where W  is an orthogonal matrix present due to the inherent orthogonal nonidentifi-
ability of the RDPG.

In our work, we will need to estimate the covariance matrix �(X i) . The plug-in 
principle (Bickel and Doksum 2006) states that one acceptable method of estimating 
�(X i) is to use the analogous empirical moments:

where

When we are presented with two or more RDPGs that have the same distribution for 
their latent positions, either by assumption or by prior knowledge, we can leverage this 
fact and calculate the moments over all graphs at the same time. Conceptually this is 
similar to using pooled variance in classical one-dimensional two-sample inference.

A corollary of the previous result arises when (X ,A) ∼ RDPG(F , n) is a K-block 
stochastic blockmodel. Then, we can condition on the event that X i is assigned to 
a block k ∈ {1, 2, . . . ,K } to show that the conditional distribution of X̂

(n)
W (n) − X (n) 

converges to a multivariate normal.

lim
n→∞

P

[
n1/2

(
X̂
(n)

W
(n) − X

(n)
)
i
≤ z

]
=

∫

supp
F�(z,�(x))dF(x),

�(x) = �−1
E

[
(xTX1 − (xTX1)

2)X1X
T
1

]
�−1

X̂ i|X i
approx∼ N

(
X iW ,

�(X i)

n

)

(2)�̂(X̂ i) = �̂−1


1

n

n�

j=1

�
(X̂

T

i X̂ j − (X̂
T

i X̂ j)
2)X̂ jX̂

T

j

�

�̂−1,

�̂ = 1

n

n∑

j=1

X̂ jX̂
T

j .
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Corollary 2.2 Assume the setting and notation of Theorem  2.1. Further, assume that 
(X ,A) ∼ RDPG(F , n) is a positive definite stochastic blockmodel, that is, F is a mixture of 
K point masses Z1, . . . ,ZK  , as per Definition 3. Then there exists a sequence of orthogonal 
matrices W n such that for all z ∈ R

d and for any fixed index i,

Consequently, the unconditional limiting distribution in this setting is a mixture of K 
multivariate normals (Athreya et al. 2016).

Remark 6 As a special case of Corollary 2.2, we note that if A ∼ ER(n, p2) , then the 
adjacency embedding of A , X̂ , satisfies

The directed, the weighted, and the unknown dimension ASE

Although the theory of the ASE and the nonparametric test is predominantly developed 
of the setting of undirected unweighted graphs with an assumed known distribution of 
the true latent dimension, the real world datasets often require us to relax those assump-
tions. This will be the case in our Sect.  5 which will present an illustrative example 
using the dMRI dataset. Graphs in this dataset are weighted and directed, and have an 
unknown true distribution of the latent dimension which requires having a modification 
to the procedure and interpretation described previously. These modifications to the sta-
tistical procedures involving ASE of the RDPGs that are not unweighted or/nor undi-
rected are described in more details in Sect. 6.3 of Athreya et al. (2018) where authors 
apply a clustering algorithm to a dataset of the larval drosophila mushroom body con-
nectome which is a directed graph on four neuron types.

The presence of weights changes the interpretation of the embeddings, as the inner 
product no longer represents a probability of an edge, but does not require modifica-
tions to any of the algorithmic procedures. We do, however, need to define a special 
adjacency spectral embedding of a directed graph, as the adjacency matrix is no longer 
symmetric and thus does not have an eigendecomposition.

Definition 7 (Adjacency spectral embedding (ASE) of a directed graph) Let d ≥ 1 and 
let A be an adjacency matrix of a directed graph with n vertices. Let A have singular 
value decomposition

� is a d × d diagonal matrix consisting of d largest singular values and U  and V  are the 
associated matrices of left andright singular vectors. The adjacency spectral embeddin-
gof a directed graph A into R2d is the n× 2d matrix

lim
n→∞

P

[
n1/2

(
X̂
(n)

W (n) − X (n)
)
i
≤ z|X i = Zk

]
= �(z,�(Zk))

n1/2(X̂ i − p) → N

(
0, 1− p2

)
.

A = U�V⊤ +U⊥�⊥V
T
⊥

X̂ :=
[
U�

1/2|V�
1/2

]
.



Page 10 of 26Alyakin et al. Applied Network Science             (2024) 9:1 

The scaled left-singular vectors U�
1/2 can be thought of as the “out-vector” rep-

resentation of the directed graph, and similarly, V�
1/2 can be interpreted as the “in-

vectors” (Athreya et al. 2018). The subsequent inference generally does not differ in 
any way after obtaining the ASE of the directed graph.

The “optimal” dimension d (or 2d in a directed case) to embed into is often 
unknown and must be estimated. In general, identifying the “best” method is impossi-
ble, as the bias-variance tradeoff demonstrates that, for small n, subsequent inference 
may be optimized by choosing a dimension smaller than the true signal dimension, 
see Jain et  al. (2000) for a clear and concise illustration of this phenomenon. For a 
brief discussion of methods applicable to this problem in the graph embedding set-
ting, see Sect. 6.3 of Athreya et al. (2018). In our work, we elect to use the automated 
profile likelihood-based single value thresholding method of Zhu and Ghodsi (2006) 
when the true dimension is unknown (i.e. Sect.    5). In the cases when the optimal 
dimensions of the two graphs being compared are not equal, we pick the larger of the 
two. For our simulation study in Sect. 4 we assume that the true dimension is known 
apriori.

Nonparametric latent distribution test

Tang et al. (2017) present the convergence result of the test statistic in the test for the 
equivalence of the latent distributions of two RDPG. One of their main theorems is 
presented below.

Theorem  2.3 Let (X ,A) ∼ RDPG(F , n) and (Y ,B) ∼ RDPG(G,m) be d-dimensional 
random dot product graphs. Assume that the distributions of latent positions F and G 
are such that the second moment matrices E[X1X

T
1 ] and E[Y 1Y

T
1 ] each have d distinct 

nonzero eigenvalues. Consider the hypothesis test

Denote by X̂ =
{
X̂1, . . . , X̂n

}
 and Ŷ =

{
Ŷ 1, . . . , Ŷm

}
 the adjacency spectral embeddings 

of A and B respectively. Recall that a radial basis kernel κ(·, ·) is any kernel such that 
κ(Wx,Wy) = κ(x, y) for all x, y and orthogonal transformations W  . Define the test 
statistic

where κ is some radial basis kernel. Suppose that m, n → ∞ and m/(m+ n) → ρ ∈ (0, 1) . 
Then under the null hypothesis of F = G ◦W ,

H0 : F = G ◦W for some orthogonal operatorW

HA : F �= G ◦W for all orthogonal operatorsW .

Tn,m

(
X̂ , Ŷ

)
= 1

n(n− 1)

∑

j �=i

κ

(
X̂ i, X̂ j

)

− 2

nm

n∑

i

m∑

j

κ

(
X̂ i, Ŷ j

)
+ 1

m(m− 1)

∑

j �=i

κ

(
Ŷ i, Ŷ j

)

|Tn,m(X̂ , Ŷ )− Tn,m(X ,YW )| a.s.→ 0,
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and |Tn,m(X ,YW )| → 0 as n,m → ∞ , where W  is any orthogonal matrix such that 
F = G ◦W  . In addition, under the alternative hypothesis F  = G ◦W  for any orthogonal 
matrix W ∈ R

d×d that is dependent on F and G but independent of m and n, we have

and |Tn,m(X ,YW )| → c > 0 as n,m → ∞.

Simply said, the authors propose using a test statistic that is a kernel-based function 
of the latent position estimates obtained from the ASE and show that it converges to the 
test statistic obtained using the true but unknown latent positions under both null and 
alternative hypotheses.

Together with the work of Gretton et al. (2012) on the use of maximum mean discrep-
ancy for testing the equivalence of distributions, this result offers an asymptotically valid 
and consistent test. Formally, this means that for two arbitrary but fixed distributions 
F and G, Tn,m(X̂ , Ŷ ) → 0 as n,m → ∞ if and only if F = G (up to W  ). Such a result 
requires appropriate conditions on the kernel function κ which are satisfied when κ is a 
Gaussian kernel, κg , defined as

with any fixed bandwidth σ 2 (Lyzinski et al. 2017).
The intuition behind the maximum mean discrepancy two-sample test is the follow-

ing. Under some conditions, the population difference between the average values of the 
kernel within and between two distributions is zero if and only if the two distributions 
are the same. Hence, using a sample test statistic that is consistent for the this difference 
and rejecting for the large values thereof leads to a consistent test.

No closed form of the finite-sample distribution of this test statistic is known, for 
graphs or in the general setting, so it is not immediately clear how to calculate the criti-
cal value given a significance level α . The authors of Tang et  al. (2017) propose using 
permutation resampling in order to approximate the distribution of the test statistic 
under the null. The permutation version of the test is computationally expensive, but 
practically feasible. Alternatives to the permutation test include using a χ2 asymptotic 
approximations (Gretton et al. 2012).

Correcting the nonvalidity of the test
Source of the nonvalidity

The limiting result in the previous section should, however, be taken with caution for 
graphs of finite order. Even though the ASE estimates converge to the true latent posi-
tions, and the test statistic using the estimates converges to the one using the true val-
ues, for any finite n and m there is still variability associated with these estimates as 
described by Theorem 2.1.

When the graphs are of the same order, the variability introduced by the estimates 
instead of the true latent positions is the same for the two graphs. Hence, the two 
embeddings have equal distributions under the null hypothesis, up to orthogonal 

|Tn,m(X̂ , Ŷ )− Tn,m(X ,YW )| a.s.→ 0,

κg
(
t , t ′

)
= exp

(
−
∥∥t − t ′

∥∥2
2

2σ 2

)
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nonidentifiability. This leads to a valid and consistent test, as demonstrated experi-
mentally in both Tang et al. (2017) and our Sect. 4.

However, recall that the approximate finite-sample distribution of the ASEs has var-
iance that depends on the number of vertices. Suppose that we have a graph of order 
n, with adjacency matrix A generated according to (A,X) ∼ RDPG(F , n) and a graph 
of order m, with adjacency matrix B generated according (B,Y ) ∼ RDPG(G,m) . From 
the central limit result stated above, the distributions of the ASEs of the two graphs, 
conditioned on the true latent positions, are

where WX and WY  are orthogonal matrices present due to the model-based orthogonal 
nonidentifiablity. The unconditioned distributions of the ASEs are not equal whenever 
m  = n , even if X i and Y i have the same distribution, i.e. even if F = G . Thus, as long as 
the graphs are not of the exact same order, the collection 

{
X̂1, . . . , X̂n, Ŷ 1, . . . Ŷm

}
 is not 

exchangeable under the null hypothesis, even up to orthogonal nonidentifiability. This 
places the distributions of the ASEs of two graphs of different order in the alternative of 
the kernel-based test of Gretton et al. (2012), despite the fact that the distributions of the 
true latent positions would fall under the null. In many cases, the subsequent kernel-
based test is sensitive enough to pick up these differences in distributions, which makes 
the size of the test grow as the sample sizes diverge from each other.

Consider the following simple example. Suppose that the graphs have distributions 
A ∼ ER(n, p2) and B ∼ ER(m, p2) . Then, the distributions of the ASEs become

up to an orthogonal nonidentifiablity, which in a single dimension is just a sign flip.
A visualization of this specific case with parameters n = 500,m = 50 , and p = 0.8 

is provided in Fig.  2. The ASEs have substantially different distributions from each 
other, despite the identical distributions of the true latent positions. As will be dem-
onstrated in Sect. 4, in this case the nonparametric test developed by Gretton et al. 
(2012) and employed by Tang et  al. (2017) rejects more often than the significance 
level α , as it should.

Indeed, the test of Gretton et  al. (2012) cannot be used directly on the adjacency 
spectral embeddings of two graphs of different order to test for the equivalence of the 
distributions of the latent positions, as it is not valid.

Corrected adjacency spectral embeddings

We propose modifying the adjacency spectral embeddings of one of the graphs by 
injecting appropriately scaled Gaussian noise. The noise inflates the variances of the 
ASE of the larger graph to approximately the same value as the smaller graph and 
makes the latent positions exchangeable under the null hypothesis.

(3)X̂ i|X i
approx∼ N

(
X iWX ,

�(X i)

n

)
and Ŷ i|Y i

approx∼ N

(
Y iWY ,

�(Y i)

m

)
,

(4)X̂ i
approx∼ N

(
p,

1− p2

n

)
and Ŷ i

approx∼ N

(
p,

1− p2

m

)
.
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Definition 8 (Corrected Adjacency Spectral Embedding) Consider two d-dimensional 
random dot product graphs (A,X) ∼ RDPG(F , n) and (B,Y ) ∼ RDPG(G,m) . Without 
loss of generality, assume that n > m . For every row in the adjacency spectral embedding 
of the larger graph, X̂ i , consider estimating its variance using the plug-in estimator from 
Eq. 2, and then sampling a point ǫ

X̂ i
∼ N (0,

(
1
m − 1

n

)
�̂(X̂ i)) . For every row in the adja-

cency spectral embedding of the smaller graph, Ŷ j , define ǫ
Ŷ j

:= 0 . Let X̃ i = X̂ i + ǫ
X̂ i

 

for all i and Ỹ j = Ŷ j + ǫ
Ŷ j

 for all j. We denote the matries whose rows consist of these 

new vectors X̃ and Ỹ  , respectively, and we call them the corrected adjacency spectral 
embeddings (CASE). The corrected adjacency spectral embeddings of two graphs of the 
same order are equal to the standard adjacency spectral embeddings.

The motivation for the preceding definition is as follows. Recall that we have assumed 
without the loss of generality that n > m . Conditioned on the true latent positions, the rows 
of the corrected adjeacency spectral embeddings have distributions that are given by

Unlike Eq.  3, these distributions are approximately the same, up to orthogonal trans-
formations WX and WY  . This is true regardless of the ratio of graph orders, as long the 
true latent positions X i,Y i have the same distribution and �̂ is a good estimator of � . 
As an illustrative example, we revisit the ER ilustration from the previous section. A 

(5)
X̃ i|X i

approx∼ N

(
X iWX ,

�(X i)

n
+

(
1

m
− 1

n

)
�̂(X̂ i)

)

Ỹ i|Y i
approx∼ N

(
Y iWY ,

�(Y i)

m

)
.

Fig. 2 A visualization of the ASEs for the Erdös–Rényi graphs with the same edge probability, but vastly 
different orders. Top: theoretical densities of the ASEs; bottom: the histogram of the ASEs of two generated 
graphs, with kernel density estimates
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visualization of the theoretical and simulated CASEs of two ER graphs with vastly dif-
ferent orders is presented in Fig.  3. Both the theoretical and the simulated corrected 
embeddings have the same distribution. Hence, the corrected adjacency spectral embed-
dings can be used as inputs to the latent distribution test of Tang et al. (2017).

We note that due to the exact equivalence of the maximum mean discrepancy test 
of Gretton et al. (2012), the Energy distance two-sample test (Székely and Rizzo 2013), 
the Hilbert-Schmidt independence criterion (Gretton et al. 2007), and distance corre-
lation (Székely et al. 2007; Székely and Rizzo 2014) test for independence, any of these 
four can be used as a subsequent test interchangeably (Shen and Vogelstein 2021; 
Panda et al. 2021). In the case of the latter two of the four, one first has to concatenate 
the two embeddings, define an auxiliary label vector, and then perform the independ-
ence test. For more on this procedure, sometimes called k-sample transform, see Shen 
and Vogelstein (2021).

It may also be possible to use other independence tests framed as two-sample tests 
to test for the equivalence of the latent distributions after the embeddings have been 
obtained and corrected. Such tests include, but are not limited to RV (Escoufier 1973; 
Robert and Escoufier 1976) which is the multivariate generalization of the Pearson 
correlation (Pearson 1895), canonical component analysis (Hardoon et al. 2004), and 
multiscale graph correlation (Lee et al. 2019; Shen et al. 2020). The power of the mul-
tiscale graph correlation against some alternatives has been studied in the graph set-
ting in Chung et al. (2022). However, no theoretical guarantees, at least known to us, 
have been established in the graph setting for any of these tests.

Fig. 3 A visualization of the CASEs for the Erdös–Rényi graphs with the same edge probability, but vastly 
different orders. Top: theoretical densities of the corrected ASEs; bottom: the histogram of the corrected ASEs 
of two generated graphs, with kernel density estimates
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Simulation study
We conduct a simulation study comparing the latent distribution tests that use regu-
lar and corrected ASEs. We use graphs generated from the ER, SBM and RDPG mod-
els in our experiments. However, we always estimate the variances of the ASE using the 
generic plug-in estimator for the RDPG model, provided in Eq. 2. That is, we do not use 
the knowledge that the latent distribution is truly a point-mass, or a mixture thereof, 
anywhere in our experiments.

The implementation of the latent distribution test used in this simulation study is 
incorporated into graspologic (Chung et al. 2019) Python package, both for ASE and 
CASE. This implementation exploits the exact equivalence with independence tests 
described above. Code that is compatible with the latest version of graspologic and can 
be used to reproduce all of the simulations is available at https:// github. com/ alyak in314/ 
corre cting- nonpar.

We set the number of permutations used to generate the null distribution to 200. For a 
task like this, it is quite common to use a gaussian kernel with a bandwith selected using 
a median heuristic (Garreau et al. 2017), which in practice might be more sensetive than 
most arbitrarily chosen constant bandwidths. However since the theoretical result holds 
only a fixed kernel, we chose to use a Gaussian kernel with a fixed bandwidth σ = 0.5 
throughout our experiments.

Erdös–Rényi graphs: validity and consistency

We generate pairs of graphs from the null hypothesis of the test: A ∼ ER(n, p2) 
and B ∼ ER(m, p2) with m = cn . We consider different ratios of the graphs orders 
c ∈ {1, 2, 5, 7, 10, } , and different smaller graph orders n ∈ {50, 100, 200, 300, 400, 500} . 
We use the latent position p = 0.8 , which corresponds to the Erdös–Rényi graphs with 
the edge probability of 0.64. We always embed the graphs into one dimension and we 
overcome orthogonal nonidentifiability by flipping the signs of the ASE of a graph if 
their median is negative. 1000 Monte-carlo replications are used for each of combination 
of c and n tested.

We set α to 0.05 and report the sizes of the test in Fig. 4. The size of the test that use 
the standard ASE grows as a function of c rendering it invalid for graphs of different 
sizes. The size of the test that uses the CASE remains below 0.05 across all choices of c 
and n considered.

Fig. 4 Size of the nonparametric latent distribution permutation tests that use the standard ASE (left) and 
the CASE (right). Graphs are A ∼ ER(n, 0.82) and B ∼ ER(cn, 0.82) . Error bars represent 95% confidence interval

https://github.com/alyakin314/correcting-nonpar
https://github.com/alyakin314/correcting-nonpar
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In general, the size of the permutation tests should be exactly α . However, due to the 
intricate dependence behavior of the graph spectral embeddings (Athreya et  al. 2016; 
Tang et al. 2022), the tests ends up being conservative. The extent to which the test is 
conservative is dependent on the model from which the graphs were generated, and thus 
cannot be easily corrected. The scope of this work is limited to correcting the invalidity 
phenomenon and not the conservatism of this test.

We also study the behavior of the test under the alternative hypothesis in order to 
assess its power. We use the alternative hypothesis A ∼ ER(n, p2) and B ∼ ER(m, q2) , 
with p = 0.8 and q = 0.79 and m = cn for various ratios c. We again consider the graph 
order ratios c ∈ {1, 2, 5, 7, 10} , and smaller graph orders n ∈ {50, 100, 200, 300, 400, 500} . 
For c = 1 , CASE overlaps exactly with the standard ASE, so the testing procedure is the 
same as the original test of Tang et al. (2017). For all other choices of c, the original test is 
not valid, and is thus omitted from study.

The results of this study are presented in Fig. 5. The power of the test goes to one as 
the sample size increases for all choices of c used, which suggests that the test that uses 
CASE is still consistent. We note that for any given n, the power of the test grows as c 
grows; this behavior is expected, since the number of vertices in one graph is held con-
stant and the number of vertices in the other increases, so the total number of observa-
tions grows.

Stochastic block model graphs: higher dimensions

We repeat the validity and consistency experiments, but use 3-block SBMs, instead of 
ER graphs. In all simulations we use the vector of prior probabilities π = [0.4, 0.3, 0.3]T . 
To estimate size, we use graphs A ∼ SBM(n,π ,P) and B ∼ SBM(m,π ,P) , where the 
block-probability matrix P = ZZT is obtained using the matrix of latent positions Z is 
being parametrized by spherical coordinates

Fig. 5 Power of the nonparametric latent distribution permutation test that uses CASE against the 
alternative with graphs generated from A ∼ ER(n, 0.82) and B ∼ ER(cn, 0.792) . Error bars represent 95% 
confidence interval
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where r = 0.9 , θ = [0, 0.2, 0.4, 0.5]T , and ω = [0.00, 0.10, 0.05, 0.05]T (the fourth coordi-
nate will become relevant for the evaluation of power). Numerically,

and

Exactly as the one-dimensional case, we constrain m = cn and consider the graph order 
ratios c ∈ {1, 2, 5, 7, 10} , and smaller graph orders n ∈ {50, 100, 200, 300, 400, 500} . We 
always embed into the true dimension d = 3 . We overcome orthogonal nonidentifiabil-
ity by aligning the medians of the embeddings to be in the same quadrant by flipping 
all of the signs on one of them if they do not match. The size of the tests at α = 0.05 is 
presented in Fig. 6. Similarly to the one-dimensional setting, the size of the test that uses 
standard ASE grows as a function of c, but is unaffected for the test that uses CASE.

To estimate power and demonstrate consistency in higher dimensions we use a 
pair of graphs A and B, generated from SBM(n,π ,P) and SBM(m,π ,P′) , respectively, 
where P is as defined above, and P′ = Z′Z′T  with

Numerically,

Z =





r sin(θ1) sin(ω1)

r sin(θ1) cos(ω1)

r cos(θ1)


 ,



r sin(θ2) sin(ω2)

r sin(θ2) cos(ω2)

r cos(θ2)


 ,



r sin(θ3) sin(ω3)

r sin(θ3) cos(ω3)

r cos(θ3)





T

,

Z ≈





0.000
0.000
0.900


 ,



0.018
0.178
0.882


 ,



0.018
0.350
0.829





T

P ≈



0.810 0.794 0.746
0.794 0.810 0.794
0.746 0.794 0.810


 .

Z′ =





r sin(θ1) sin(ω1)

r sin(θ1) cos(ω1)

r cos(θ1)


 ,



r sin(θ2) sin(ω2)

r sin(θ2) cos(ω2)

r cos(θ2)


 ,



r sin(θ4) sin(ω4)

r sin(θ4) cos(ω4)

r cos(θ4)





T

.

Fig. 6 Size of the nonparametric latent distribution permutation tests that use the regular ASE (left) and the 
CASE (right). Graphs are A ∼ SBM(n,π , P) and B ∼ SBM(cn,π , P) . Error bars represent 95% confidence interval
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and

Note that the only differing feature of the second graph is the latent position of the ver-
tices in the third block, and the difference is entirely explained by the position being 
slightly further away in the θ coordiante. The graph orders and ratios of thereof are iden-
tical to the ones used in the validity simulation. The results are presented in the Fig. 7. 
The test that uses the CASE remains consistent even in d = 3.

Random dot product graphs: general setting

Lastly, we present a simulation with continious latent distributions. Specifically, consider 
three different distributions:

Note that all three distributions can be formulated in the context of the 
0.3 Beta(a, a)+ 0.3 model. Namely, Fx is equivalent to 0.3 Beta(1, 1)+ 0.3 , Fy is in such 
a form already, and 0.3 Beta(a, a)+ 0.3 → Fz as a → 0 . Fy can be thought of as an 

Z′ ≈





0.000
0.000
0.900


 ,



0.018
0.178
0.882


 ,



0.022
0.431
0.790





T

P′ ≈



0.810 0.794 0.711
0.794 0.810 0.774
0.711 0.774 0.810


 .

Fx = 0.3 Uniform(0, 1)+ 0.3

Fy = 0.3 Beta(0.25, 0.25)+ 0.3

Fz = 0.3 Bernoulli(0.5)+ 0.3

Fig. 7 Power of the nonparametric latent distribution permutation test that uses CASE against the 
alternative with graphs generated from A ∼ SBM(n,π , P) and B ∼ SBM(m,π , P′) . Error bars represent 95% 
confidence interval
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intermediate step between the Fx and Fz . The visualizations of the density or mass func-
tions of these distributions are provided in Fig. 8.

Also, observe that Fz is nothing more than the latent distribution of a two-block SBM 
in a single dimension with a block-probability matrix

whereas Fx and Fy can be thought as latent distributions of either DCSBMs or MMS-
BMs, as per Remark 4. Thinking of them as MMSBMs with Z = [0.6, 0.3]T , the param-
eter a can be viewed as a mixing coefficient: Fx has a lot of mixing, Fy has some mixing, 
and Fz has two components completely separated.

First, we consider graphs A and B generated from (X ,A) ∼ RDPG(F , n) , and 
(Y ,B) ∼ RDPG(F ,m) , with m = cn This setting is in the null hypothesis of the 
latent distribution test. Unlike the previous experiment settings, we set c to a sin-
gle value of 10, and instead vary the distributions of the latent positions. We consider 
F ∈ {Fx, Fy, Fz} . The number of vertices of the smaller graph, n, is once again varied to 
be {50, 100, 200, 300, 400, 500} . We generate 1000 pairs of graphs for each of the possible 
settings, and use both a test that uses ASE and a test that uses CASE. Like before, we 
overcome orthogonal nonidentifiability by aligning the medians of the embeddings via 
flippting signs.

Results of this simulation are presented in the Fig. 9. Observe that the test that uses 
ASE is not valid for all three distributions of the latent positions, which is especially clear 

P =
[

0.62 (0.6)(0.3)

(0.3)(0.6) 0.32

]
,

Fig. 8 Density / Mass functions visualization for Fx = 0.3 Uniform(0, 1)+ 0.3, Fy = 0.3 Beta(0.25, 0.25)+ 0.3 , 
and Fz = 0.3 Bernoulli(0.5)+ 0.3 . All three are used as latent position distributions in our experiments

Fig. 9 Size of the nonparametric latent distribution permutation tests that use the regular ASE (left) and the 
CASE (right). Graphs are A ∼ RDPG(F , n) and B ∼ RDPG(F ,m) , where F ∈ {Fx , Fy , Fz} . Error bars represent 95% 
confidence interval
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at the small n. On the other hand—test that uses CASE remains experimentally valid for 
all three distributions: with no mixing, little mixing, and a lot of mixing.

Next, we simulate the power of the test under different alternatives. Spe-
cifically, we generate pairs of graphs A and B , where (X ,A) ∼ RDPG(F , n) , and 
(Y ,B) ∼ RDPG(F ′,m) , where m = cn . We keep the same settings of n and c as for the 
study of the test size, and pick (F , F ′) from the collection {Fx, Fy, Fz} × {Fx, Fy, Fz} , exclud-
ing the cases where F = F ′ , as those have been studied previously, and are not under the 
alternative. Note that the ordering within the pair matters, because the two graphs are 
not of the same order. We generate 1000 graphs for each of the possible combination 
of of F, F ′ , c, and n. We embed the graphs in one dimension using ASE or CASE, use 
orthogonal alignment via the median trick, and perform the nonparametric test. Previ-
ously, we were omitting the power simulation that uses the invalid version of the test, 
since a test that doesn’t need to be valid can be arbitrarily powerful (simply, consider a 
test that always rejects). However, we include the results here because they demonstrate 
an important point regarding the using the uncorrected verions of the test.

The power of the test at significance level α = 0.05 in these six possible settings is 
summarized in Fig.  10. There are several important observations we can make. First, 
consider the right pannel which summarizes the emperical power of the test that uses 
CASE. The power monotonically increases as n grows, hence the test for the latent dis-
tribution that uses CASE is able to meaningfully distinguish between MMSBMs with 
different amounts of mixing. Furthermore, observe that the settings of Fx versus Fz and 
Fz versus Fx , have more power than the all over ones. Thus, the power in the setting 
when one mixture has a lot of mixing and the other has no mixing at all is larger than the 
power in the setting of no versus some mixing, or in the setting with some versus a lot of 
mixing, as one would expect.

Next, consider the left pannel, which presents the power using the invalid version of 
the test that uses ASE. Observe that for some settings the power decreases when using 
the corrected version of the test decreases, but increases for others. In particular, it 
decreases the for settings of Fy versus Fx , Fz versus Fx , and Fz versus Fy , and increases 
for the settings of Fx versus Fy , Fx versus Fy , and Fy versus Fz . To summarize, power 
decreases in the cases when the smaller graph has more mixing than the larger graph, 

Fig. 10 Power of the nonparametric latent distribution permutation tests that use the regular ASE (left) and 
the CASE (right). Graphs are A ∼ RDPG(F1, n) and B ∼ RDPG(F1,m) , where (F1, F2) ∈ {Fx , Fy , Fz} × {Fx , Fy , Fz} , 
except for the cases when F1 = F2 , as those are presented in Fig. 9. Error bars represent 95% confidence 
interval
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and increases when the smaller graph has less mixing. Our conjecture is that the increase 
of in power with the correction can happen if the distribution of the latent positions of 
the smaller graph has smaller variance, as happens in the cases where the smaller graph 
has more mixing. In over words, the difference in variance due to the inherent differ-
ences in latent distributions is partially compensated by the difference in variance due 
to estimation, which leads to less powerful test if the correction is not used. Thus, using 
the uncorrected version of the test can both lead to incorrect inference under the null 
hypothesis, and a less sensitive inference under some alternatives.

Real world application
We demonstrate an application of this testing procedure to a real world dataset of 
human connectomes. A connectome, also known as a brain graph (Chung et al. 2021), 
represents the brain as a network with neurons (or collections thereof ) as vertices, and 
synapses (or structural connections) as edges. For this demonstration, the raw data is 
collected by diffusion magnetic resonance imaging (dMRI), which can represent the 
structural connectivity within the brain. (Yang et  al. 2019) This example is predomi-
nantly included as an illustrative example of the applicability of the test to the setting and 
consistency of its results with a natural intuition. It should not be treated as an imaging 
study to draw conclusions about the dataset.

The macro-scale connectomes are estimated by NeuroData’s MRI to graphs (NDMG) 
pipeline (Kiar et al. 2018), which is designed to produce robust and biologically plausible 
connectomes across studies, individuals, and scans. The vertices of the graph represent 
regions of interest identified by spatial proximity, and the edges of the graph represent 
the connection between regions via tensor-based fiber streamlines. Specifically, there is 
an edge for a pair of regions if and only if there is a streamline passing between them. 
For more information on the procedure that generates the brain graphs, we refer the 
readers to Kiar et al. (2018). The data used in this study is the same one used by Yang 
et al. (2019).

Graphs in this dataset are weighted, directed, and have unknown dimension of the 
latent distribution. Thus, modifications to the procedure described in Sect.  2.3 are 
required to obtain the ASE of the graphs. The correction of ASE to CASE and the sub-
sequent test are performed without further modifications. In addition to that, we do 
employ the median heuristic (Garreau et  al. 2017) in order to determmine the band-
width of the kernel. All of those modifications are implemented in graspologic (Chung 
et  al. 2019) Python package, and, in fact, used by default whenever one uses a latent 
distribution test on a graphs that are directed, weighted, and/or have unspecified latent 
dimension.

There are 57 subjects in this dataset, each of which has 2 different dMRI scans. Fur-
thermore, each of the scans was converted to a ’large’ and a ’small’ graph, using the 
aforementioned pipeline. The number of vertices in the large graphs varies between 730 
and 1194, wheras the number of vertices in the small graphs varies between 493 and 814. 
We will refer to these large and small graphs as different scales. In this work all compari-
sons, whether within or between the subjects, take two graphs of different scales, one 
small and one large.
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We first use both the test that uses ASE and the test that uses CASE to compare the 
scans within the same subject, within the same scan, but between the two scales. There 
are 114 total possible comparisons. Paired differences in p values obtained by the test 
that uses CASE and the test that uses ASE are presented in Fig. 11. Using the one-sided 
Wilcoxon Signed-Rank test (Wilcoxon 1945) on those pairs of p values, we obtain p 
value < 10−7 , signifying that the corrected test rejects statistically less often than the 
uncorrected test.

We can furthermore consider decision-theoretic consequences by setting significance 
level α to two different commonly used values 0.01 and 0.05. In case of α = 0.01 , both 
tests reject the null in 24 case, neither rejects in 69 cases, only ASE does in 16 cases, 
and only CASE does in just 5 cases (see color coding of Fig. 11 but note that some data 
points overlap). Using the two-sided Fisher’s exact test, we obtain a statistic of 20.7 with 
a p value < 10−8 . Alternatively, setting α = 0.05 , we obtain, a contigency table of: both: 
89, none: 21, ASE only: 4, CASE only: 0, leading to a two-sided Fisher’s test statistic p 
value < 10−18.

Thus, the test that uses CASE picks up the differences staistically less often when using 
both raw p values and when using binary decisions by comparing p values with signifi-
cance levels α = {0.01, 0.05} . In Sect.  4.3 we demonstrated that using the uncorrected 

Fig. 11 Comparison of the difference in p values obtained using CASE and ASE in the setting of brain graphs 
of the same subject and scan but different scales. Color coding according to decision at α = 0.01 . Note that 
some datapoints might overlap exactly due to permutation test providing a p value from a discrete set
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test can lead both to an invalid test under the null, and to a less sensitive test under some 
alternatives. Thus using a correction does not always imply having larger p values. In this 
case, however, it does, which aligns with our natural intuition that a correct test should 
reject less often, as graphs obtained from the same scan but at different scales should be 
somewhat similar to each other.

Next, we use the corrected test to compare the graphs between the scans and between 
subjects. Thre is a total of 114 possible comparisons in the setting of different scans of 
the same subject, as there are two comparisons per subject (larger scale scan 1 to smaller 
scale scan 2 and larger scale scan 2 to smaller scale scan 1) and 57 subjects total. For 
the case of different subject, there are (57× 2)× (56× 2) = 12, 768 total comparions 
(57 subjects each of which has 2 scans at larger scale compared to each of the 2 scans at 
smaller scale of everyone but themselves).

We plot the histograms and the kernel density estimates of the distribution of p values, 
stratified by setting, in Fig. 12. Using the one-sided (>) Mann-Whitney U test (Mann and 
Whitney 1947) we obtain: a p value 0.020 when comparing the distribution of p values 
of the same subject within the scan to the distribution of p values for the same subject 
between the scans, a p value of 0.003 when comparing the distribution of p values of the 
same subject between the scans to the distribution of p values between different sub-
jects, and lastly, a p value < 10−7 when comparing the distribution of p values for the 
same subject within the scan to the distribution of p values in the setting of different 
subjects.

To summarize, the p values within the same subject same scan are smaller than within 
the same subject but different scan, which are themselves smaller than between different 
subjects. This aligns with the natural intuition that the test should reject more often for 
different scans than for the same scans and more often for the different subjects than for 
the same subjects.

Discussion
In this work we demonstrated that the latent distribution test proposed by Tang et al. 
(2017) degrades in validity as the numbers of vertices in two graphs diverge from each 
other. This phenomenon does not contradict the results of the original paper, as it occurs 

Fig. 12 Comparison of the difference in p values obtaind using CASE for different settings of the brain graph 
data. Left panel: Histograms of p values with a bin size of 0.01. Normalized to add to 1. Right panel: Kernel 
density estiates of the distribution of p values. Normalized to integrate to 1
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when test is used on two graphs of finite size. Meanwhile, the scope of the original paper 
is limited to the asymptotic case.

We presented an intuitive example that demonstrates that the invalidity occurs 
because a pair of adjacency spectral embeddings for the graphs with different number of 
vertices falls under the alternative hypothesis of the subsequent test. We also proposed a 
procedure to modify the embeddings in a way that makes them exchangeable under the 
null hypothesis. This leads to a testing procedure that is both valid and consistent, as has 
been demonstrated experimentally. The code for the testing procedure that uses CASE 
is incorporated into GraSPy Chung et al. (2019) python package, alongside the original 
unmodified test. We strongly recommend CASE, as opposed to ASE, for nonparametric 
two-sample graph hypothesis testing when the graphs have differing numbers of verti-
ces. However, we note that this procedure is nondeterministic, as it requires sampling 
additive noise.

Our work can be extended by developing limit theory for the corrected adjacency 
spectral embeddings and the test statistcs that use them. It is also likely that the 
approach of modifying the embeddings can be extended to tests that use Laplacian 
spectral embedding (See Athreya et al. (2018) for associated RDPG theory) or models 
that are more general than RDPGs, such as Generalized Random Dot Product Graphs 
(Rubin-Delanchy et al. 2022) or other latent position models.

In general, two-sample latent distributon hypothesis testing is also closely related to 
the problem of testing goodness-of-fit of the model (Tang et al. 2017). No such test, at 
least known to us, exists for random dot product graphs. We hope that the work pre-
sented in this paper may facilitate this investigation.
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