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Abstract 

The growing data size poses challenges for storage and computational processing time 
in semi-supervised models, making their practical application difficult; researchers have 
explored the use of reduced network versions as a potential solution. Real-world net-
works contain diverse types of vertices and edges, leading to using k-partite network 
representation. However, the existing methods primarily reduce uni-partite networks 
with a single type of vertex and edge. We develop a new coarsening method applica-
ble to the k-partite networks that maintain classification performance. The empirical 
analysis of hundreds of thousands of synthetically generated networks demonstrates 
the promise of coarsening techniques in solving large networks’ storage and process-
ing problems. The findings indicate that the proposed coarsening algorithm achieved 
significant improvements in storage efficiency and classification runtime, even 
with modest reductions in the number of vertices, leading to over one-third savings 
in storage and twice faster classifications; furthermore, the classification performance 
metrics exhibited low variation on average.

Keywords: Network semi-supervised learning, Network coarsening, Heterogeneous 
network

Introduction
Semi-supervised learning emerged as a way of dealing with many previously labeled 
data to guide a supervisor’s response. These methods use labeled data combined with 
unlabeled data to perform the learning. Algorithms of this type consider relationships 
between unlabeled and labeled data to compensate for the lack of labels (van Engelen 
and Hoos 2020). Representing data as networks can enhance semi-supervised technique 
by allowing for the extraction of relationships from the topological characteristics of 
labeled and unlabeled data.

Although the semi-supervised approach has brought a solution to reduce the need for 
human intervention, a problem is still present. As data grows, training a semi-super-
vised model’s storage cost and computational processing time can become quite large, 
making it impractical to use in some applications (Walshaw 2004). Recently, a technique 
widely studied to overcome these limitations is the use of reduced versions of networks 
in place of the original ones (Liu et al. 2018). Therefore, this technique reduces the stor-
age requirements and improves the performance of algorithms compared to using a 
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full-sized graph. A category within these techniques is the coarsening algorithms, which 
join groups of similar vertices, often reducing redundant information. This technique 
is well established in visualization and graph partitioning and has recently been proven 
valid for classification problems in homogeneous networks (Liang et al. 2020).

However, most of these methods primarily focus on analyzing networks with only one 
type of vertex and edge, known as uni-partite networks. Real-world information net-
works are often heterogeneous, consisting of various types of vertices and edges. One 
widely-used approach for heterogeneous network representation involves dividing the 
diverse data types into disjoint subsets or partitions. Edges are then used to depict the 
relationships between these different types, giving rise to k-partite networks. This type 
of representation offers greater flexibility and expressiveness, enabling the modeling of 
various relationship types between objects, as illustrated in Fig. 1.

Traditional compression strategies overlook the distinctions between vertex types, 
even though layers within a k-partite network generally correspond to diverse entity 
types necessitating separate treatment. To illustrate, consider a document collection sce-
nario modeled as a document-work bipartite network. Combining word vertices with 
document vertices (i.e., matching vertices across different layers) would need more 
significance in this and most application contexts. Furthermore, as the word count is 
substantially higher, simplifying the word layer might effectively curtail the asymptotic 
convergence of resource-intensive algorithms. Additionally, amalgamating vertices of 
diverse types (such as words, authors, documents, users, and locations) would introduce 
a novel hybrid entity not present in the original network, thereby altering its inherent 
k-partite structure.

In semi-supervised learning, the model utilizes the labeled data to make predictions 
and the unlabeled data to improve the overall accuracy and robustness of the model. By 
leveraging the rich information in the heterogeneous k-partite network, the model can 
learn more robust and generalizable data representations, improving its performance on 
downstream tasks such as classification and prediction. Label Propagation is a network-
based semi-supervised learning algorithm propagating labels or information through a 
graph. In a heterogeneous graph, different types of vertices and edges exist, and these 
vertices can represent various entities, attributes, or relationships. Heterogeneous 

Fig. 1 Example of heterogeneous data representation. Figure a showcases interactions among social 
network posts with a uni-partite scheme. The schema in figure b illustrates information from the posts of the 
words and pictures contained in it, the users who made them, and, at a second level, the groups to which 
these users belong, forming a heterogeneous k-partite network in figure c 
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networks are often used to model complex and diverse data, such as social networks, 
recommendation systems, and knowledge graphs. In the context of heterogeneous net-
works, the Label Propagation algorithm aims to infer missing labels for vertices based 
on the information in the network. It assumes that vertices connected or sharing certain 
relationships will likely have similar labels. The basic idea is to iteratively update the ver-
tices’ labels based on their neighboring vertices’ labels, expecting the labels to become 
more coherent over iterations. In this study, while we examine a k-partite network as our 
input, we focus solely on classifying vertices from one specific partition, the target parti-
tion Vt . The remaining partitions are employed in the propagation process and help the 
label spread.

As the interest in techniques for heterogeneous networks increases, as seen in stud-
ies such as Zhou et al. (2020), Liu et al. (2018), Wu et al. (2021), research on coarsening 
methods has also gained traction, particularly for bipartite networks (Valejo et al. 2017a, 
b, 2018, 2020a, 2021). However, methods designed explicitly for heterogeneous networks 
have yet to be extensively explored. In this work, we want to determine how well the 
coarsened heterogeneous networks can accurately classify vertices based on their rela-
tionship to other vertices in a semi-supervised context. Coarsening can lead to a loss of 
information and a decrease in classification accuracy. Therefore, evaluating the trade-off 
between computational efficiency and classification accuracy is essential when coarsen-
ing in heterogeneous network classification tasks.

In this context, this work presents the following contributions: 

1 The development of a new coarsening method applicable to the k-partite network. 
Our proposed method uses a technique that orders partitions and selects paths in 
the schema to improve the coarsening performance.

2 An analysis of the impacts of coarsening on k-partite network classification metrics 
identified the existence of a threshold that can be used to solve problems in real net-
works. These analyses can identify appropriate network reduction levels in each case, 
depending on time/memory constraints and the acceptability of losses in the classifi-
cation performance.

An empirical analysis of hundreds of thousands of synthetically generated networks 
shows that coarsening techniques are promising for solving large networks’ storage and 
processing problems.

The remainder of the paper is organized as follows: “Background” section introduces 
the notation and describes the multilevel method and coarsening algorithm previously 
proposed in bipartite networks. The proposed coarsening strategy for k-partite networks 
is described in “Coarsening algorithm for k-partite network” section. “Experimental 
results” section presents the results performed on the synthetically generated networks 
and an experiment conducted using a real network. To accommodate computational 
resource limitations, the experiments with synthetical networks were split into two 
groups: the first group, referred to as “Experiment 1” in Section 4.3.1, focused on small 
networks with a maximum of 15, 000 vertices, while the second group, “Experiment 2” 
in Section 4.3.2, involved larger networks with a maximum of 100, 000 vertices. “Con-
cluding remarks” section summarizes our findings and discusses future work.
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Background
A network (or graph) G = (V ,E) is said to be k-partite if V is composed of k dis-
joint sets V = V1 ∪ V2 ∪ ... ∪ Vk , where Vi and Vj ( 1 ≤ i, j ≤ k ) are set of vertices and 
E ⊆ i �=j Vi × Vj , where each edges are between vertices of different sets, i.e., for every 
edge e = (a, b) , a ∈ Vi and b ∈ Vj , for i  = j . An edge (a, b) may have an associated weight, 
denoted as ω(a, b) with ω : E → R

∗ ; a vertex a may have an associated weight denoted 
as σ(a) with σ : V → R

∗ . We assume that a heterogeneous network is a type of k-partite 
network in which vertices of the same type form a partition, and vertices of different 
types are connected. We also assume that the edges connecting different types of nodes 
are undirected and that the relationship between the nodes is symmetric.

The degree of a vertex a ∈ Vi , denoted κa , is defined as the total weight of its adjacent 
edges, i.e. κa =

∑

b∈V w(a, b) . The h-hop neighborhood of a, denoted Ŵh(a) , is formally 
defined as the vertices in set Ŵh(a) = {b | there is a path with the minimum number of 
edges of length h between a and b} . Thus, the 1-hop neighborhood of a, Ŵ1(a) , is the set 
of vertices adjacent to a; the 2-hop neighborhood, Ŵ2(a) , is the set of vertices 2-hops 
away from a, and so forth.

In k-partite network context, the network schema refers to the topological structure 
linking the k partitions. Formally, a network schema of a k-partite network G can be 
represented by the network S(G) = (VS ,ES) , where VS is the set of k vertices related to 
each partition and ES is the set of edges. For every edge (ki, kj) ∈ ES , there is at least one 
edge (a, b) ∈ E such that a vertex a belongs to a partition Vi , and a vertex b belongs to a 
partition Vj . A metapath is a sequence of edges that connects vertices from different par-
titions. Formaly, a metapath P in a network schema S(G) is defined as a path in the form 
of V1,E1,2,V2, . . . ,Vl ,El,l+1,Vl+1 , where Ei,j denotes the set of edges of type (ki, kj) ∈ ES.

Our proposed technique uses a label propagation scheme that spreads labeled vertices 
from a specific partition, called target partition Vt , to all other vertices within the net-
work. Let VL ⊂ Vt be the set of labeled vertices in the target partition, and VU ⊂ Vt be 
the set of unlabeled vertices. Notably, the labeled and unlabeled vertex sets form the tar-
get partition vertex set, i.e. VL ∪ VU = Vt . Each vertex in VL is associated with a label 
from a set C = {c1, c2, . . . , cm} with m classes. The matrix Y ∈ R

|Vt |,m represents the 
weight of labels for the corresponding vertices in Vt . To simplify the notation, we denote 
Ya,i and YVt respectively as the weight of label ci to a vertex a and the labels assigned to a 
subset of vertices in Vt . The transductive learning algorithm inputs a labeled training set 
of vertices VL and unlabeled test vertices VU . It outputs a transductive learner F that 
assigns a label ci ∈ C to each vertex a in VU , i.e., F(a) = arg max

i

Ya,i.

Network summarization and coarsening

Network coarsening and network summarization aim to reduce network complexity. 
Coarsening involves reducing the size of the network by collapsing vertices or edges to 
form a simplified version of the original network. The coarsened network retains the 
essential structural characteristics of the original but with fewer vertices and edges. 
Meanwhile, summarization focuses on creating a concise representation that retains 
important network features, enabling faster processing, visualization, or analysis while 
preserving significant patterns or properties (Liu et al. 2018).
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Network summarization techniques involve selecting, transforming, or aggregating a 
given network and producing a network summary as the output. Selection methods, for 
instance, identify less important vertices or edges, possibly considered outliers, noise, 
or irrelevant regarding given criteria, and remove them before executing a mining task 
(Liu et al. 2018). Such strategies “clean” the network rather than contracting it, although 
reducing the network is possibly a side effect. Network transformation refers to the tech-
niques that project a network to a simple and summarized structure. Network transfor-
mation is also related to embedding a network into a lower-dimensional representation 
while preserving the original network’s topology (Blasi et al. 2022).

Network summary based on aggregation involves grouping vertices and edges in a net-
work to create a more compact representation. It is closely related to the coarsening con-
cept. The network coarsening can be considered a network summarization technique 
based on aggregation. However, many network aggregation algorithms are not feasible 
as coarsening strategies, as they do not employ a hierarchy of increasingly compressed 
models, which is a fundamental feature of a multilevel method. Therefore, network 
coarsening falls within the broader category of graph summary aggregation.

In the context of the k-partite network, summarization techniques, including those 
that consolidate super-vertices and super-edges, often overlook the distinctive structure 
of k-partite graphs. Network summarization algorithms generally aim to minimize some 
approximation or reconstruction error metric (LeFevre and Terzi 2010; Riondato et al. 
2014; Lagraa et  al. 2014). For instance, the normalized reconstructed error can be 
defined as 1

|V |2
∑

i∈V |Â[i, j] − A[i, j]| , where A is the original adjacency matrix of the 

network and Â is the real-valued approximate adjacency matrix, each entry of which 
intuitively represents the probability of the corresponding edge existing in the original 
graph given the summary. These metrics fail to keep the k-partite network’s structure, 
leading to diminished expressiveness and the inevitable loss of information within the 
partitions.

Our interest lies specifically in network coarsening processes in the context of the 
k-partite network applied to increase the scalability of transductive classification tasks. 
Our research indicates that we have not encountered prior works directly related to our 
context.

Multilevel method in bipartite network

The multilevel approach enables the implementation of complex algorithms on large-
scale networks by shrinking the network size. For instance, take a problem defined 
on a bipartite network G0(V 0 = V1 ∪ V2,E

0) , where running the target algorithm is 
infeasible.

The coarsening phase creates a hierarchy of simplified networks Gl , where 
l ∈ [1, ..., L− 1] and L are the desired coarsening levels. This process yields intermedi-
ate representations of the networks with varying levels of detail. The coarsening process 
involves two algorithms: matching and contraction. Matching determines which vertices 
will be combined, and contraction builds the reduced representation after defining the 
matching. A matching, represented as M = {Vi}ri=1 , is a division of vertex set V 0 into r 
non-empty disjoint subsets. There are restrictions on how vertices can be matched. For 
example, if |Vi| = 2 for all i, then vertices must be paired. A vertex a ∈ Vi is considered 
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matched, while a vertex that does not belong to any Vi in M is referred to as unmatched 
or a singleton.

The reduction factor of the network, denoted as ρ , is determined by an addi-
tional input parameter ρ ∈ [0, 1] ⊂ R . This parameter defines the size of the match-
ing M, represented as ζ , where ζ =

∑r
i=1 |Vi| . If vertices are matched pairwise, then 

∑r
i=1 |Vi| = ⌈ρ|V |⌉ , i.e., the number of vertices to be matched is given by the reduction 

factor multiplied by the network size.
The Contraction Algorithm creates a simpler network by combining a group of 

matched vertices a1, . . . , an into a single entity known as the super-vertex sVi . The verti-
ces a1, . . . , an in V l that form the super-vertex sVi in V l+1 are referred to as the precursor 
vertices of sVi . The successor network Gl+1 inherits the non-matched vertices from its 
predecessor network Gl . To ensure that Gl+1 serves as an accurate representation of its 
predecessor network, the weight of a super-vertex sVi = u1, . . . ,un ∈ V l+1 is calculated 
as the sum of the weights of its precursor vertices. Additionally, the edges connecting to 
vertices u1, . . . ,un ∈ V l are collapsed to form the super-edges that attach to sVi.

Coarsening algorithm for bipartite networks

Progressively reducing the network size to obtain coarser network representations is 
part of the multilevel technique, usually applied in network optimization problems. A 
multilevel optimization meta-heuristic combines various heuristics to guide, modify, 
and refine a solution obtained from a target algorithm or subordinate heuristics, such as 
local or global search, over multiple iterations. This technique operates in three phases: 
coarsening, solution finding, and uncoarsening. The network size is progressively 
reduced during the coarsening phase to obtain coarser network representations. In the 
solution-finding phase, the starting solution is obtained by applying the target algorithm 
to the coarsest representation. In the uncoarsening phase, the starting solution is pro-
jected back to the intermediate networks and refined successively until the final solu-
tion is obtained. Figure 2 illustrates such a process, considering an initial network G0 (in 
which the original problem instance is defined), where GL denotes the coarsest network 
obtained after L coarsening steps (levels).

It is important to note that the coarsening process is a crucial aspect of the multilevel 
method, as it is a problem-agnostic step, in contrast to the other phases (Valejo et  al. 
2020b). Therefore, many algorithms have been developed, and some strategies designed 
for handling bipartite networks have gained widespread recognition.

The first method, OPMhem (Valejo et al. 2017a, b), decomposes the bipartite network 
into two separate unipartite networks, but this may result in a loss of information. In 
Valejo et al. (2018), the authors introduced two coarsening algorithms, RGMb and GMb, 
which directly use the bipartite network to select a set of vertices in pairs. Later, the 
authors in Valejo et al. (2020a) proposed a coarsening method based on label propaga-
tion but did not indicate stability and convergence guarantee. The most recent method, 
the CLPb algorithm (Valejo et al. 2021), employs a semi-synchronous strategy through 
cross-propagation, providing a time-efficient implementation and effectively reducing 
the oscillation issue. The empirical analysis showed that the CLPb algorithm is more 
accurate and efficient than previous methods.
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Coarsening via semi‑synchronous label propagation for bipartite networks: CLPb

In this section, we elucidate the coarsening strategy via semi-synchronous label prop-
agation for bipartite networks (CLPb) as introduced in Valejo et al.’s work (Valejo 
et  al. 2021). Unlike our proposed approach, the CLPb algorithm was originally 
designed for the unsupervised scenario.

Here, we will introduce label definitions that deviate from the notation presented 
in this article to enhance the comprehension of the CLPb algorithm. The labels are 
represented as a tuple La(c,β) , where c signifies the current label, and β ∈ [0, 1] ⊂ R

+ 
represents its associated score. Initially, every vertex a ∈ V  is assigned a starting label 
La =

(

a, 1.0
/√

κ(a)
)

 , where the initial La is identified by its “id” (or “name”) with a 
maximum score of β = 1.0.

In each step, a new label is propagated to a receiving vertex a by selecting the label 
with the highest β from the collective labels of its neighboring vertices, denoted as 
La =

⋃

Lb, ∀b ∈ Ŵ1(a) . This propagation process adheres to the subsequent filtering 
rules: 

1. Equal labels Leq ⊆ La are merged and the new β ′ is composed by the sum of its 
belonging scores: β ′ =

∑

(l,β)∈Leq β ,

2. The belonging scores of the remaining labels are normalized, i.e.: 
La = {(l1, β1

βsum ), (l2,
β2

βsum ), . . . , (bγ ,
βγ
βsum )} , where βsum =

∑γ
i=1 βi and γ is the num-

ber of remaining labels.
3. The label with the largest β is selected: L′

a = arg max
(l,β)∈La

La.

4. The size of the coarsest network is naturally controlled by the user, i.e. require defin-
ing a number of reduction levels, a reduction rate or any other parameter to fit a 
desired network size. Here, each layer’s minimum number of labels η is a user-defined 
parameter. A vertex a ∈ Vi , with i ∈ {1, 2} define a bipartite layer, is only allowed to 

Fig. 2 Overview of the general-purpose multilevel optimization for the bipartite network. The original 
network is reduced, level-by-level, until a desired network size is reached. The number of coarsening levels L 
is an input parameter, and the dotted rectangles denote matched vertices
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update its label if, and only if, the number of labels in the layer |Li| remains equal to 
or greater than ηi , i.e.: |Li| ≤ ηi.

5. At last, a classical issue in the multilevel context is that super-vertices tend to be 
highly unbalanced at each level (Valejo et al. 2020b). Therefore, it is common to con-
strain the size of the super-vertices from an upper-bound µ ∈ [0, 1] ⊂ R

+ , which 

limits the maximum size of a group of labels in each layer: S i = 1.0+(µ∗(ηi−1))∗|Vi|
ηi

 , 

wherein µ = 1.0 and µ = 0 imply highly imbalanced and balanced groups of verti-
ces, respectively. Therefore, a vertices a with weight σ(a) can update its current label 
l to a new label l′ if, and only if σ(a)+ σ(l

′
) ≤ Si and σ(l′) =

∑

b∈l′ σ(b).

In Fig. 3, we can observe a single step of CLPb in a bipartite network utilizing the 
previously defined strategy. The propagation process repeats T  times, a parameter set 
by the user, until convergence is reached or until label changes cease to occur.

Following the convergence of cross-propagation, the algorithm collapses each clus-
ter of corresponding vertices (i.e., vertices with the same label) into a unified “super-
vertex.” The edges connected to these matched vertices are collapsed into what is 
called “super-edges.” This process is visually depicted in Fig. 4.

The iterative CLPb coarsening algorithm transforms the original network G0 into 
a hierarchy of smaller networks denoted as G1,G2, . . . ,GL, . . . , where GL represents 
an arbitrary level. Users can control the maximum levels and the reduction factor 
ρ for each layer instead of specifying the desired number of vertices in the coarsest 
network.

Fig. 3 One step of the CLPb algorithm in a bipartite network. In a, the process is performed from the top 
layer, considering the propagators vertex ∈ V1 , to the bottom layer, considering the receiver nodes ∈ V2 . 
At first, represented in (b), equal labels are merged. In c, second step, remaining labels are normalized. In 
third step, the label B is selected, as showed in (d). In e, the restriction 4 and 5 are tested. Finally, label B is 
propagated to the node in the bottom layer, as illustrated by the black dashed line

Fig. 4 Contraction process. In a, a group of vertices are matched using CLPb algorithm; in b, the original 
network is coarsened, i.e., vertices that share labels are collapsed into super-vertices and edges incident to 
matched vertices are collapsed into super-edges
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The computational complexity of the Label Propagation is nearly linear for the num-
ber of edges, i.e., it requires O(|V | + |E |) operations at each iteration. Assuming a con-
stant number of T  iterations, the overall complexity becomes O(T (|V | + |E |)) . For the 
contraction process (as depicted in Fig. 4), it first iterates through all matched vertices 
in network GL to generate super-vertices for GL+1 . Subsequently, each edge in GL is 
chosen to create super-edges in GL+1 , which also incurs a complexity of O(|V | + |E |) . 
These complexities are well-documented in the literature, with more extensive discus-
sions available in Valejo et al. (2020b) and Raghavan et al. (2007). Taking these consid-
erations into account, the overall computational complexity of CLPb at each level is 
O(T (|V | + |E |)) + O(|V | + |E |).

Coarsening algorithm for k‑partite network
This section presents the proposed coarsening algorithm for reducing k-partite net-
works to facilitate subsequent classification tasks. The algorithm utilizes labeled vertices 
from the target partition Vt to guide the reduction process. The k-partite network is first 
decomposed into a series of bipartite networks, with pairs of partitions selected from 
the original network. Next, an adaptation of the CLPb coarsening algorithm is applied 
to these pairs of partitions, with one partition acting as the propagator partition, Vp , and 
the other as the receptor partition, Vr . The coarsening process is executed semi-synchro-
nously, and vertices from Vr with the same labels are grouped into super-vertices. An 
illustration of the coarsening process in a k-partite network is presented in Fig.  5. As 
methods applied to networks have complexity generally associated with the number of 
vertices and edges, this coarsening procedure intends to reduce the overall training time 
for transductive learning.

Once label propagation has been established as a matching approach for each 
bipartition, the next step is determining the strategy for selecting the pairs of parti-
tions and the order in which CLPb will be applied. Considering all possible partition 
pairs can lead to numerous procedures in networks with high connectivity schemas, 
resulting in a quadratic complexity in the number of vertices (Zhu et al. 2016). Addi-
tionally, the presence of cycles in the network schema would result in the repeti-
tion of information. To overcome these challenges, we aimed to identify, for each 

Fig. 5 Example of coarsening realized by the proposed algorithm in a heterogeneous network. The target 
partition is highlighted in red in figure a. The other partitions highlighted in blue in figure b are reduced by 
the coarsening process
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partition, the most suitable neighboring partition to act as a pair in the bipartite 
coarsening procedure. We called this neighbor partition “guide partition.”

One approach to limit the number of partition pairs used is to locate paths in the 
schema of the k-partite network (Luo et  al. 2014). As only the target partition has 
label information at the beginning, a logical approach for the coarsening procedure 
is to propagate the information from the target partition to the others utilizing the 
label information during the matching phase. Shorter paths are more likely to indi-
cate a strong relationship between vertices (Gupta et al. 2017), and thus, the shortest 
metapath between the two partitions was selected.

The goal is to perform coarsening on all non-target partitions following a meta-
path. The procedure is performed synchronously, one partition pair at a time, and 
the partition pairs are selected radially starting from the target partition. First, the 
guide partitions at a 1-hop distance from the target are coarsened, followed by those 
at a 2-hop distance, and so on. For each guide partition being reduced, the pair used 
is the neighbor partition within the metapath that goes from the partition being 
reduced to the direction of the target partition. This chosen order not only propa-
gates label information initially present in the target partition but also ensures that 
the selected neighbor partition has already undergone a reduction in the previous 
coarsening process (except in the first iteration), as illustrated in Fig. 6.

Fig. 6 The coarsening process is executed radially, starting from the target partition St = S1 . As seen in 
Fig. 6 (a), the first step is to perform coarsening on the immediate neighbors of S1 (from b to c), who are 
only influenced by the target partition. Subsequently, coarsening is carried out on partitions that are farther 
away from St (from d to e), with these partitions being influenced only by their guide partitions, which carry 
structural information from Sa
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Algorithm description

The procedure of coarsening for k-partite network is described by Algorithm 1, taking 
as input a k-partite network G = (V ,E) , a schema S(G) of the k-partite network, and 
a vertex S t in schema S(G) correspondent to the target partition Vt . The output is a 
coarsened version of k-partite network G.

Algorithm 1 Coarsening procedure for non-target partitions

 

Let Pi be the shortest metapath starting from the labeled target partition St and end-
ing at non-target partition Si . If multiple shortest metapaths exist, the first one found is 
chosen. For each Si , a 1-hop distance partition Sj ∈ Pi , Ŵ1(Si) , is selected as a “guide par-
tition.” Fig. 7 illustrates this process.

The coarsening process is applied to non-target partitions using a breadth-first 
search order in S (represented in the loop from line 6), starting from St . The target 
partition Vt is the father in the breadth-first search tree. The goal is to replace in G, 
at each iteration of this loop, the vertices from Vi for the super-vertices Vc

i  (the super-
script c indicate a coarsening version of the partition Vi ) and its associated super-
edges (see line 17). These super-vertices and super-edges are obtained from the 
bipartite coarsening of G, the subgraph composed by the nodes Vj ∪ Vi and its associ-
ated edges. Since the vertices of Vi are replaced, and we follow a breadth-first search 
order, when in a later iteration Vi is a guide-partition, its already compressed version 
is used on the bi-partite coarsening, making the procedure from line 16 faster than 
if was done with its initial (non-compressed) version. At the end, the algorithm then 
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returns the coarsened network Gc , obtained by applying coarsening to all non-target 
partitions of the original k-partite network.

Experimental results
Experimental studies were conducted on synthetic and real datasets using transduc-
tive classification to assess the effectiveness of the proposed coarsening algorithm. The 
primary reduction objectives, namely memory savings and classification runtime, were 
analyzed as the number of vertices increased. Furthermore, the accuracy of various met-
rics, such as Accuracy, Precision, Recall, and F-score, were compared for each reduction 
level relative to the original uncoarsened network. The results of the experiments are 
presented in subsequent sections, along with insights into the findings.

Synthetic network generation

Although heterogeneous data are ubiquitous, there are few standard datasets for study. 
Here we use a tool to generate k-partite networks. The tool chosen was HNOC (Valejo 
et al. 2020c), a synthetic k-partite network generator developed to help analysis of learn-
ing methods in networks. The characteristics that led to this choice were the tool’s ability 
to vary the partition size, the number of possible classes, the probability of possible clas-
sifications, and the noise and dispersion levels. These features allow for a comprehensive 
analysis of the classification tasks in the network.

The original purpose of the HNOC tool was for community detection, but its con-
cept of communities can be expanded to classify data in a semi-supervised setting. 
The tool initially aligns each vertex precisely with its designated community. Each 
vertex in a community is then connected to all other vertices in the same commu-
nity and different partitions. Next, edges are selectively removed based on the dis-
persion parameter, which controls community density. Lower dispersion values lead 

Fig. 7 Suppose St = S1 be the target partition. a The 1-hop partitions from S1 , described in schema as S2 , 
S3 , and S4 are selected; b the shortest paths from S1 to selected partitions are trivial in this case; c the guide 
partitions for S2 , S3 , and S4 are identified as being S1 itself; d the partitions S5 and S6 are selected; e the shortest 
metapaths between S5 and S1 , and between S6 and S1 are found; f the guide partition for S5 is identified as S4 
and the guide partition for S6 is identified as S2
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to sparser communities, whereas higher dispersion values result in denser communi-
ties. The dispersion parameter regulates intra-community edges. The tool utilizes the 
noise parameter for edges between different communities or inter-community edges. 
Network noise affects the ability to identify community boundaries and increases 
overlap, making finding communities within the network more complex. The noise 
level can significantly decrease classification accuracy and increase complexity. Lower 
noise levels result in fewer inter-community borders and more easily separable com-
munities. As noise levels increase, inter-community borders become more frequent, 
making identifying class boundaries harder. Generally, noise > 0.5 produces networks 
with poorly defined and sparse community structures, where inter-community edges 
outnumber intra-community edges. Optimal noise values range from 0.1 to 0.4, which 
increases the difficulty of class detection while preserving the overall network struc-
ture (Valejo et al. 2020c). It is essential to note that no edge connects vertices within 
the same partition.

In heterogeneous networks, there are diverse object types and topological struc-
tures. Generating various network topologies to simulate real-world scenarios and 
complex systems is essential. In addition to the dispersion and noise parameters, the 
type of topological structure of the network varied. Three topologies were selected, 
namely, the hierarchical star (Fig. 8a), the hierarchical web (Fig. 8b), and the bipartite 
topology (Fig. 8c). The hierarchical star topology could , for instance, represent user 
interface devices on computer networks or employees without management roles 
within a company. In this type of structure, starting from the center of the structure, 
and moving towards the leaves, each level can be seen as feature vertices of the most 
central vertex.

The hierarchical web topology is typical of biological networks like food chains. 
It has a relative order between partitions, with more vertices at lower levels. Lay-
ing out the hierarchical topology in a tree-like star, with the most central vertex at 

Fig. 8 Distinct topologies networks schemes generated in the experiments: hierarchical star (a), hierarchical 
web (b), and bipartite (c). The networks examples respectively in figures (d) (e), and (f). The red vertice 
indicates the partition with the label information
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higher levels, it would operate similarly to the hierarchical web, with the distinction 
that when we divide the partitions into levels based on the number of hop distances 
within the scheme with respect to the upper partition, the mesh topology allows hops 
between partitions of non-consecutive level. This distinction has significance in our 
experiment, as it generates distinct patterns of metapaths that would not arise in star 
topology.

The last topology is the bipartite structure. This type of network is widely explored in 
the literature on textual classification problems (Rossi et  al. 2012; Faleiros et  al. 2016; 
Redmond and Rozaki 2017). In this case, the vertices of the target partition represent 
documents, while those of the non-target partition represent words. The edges in the 
bipartite network example would represent the presence of a word in a document.

Experimental setup

Due to limitations in computational resources, the experiments were divided into two 
groups. The first group, referred to as Experiment 1 in Section 4.3.1, comprised small 
networks with up to 15,  000 vertices, while the second group, Experiment 2 in Sec-
tion 4.3.2, consisted of larger networks with up to 100, 000 vertices.

In Experiment 1, a range of parameter configurations was considered to generate syn-
thetic k-partite networks with distinct class structures (Valejo et al. 2020c). The number 
of vertices ranged from 2000 to 15, 000 in 9 different schemes for each topology (Fig. 8); 
the number of classes ranged from 4 to 10 at increments of 1; the dispersion ranged from 
0.1 to 0.9 at increments of 0.1; and the noise level ranged from 0.1 to 0.9 at increments of 
0.1. Ten distinct networks were created for each configuration, resulting in over 130, 000 
networks in total. The vertices were evenly distributed among the non-target partitions. 
To accurately reflect the memory savings associated with the coarsening algorithm, the 
non-target partitions were set to be five times greater than the target partition.

In Experiment 2, the size of the k-partite networks was increased to up to 100, 000 ver-
tices. However, the variability for some parameters was reduced due to computational 
limitations. The noise value was fixed at 0.3 to obtain more challenging networks for 
classification without excessive degradation. Furthermore, five networks with less than 
10, 000 vertices and three with more than 60, 000 vertices were created instead of gener-
ating ten networks with the same parameter configuration. This decrease in the number 
of tests resulted in less stable average results and increased the standard deviation.

Results in synthetic k‑partite networks

The purpose of this study is to assess the effectiveness of the proposed coarsening algo-
rithm in the transductive classification of k-partite networks. The GNetMine algorithm 
(Ji et al. 2010) was used for the experiments, as it is a widely used reference algorithm in 
the area of heterogeneous classification and has served as a benchmark for comparison 
in several studies (Luo et al. 2014; Zhi et al. 2015; Bangcharoensap et al. 2016; Faleiros 
et al. 2016; Luo et al. 2018; Ding et al. 2019).

All generated networks were classified using GNetMine, and metrics for Precision, 
Recall, F-score (macro variant), Accuracy, and classification time. The proposed coarsen-
ing algorithm was applied with a reduction of 0–80% at increments of 5%. The transduc-
tive classification evaluation was performed by varying the number of labeled vertices in 
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1%, 10%, 20%, and 50% of vertices from the target partition. The results were used as a 
comparative reference for classification metrics and network storage size.

Experiment 1

The results of the first analysis of the reduction’s main objectives (memory savings and 
classification runtime) are illustrated in Fig. 9. The diagrams show the evolution of mem-
ory size and transductive classification runtime when varying the number of vertices. 
Table 1 reveals the relative economy of these two metrics for each reduction level com-
pared to the original unreduced network. Notably, there is a more significant relative 
economy in the early stages of coarsening, resulting in satisfactory results with only a 
20% decrease in the number of vertices. This observation could be attributed to the ini-
tial levels already clustering many vertices with more shared connections.

Memory economies were analyzed concerning the dispersion parameter. As shown in 
Fig. 10, higher edge densities result in more expensive storage and classification runtime 
networks. As a result, coarsening is more effective in such cases, leading to more signifi-
cant gains.

Experiments were conducted to assess the impacts of network reduction on classifica-
tion F-score. The experiment initially involved varying the dispersion of the networks, 
and the results are described in Fig. 11. The results showed that low dispersion levels 
resulted in low memory savings but had minimal impact on the classification metrics.

Fig. 9 Variations in the size of the networks in MB (a) and the time required to classify them (b) with the 
increase in the number of vertices in the networks

Table 1 Compared to their original forms, reducing networks can lead to savings in both storage 
size and classification time

For both metrics, the values are represented as percentages

Storage savings Time savings for classification

# of vertices
Reduction

2000 Mean 15, 000 2000 Mean 15, 000

20% 32.87± 0.48% 36.92± 0.47% 38.75± 0.39% 39.76± 0.84% 45.35± 0.89% 47.19± 0.82%

35% 47.59± 0.73% 53.43± 0.67% 56.92± 0.47% 50.61± 0.89% 59.03± 0.94% 62.41± 0.71%

50% 59.88± 0.80% 65.29± 0.71% 69.51± 0.47% 59.39± 0.82% 68.57± 0.87% 72.09± 0.66%

60% 68.78± 0.79% 73.75± 0.67% 77.46± 0.45% 65.86± 0.86% 75.88± 0.81% 79.43± 0.56%

80% 84.41± 0.54% 88.12± 0.43% 90.11± 0.30% 79.30± 0.75% 88.12± 0.59% 90.73± 0.33%
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Table  2 summarizes the relationship between network reduction and classification 
metrics. The results show that as the networks grow, there is an increase in the loss 
caused by coarsening. For a network with 2000 vertices, the difference between reducing 
by 20% and 80% resulted in a relative F-score loss of 5% . This relative F-score difference 
is amplified to around 10% in networks with 15, 000 vertices. The results also reveal two 
essential facts. Firstly, the Precision metric appears relatively stable, indicating that the 
proposed coarsening algorithm is more suitable for applications that aim to reduce the 
number of false positives. Secondly, the low relative F-score loss achieved by reducing 
the dataset by about 20% is noteworthy, especially considering the significant savings in 
storage and classification runtime.

Fig. 10 Variations in the size of networks in MB (a) and in the time required to classify them (b) with the 
change in edge density

Fig. 11 Variations in F-score (macro) metric (a) as the network is reduced for different levels of dispersion. 
And the same metric as the size of the input network increases (b)

Table 2 Increased loss with the reduction of networks accentuated by the larger size of the 
networks (comparison between 2000 and 15, 000 vertices)

# of vertices Reduction Accuracy Precision
(macro)

Recall
(macro)

F‑score
(macro)

2000 20% 1.01 ± 0.32% 0.76 ± 0.51% 1.08 ± 0.34% 0.92 ± 0.47%

80% 6.20 ± 1.12% 2.54 ± 1.05% 6.49 ± 1.15% 6.12 ± 1.42%

15,000 20% 1.50 ± 0.52% 0.57 ± 0.40% 1.51 ± 0.53% 1.69 ± 0.76%

80% 10.48 ± 1.73% 0.63 ± 0.82% 10.63 ± 1.75% 11.97 ± 2.24%
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Experiments 2

We performed a complete analysis ranging from 2 thousand to 100 thousand vertices 
to determine whether the results would remain consistent for larger k-partite net-
works. The results are described in Fig. 12 and Table 3.

The data collected in this experiment confirm the effectiveness of the proposed 
coarsening algorithm for reductions of around 20% , especially in the Precision metric, 
obtaining an average variation of only 0.55± 0.17% compared to the original graph. 
The Accuracy, Recall, and F-score metrics variations were 1.72± 0.54%, 1.78± 0.55% , 
and 2.36± 0.77% , respectively, suggesting some degree of information redundancy in 
the network’s topology. These findings suggest that coarsening is an effective tech-
nique for reducing storage and processing resources.

Fig. 12 Variations in F-score (macro) metric (a) as the network is reduced, for different percentages of initial 
labels given. And the same metric as the size of the input network increases from 2 to 100 thousand vertices (b)

Table 3 Complete experimental data for the smallest (2000) and largest (100,000) number of 
vertices

# of vert. Reduct. Accuracy Precision
(macro)

Recall
(macro)

F‑score
(macro)

2000 20% 2.55 ± 0.40% 0.76 ± 0.14% 3.10 ± 0.46% 3.85 ± 0.62%

35% 4.07 ± 0.56% 1.27 ± 0.18% 4.85 ± 0.63% 5.73 ± 0.84%

50% 6.22 ± 0.77% 1.81 ± 0.24% 7.31 ± 0.86% 8.31 ± 1.05%

60% 8.69 ± 1.00% 2.48 ± 0.31% 10.09 ± 1.10% 10.89 ± 1.23%

80% 15.86 ± 1.61% 4.02 ± 0.40% 18.31 ± 1.82% 19.32 ± 1.92%

100,000 20% 3.25 ± 1.13% 1.08 ± 0.38% 3.25 ± 1.13% 3.92 ± 1.36%

35% 4.79 ± 1.16% 1.55 ± 0.41% 4.90 ± 1.17% 5.77 ± 1.45%

50% 11.25 ± 1.80% 3.24 ± 0.51% 11.06 ± 1.78% 14.24 ± 2.27%

60% 12.67 ± 1.93% 3.59 ± 0.57% 12.56 ± 1.93% 15.91 ± 2.41%

80% 19.81 ± 2.58% 5.24 ± 0.61% 19.65 ± 2.56% 23.22 ± 2.97%
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Experiments with real data

This section presents the results of the proposed coarsening algorithm on a real-world 
heterogeneous network. The DBLP dataset1 was used for the classification task, and 
the GNetMine algorithm was employed with the same parameter set as in the experi-
ments of Section 4.3. The DBLP dataset contains open bibliographic information from 
major computer science journals and proceedings. The dataset description is outlined in 
Table 4.

The problem addressed using the DBLP dataset involves classifying authors into four 
areas of knowledge. The authors serve as the target partition. The non-target partitions 
include the articles written by each author, the conferences where the authors have pub-
lished, and the terms found in these articles. This problem can be mathematically mod-
eled as a tuple GDBLP = (V ,E) with partitions V = {VP ,VA,VC ,VT } representing articles, 
authors, conferences, and terms respectively. The schema of GDBLP , S(GDBLP) , has the 
partition VA serving as the target for the classification task. There is a set of four classes, 
C = DataMining, Database, Information Retrieval, Machine Learning, which represent 
research areas. Additionally, a set VL

A ⊂ VA of authors have already been labeled with one 
of the areas in C. The network GDBLP has a low number of edges, totaling 170, 795 edges, 
and a dispersion of approximately 0.002.

The proposed coarsening algorithm was applied to the real network GDBLP . As shown 
in Table 5, there was no significant decrease in classification metrics, even with a 67% 
reduction in the network. However, the coarsening did not effectively reduce the storage 
size of the network, as observed in Table 6. This result corresponds to the observations 
made in the synthetic experimental evaluation. Notably, the network GDBLP has a low 
dispersion level of about 0.002. As previously discussed, low dispersion levels (near zero) 
result in minimal loss of classification quality (as seen in Fig. 11) and low storage savings 
(as observed in Fig. 10a).

Concluding remarks
This study aimed to test a proposed algorithm for reducing the size of k-partite networks 
while maintaining classification performance. The algorithm was applied on synthetic 
k-partite networks with varying characteristics to evaluate its effectiveness in improv-
ing scalability and storage efficiency. Existing techniques for network reduction have 
primarily been tested on homogeneous networks (Chen et al. 2017; Liang et al. 2020), 
making this study a significant contribution to the field. The study obtained metrics 

Table 4 Distribution of vertices utilized in the experiment, sourced from the DBLP dataset

Vertice type Quantity

Authors ( VA) 14,475

Articles ( VP) 14,376

Conferences ( VC) 20

Terms ( VT) 8920

Total 37,791

1 DBLP dataset available at https:// dblp. org.

https://dblp.org
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related to resource savings and classification performance and validated the effective-
ness of the proposed coarsening algorithm for k-partite networks.

This study has some limitations that should be described. Firstly, using synthetic net-
works instead of real-world networks may introduce bias. It is worth noting that the 
HNOC tool generates networks with a high level of assortativity, which may only be 
present in some real-world networks. Additionally, the number of k-partite network 
schemes used in the experiments was limited, which is a potential limitation. However, 
based on the various experiments conducted and different parameter configurations 
tested, our proposed technique demonstrates the promising potential for application 
in diverse networks. The entire source code used in the experiments is made available,2 
which enables future works to test other parameters and networks.

According to the findings, the proposed coarsening algorithm effectively achieved 
considerable savings in storage and classification runtime, even when the reduction lev-
els were modest. For instance, a 20% reduction in the number of vertices resulted in over 
1/3 savings in storage and twice faster classifications. Additionally, the classification per-
formance metrics had low average levels of variation.
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Table 5 Metrics of accuracy, precision (macro), recall (macro) and F-score (macro) according to GDBLP 
reduction

Reduction Accuracy Precision
(macro)

Recall
(macro)

F‑score
(macro)

20% 2.47% 0.02% 2.59% 1.25%

36% 4.88% 0.11% 4.46% 2.46%

49% 4.92% 1.21% 5.12% 3.75%

59% 4.92% 2.43% 5.02% 3.75%

67% 4.92% 1.91% 5.02% 3.75%

Table 6 Storage and time savings analysis for GDBLP

Reduction Storage savings (MB) Time savings for 
classification (s)

0% 2476.87 21.15

20% 2219.46 14.40

36% 2054.75 11.84

49% 2014.74 11.22

59% 2010.69 11.10

67% 2010.24 11.12
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