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Abstract 

In recent years, social networks have become popular among Internet users, and vari-
ous studies have been performed on the analysis of users’ behavior in social networks. 
Information diffusion analysis is one of the leading fields in social network analysis. In 
this context, users are influenced by other users in the social network, such as their 
friends. User behavior is analyzed using several models designed for information diffu-
sion modeling and prediction. In this paper, first, the problem of estimating the diffu-
sion probabilities for the independent cascade model is studied. We propose a method 
for estimating diffusion probabilities. This method assigns a weight to each individual 
diffusion sample within a network. To account for the different effects of diffusion 
samples, several weighting schemes are proposed. Afterward, the proposed method 
is applied to real cascade datasets such as Twitter and Digg. We try to estimate diffu-
sion probabilities for the independent cascade model considering the continuous time 
of nodes’ infections. The results of our evaluation of our methods are presented based 
on several datasets. The results show the high performance of our methods in terms 
of training time as well as other metrics such as mean absolute error and F-measure. 

Keywords: Independent cascade model, Information diffusion, Information diffusion 
prediction, Social network analysis

Introduction
In recent years, online social networks have become a major source of information. The 
emergence of the importance of social networks is the result of the large amount of data 
they produce. Users’ actions are a major source of information in online social networks. 
A researcher analyzes data such as likes, shares, comments, and other interactions 
between social network users to find relationships between them. This information is 
used to understand users’ behavior in social networks and their influence on each other. 
A number of problems are studied in this area, such as community detection, link pre-
diction, and information diffusion. The study of information diffusion is mostly focused 
on how content spreads in social networks through interactions between users or exter-
nal sources.
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Millions of people use popular online social networks such as Facebook, Twitter, and 
YouTube. Such websites play a vital role in the propagation of information between inter-
net users by providing the opportunity to view everyone’s viewpoints about different 
subjects. The role of Facebook during the 2010 Arab Spring and Twitter during the 2016 
U.S. presidential elections (Tan et al. 2013) shows the importance of online social net-
works in this era. In the analysis of information diffusion in social networks, it is assumed 
that content propagation is the result of users’ interactions. In this regard, information 
diffusion prediction over social networks has become a priority for researchers. Several 
studies try to predict which users become aware of the propagating information in a 
social network. This field of study has many applications in other information diffusion-
related research topics like rumor blocking (Wang et al. 2017), influence maximization 
(Khomami et al. 2018), and crowdsourcing. For example, when a rumor spreads about a 
company, company leaders can make early decisions to avoid damages in the future. On 
the other hand, understanding how content propagates more on a social network such as 
Twitter helps advertising find strategies. This results in more information spread in favor 
of a company (Gao et al. 2017).

The study of information diffusion in social networks was first initiated in epidemi-
ology and social sciences contexts (Najar et  al. 2012). In recent years, understanding 
user behavior in online social networks has become a major research topic. In this con-
text, users influence each other through social relationships like following on Twitter or 
friendship on Facebook, resulting in information cascades (Bao et al. 2017). In the study 
of information diffusion, some research areas include detecting popular topics, identi-
fying influential information spreaders, and modeling information diffusion (Patel and 
Nanavati 2023). It has been observed that many research studies in the context of infor-
mation diffusion use independent cascade models (ICM) (Goldenberg et  al. 2001) or 
linear threshold models (LTM) (Granovetter 1978) to analyze how information propa-
gates in social networks. Information diffuses in these models through an iterative pro-
cess. The probability of reaching information to a user depends on the neighbors, which 
already have propagated the information (Yang and Leskovec 2010; Gomez Rodriguez 
et al. 2011; Ver Steeg and Galstyan 2013). Various models have been proposed based on 
these two models. Some of them consider the continuous time of the diffusion process 
to be more realistic (Saito et al. 2009, 2010).

The parameters of each diffusion model play a significant role in the reflection of near-
realistic modeling. Thus, it can be inferred from the history of users’ activities on social 
networks, for example, by learning parameters of the diffusion model. The problem 
of learning diffusion probabilities for ICM has been first studied in Saito et al. (2008). 
Learning the parameters of a diffusion model requires observing users’ interactions and 
behavior in the social network for a while. After learning the parameters, the model can 
be used in various information diffusion applications, for example, predicting which 
users will be infected in a diffusion process, maximizing influence propagation, etc. Most 
similar works, which try to learn diffusion probabilities for ICM, have poor training time 
performance over large networks. This is because they use iterative algorithms to learn 
diffusion probabilities. Therefore, we consider the reasonable sequence of activating 
nodes in such a way that a sequence of diffusions may occur from a node as a parent 
node to other connected nodes as child nodes. In this regard, we assign different weights 
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as diffusion probabilities for each role of nodes as parents or children. To this end, this 
paper proposes a novel method for estimating diffusion probabilities for ICM. Moreo-
ver, we estimate ICM parameters by considering the continuous time of the diffusion 
process. The model can be useful for predicting information diffusion in social networks 
for practical purposes. Furthermore, we design a method to overcome the lack of learn-
ing data for many social network links. We extract some features from each link and use 
regression algorithms to learn a regularization term for each link’s diffusion probability. 
Using this method, it is possible to learn the diffusion probabilities of links from fewer 
data. Our methods have lower training time and error than iterative methods.

In summary, our main contributions are as follows:

• We propose a basic method called Weighted Estimation of Diffusion Probabilities 
(WEDP) to estimate diffusion probabilities for ICM. In this method, we assign differ-
ent weights to different types of information obtained from past cascades.

• We propose an improved version of WEDP, called Continuous Time Weighted Esti-
mation of Diffusion Probabilities (CT-WEDP), to learn diffusion probabilities from 
ICM considering the continuous time of the diffusion process. Similar to WEDP, 
different weights are obtained for different types of information obtained from cas-
cades.

• We propose an improved version of CT-WEDP, called Continuous Time Regular-
ized Weighted Estimation of Diffusion Probabilities (CT-RWEDP), to learn diffusion 
probabilities from ICM considering the continuous time of the diffusion process and 
using regression algorithms to learn a regularization term for each link. This helps 
links with fewer available data to learn their diffusion probabilities.

The paper is organized as follows. Sect.  “Related work” reviews previous works on 
this problem and their strengths and weaknesses. Sect. “Background” explains the back-
ground and preliminary requirements for the rest of the paper. Sect. “WEDP: weighted 
estimation of diffusion probabilities” describes the basic method of WEDP, including 
diffusion model description, problem definition, and evaluation of WEDP. Sect.  “CT_
WEDP: continuous time weighted estimation of diffusion probabilities” describes the 
proposed methods for continuous time. The experimental evaluation of the results of 
the information diffusion prediction task based on the proposed algorithms is given in 
Sect.  “Experimental evaluation”. Finally, Sect.  “Conclusion and future work” concludes 
our work and gives some insights into future works.

Related work
Most social network analysis researchers use graphs to model social networks, where 
nodes represent users of social networks and edges represent relationships between 
users, such as friendship, following, etc. In recent years, many research works have stud-
ied information diffusion analysis (Yang and Leskovec 2010; Chang et  al. 2018; Feng, 
et al. 2022; Kempe et al. 2003; Yu and Chu 2017; Failed 2016; Sharma and Bajaj 2023). 
Some researchers focus on influence maximization, which is the study of how to propa-
gate content to reach more users in a social network. On the other hand, some of the 
studies try to minimize contamination spread in the social network. Other methods 
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focus on learning a diffusion model or predicting information diffusion in an online 
social network.

Domingos and Richardson (Domingos and Richardson 2001; Richardson and Domin-
gos 2002) were the first to study the spread of influence in social networks and identify 
the most influential nodes with a data mining approach. There are also some graph heu-
ristics, such as node degree, closeness, etc., for identifying the most influential nodes in 
social networks. Kempe et al. (Kempe et al. 2003) formally defined the influence maximi-
zation problem as an optimization problem. They proved that the optimization problem 
of selecting the most influential nodes in ICM and LTM is NP-hard. They also designed 
a greedy method with approximation guarantees for the problem of selecting the most 
influential nodes in both ICM and LTM.

There have been several studies of information diffusion dynamics (Failed 2023; Rez-
vanian et al. 2023; Guille and Hacid 2012). A time-based asynchronous independent cas-
cade model was proposed by Guille and Hacid (Guille and Hacid 2012). In this model, 
diffusion probabilities are a function of propagation time. They used Bayesian logistic 
regression to learn diffusion probabilities from features extracted from each Twitter link. 
Such studies learn a model based on users’ extracted features instead of learning a diffu-
sion probability for each link in a social network.

A number of research studies have studied the prediction of information diffusion as 
the problem of predicting which users will be infected at the end of the diffusion process. 
One approach to this problem is to learn the parameters of a diffusion model and use the 
model to predict information diffusion. Saito et  al. (Saito et  al. 2008) studied learning 
ICM diffusion probabilities. They formulated the problem as a likelihood function and 
used the EM algorithm for learning diffusion probabilities. Moreover, Goyal et al. (Goyal 
et  al. 2010) investigated the learning parameters of a general threshold model. Their 
work is scalable, unlike Saito et al. (Saito et al. 2008), because their model’s parameters 
are not learned iteratively. Some research has attempted to improve the performance 
of these two primary works. Continuous time models AsIC and AsLT have been devel-
oped to consider the continuous time of the diffusion process (Goldenberg et al. 2001; 
Granovetter 1978). Lamprier et al. (Lamprier et al. 2016) focused on the partial order 
of node infections instead of the exact timestamp that each node gets infected. Some 
other studies tackle the problem of information diffusion prediction by embedding users 
and contents in continuous latent space (Gao et al. 2017; Bourigault et al. 2016). In most 
cases, they don’t consider the full social network graph, and the underlying network is 
not known to them.

Some other studies use the diffused content and users’ profiles to enhance information 
diffusion prediction in social networks (Wang et  al. 2020, 2016; Varshney et  al. 2017; 
Barbieri et  al. 2013). Barbieri et  al. (Barbieri et  al. 2013) proposed Topic-aware Inde-
pendent Cascade and Topic-aware Linear Threshold models, which consider the topic 
of content propagated in learning models’ parameters. In similar research, Wang et al. 
(Wang et al. 2016) used the emotion of the propagated content to learn diffusion prob-
abilities for ICM.

In (Beni et al. 2023), Bouyer et. al., an improved version of the ICM is presented with 
an improved criterion for calculating the diffusion process is used. This is done by con-
sidering different diffusion rates for nodes in different layers with respect to core nodes. 
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It means that high-influence nodes are close to core nodes and low-influence nodes 
reside in outer core nodes. This concept is realized by applying the K-shell algorithm. 
Based on this model the authors provided candidate node selection and showed in simu-
lation that the algorithm has linear time complexity.

A tensor-based independent cascade model is developed by incorporating the simi-
larity matrix by Lin et al. (2023). The model considers the probabilities of information 
spreading from one node to its neighbors based on node interactions and similarity. The 
authors also propose an optimization algorithm to estimate the parameters and identify 
influential links (Lin et al. 2023).

In (Haldar et al. 2023), Haldar et. al., a novel temporal cascade model is introduced 
for understanding and analyzing information spreading dynamics in evolving networks. 
They aim to investigate how network structure and temporal patterns affect the spread 
of contagions. The proposed model takes into account both network topology and the 
temporal characteristics of interactions between individuals in the network. It consid-
ers the sequential nature of information spread, where individuals become infected and 
spread the contagion to their neighbors. Due to the critical role of learning diffusion 
probabilities for diffusion models in real-world scenarios, a stochastic diffusion model is 
proposed by Rezvanian et al. In this model, the authors take into account the probabil-
istic nature of information diffusion and incorporate the concept of network centrality 
as stochastic. They aimed to find a seed set of initial users who can trigger a cascading 
effect leading to maximum influence spread using learning automata theory (Rezvanian 
et al. 2023).

In this paper, we tackle the problem of learning diffusion probabilities for ICM and 
information diffusion prediction in social networks. Using information obtained from 
observed cascades in the social network, we design weighted estimation methods for 
this purpose. Additionally, we developed a method that learns a regularization term for 
diffusion probabilities based on some features of social network links. Our methods are 
more efficient than other methods for the same purpose.

Background
In this study, we learn the parameters of ICM. First, we explain this model. Next, we 
introduce the notation used in this paper and define the required preliminary.

ICM diffusion model

In the ICM model, a set of seed nodes is activated at time zero. The diffusion process 
proceeds discretely. At each time, every newly activated node at the previous time has a 
single chance to activate any of its inactive child nodes. Node v is the child of node u if 
there is an edge from u to v, and u is the parent of v . If the parent node fails to activate the 
child node, it will not have another chance to activate it again. When there is no newly 
activated node, the diffusion process ends. It is not possible to change the state of a node 
from active to inactive in ICM. In other words, they remain active after their activation 
time. A parent node activates a child node with a diffusion probability, which should 
be specified for the corresponding edge between them. Diffusion probabilities are ICM 
parameters. In this paper, we tackle the problem of estimating these probabilities.
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Preliminaries

In this paper, we will follow (Saito et al. 2008)’s notation closely. We represent a social 
network (a directed network) with a graph G = (V ,E) . Let V  be the set of nodes and 
E be the set of edges of graph. We also represent each edge of the graph with (u, v) , 
which means that there is a link from node u to node v . Next, we define set of out-
neighbors and in-neighbors of node u . Nout(u) = {v|(u, v) ∈ E} denotes the set of chil-
dren of u and Nin(u) = {v|(v,u) ∈ E} denotes the set of parents of u.

We define a diffusion episode as Ds =< D(0), . . . ,D(T ) > , which is a sequence of 
node sets, where Ds(t) denotes a set of nodes that are activated at the time t . Due 
to the assumption that nodes cannot change from active to inactive, a node cannot 
appear more than once in a diffusion episode. It means that nodes can be activated 
once in a single diffusion episode. In addition, Cs(t) represents a set of nodes activated 
before time t in diffusion episode Ds . Moreover, ATs(u) denotes the activation time of 
node u in the diffusion episode Ds . ATs(u) will be infinity if u is not activated in Ds . 
Furthermore, T (Ds) is the activation time of the last node in Ds.

WEDP: Weighted estimation of diffusion probabilities
In this section, we explain our basic method (called WEDP) to estimate diffusion 
probabilities for ICM, which is similar to our method presented in Mashayekhi et al. 
(2018). The problem definition is the same as in Saito et al. (2008). We are trying to 
answer the question: How can we estimate the diffusion probabilities for ICM, given 
a directed network graph G = (V ,E) and a set of diffusion episodes S = {D0, . . . ,Dn} ?. 
To answer the question, we will estimate the diffusion probability for an arbitrary 
edge e = (u, v) , denoted by PWEDP

uv  , using the diffusion episode set S . PWEDP
uv  is equal 

to the number of times u has succeeded in activating v divided by the number of times 
u has attempted to activate v . To estimate PWEDP

uv  , we use two functions whose inputs 
are an edge and a diffusion episode. These two functions are isDiffused and weight.

The function isDiffused indicates whether or not node u could have activated v in a 
diffusion episode Ds . Assume that node v is activated at time t + 1 . If node u is acti-
vated at time t , isDiffused returns 1. There is a problem here. If multiple parents of 
node v are activated at time t , we do not know which parent activated v and which 
parent failed to activate v ; isdiffused returns 1 for all of parents. To solve this problem, 
the second function, i.e. weight , is proposed.

The function weight calculates how much we can trust the episode Ds about the edge 
e = (u, v) . We assume that if node v is activated at time t + 1 and if more than one of 
its parents is activated at time t , then all of the parents of v with activation time t have 
successfully activated v . In computing diffusion probability for edge e = (u, v) , infor-
mation obtained from such diffusion episodes will be weighted lower than episodes in 
which the parent node u has successfully or unsuccessfully activated the child node v.

These two functions are explained in the rest of this section.
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Function isDiffused

To explain our method, first, we define isDiffused function, as shown in Pseudocode 
1, which shows that in diffusion episode Ds and for edge e = (u, v) , whether or not u 
could have activated v in a diffusion episode.

Pseudocode 1. Function isDiffused

In Pseudocode 1, if the parent node (i.e., node u ) activates child node (i.e. node v ), this 
function returns one. This means that:

(1) Parent node u must be activated in Ds earlier than the last active node in Ds . (i.e. 
ATs(u) ≤ T (Ds)),

(2) Child node v has the same condition (i.e., ATs(v) ≤ T (Ds) ), and
(3) Child node v must be made active right after parent node u in Ds (i.e. 

ATs(v) = ATs(u)+ 1).

If any of these three conditions is false, the isDiffused function returns zero.

Function weight

In this subsection, we define how to specify the weights of information obtained from 
a diffusion episode Ds for edge e = (u, v) . To this end, the weight((u, v),Ds) function is 
defined in Pseudocode 2.

Pseudocode 2: Function  weight

Function weight will assign a weight to the information obtained from the diffusion 
episode Ds for the edge e = (u, v).

• The function assigns weight to zero if u did not have any chance to activate v . This 
can occur if u is not activated at all or if it is activated after v.

• The function assigns weight to one if u had the opportunity to activate v and we are 
certain that it did not succeed. It can happen if u is activated at time t , and v is acti-
vated at time t′ > t + 1 , or it is not active at all.
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• If u is activated at time t and v is activated at time t + 1 , two possible scenarios can 
occur:

(1) If u is the only parent of v activated at time t (i.e., #Activated_parents_of_ v _in_ 
Ds=1), the function makes sure that u has activated v and assigns weight 1 for 
this information.

(2) If there is more than one parent of v activated at time t , the function calls 
another function W  to assign a weight for e = (u, v) . This new function is 
described in the next subsection.

Function W

In the following, we propose two weighting schemes to calculate W  : linear decay and 
exponential decay.

• Linear decay weighting: In the linear decay weighting scheme, we define W(A) = 1
A . 

In other words, suppose that node v is activated at the time-step t + 1 . Thus, as the 
number of parents of node v that may have activated it increases, information for the 
edges between them and v would receive lower weight.

• Exponential decay weighting: In the exponential decay weighting scheme, we define 
W(A) = e−(A−1) . Consequently, this weighting scheme defines lower weights than 
linear decay weighting when more than one parent of v could activate it.

Estimate diffusion probabilities for edges

Now we can compute diffusion probabilities for ICM. The diffusion probability of edge 
e = (u, v) using a set of diffusion episodes S = {D0, . . . ,Dn} is computed by the following 
formula:

In Eq. (1), the diffusion probability of edge e = (u, v) is equal to the number of times 
e = (u, v) may have activated v , divided by the number of times u had the chance to acti-
vate v , with applying weights defined beforehand.

To increase the robustness of estimating diffusion probabilities, we consider a special 
case. If there is no diffusion episode for an edge, we cannot be certain whether the par-
ent node has succeeded or failed in activating the child node. Although we did not find 
a diffusion episode that shows the parent node activated the child node, the probability 
would be one in this case. We use a random probability instead of an estimated probabil-
ity in this situation.

We refer to this method as Weighted Estimation of Diffusion Probabilities (WEDP).

(1)PWEDP
uv =

Ds∈S
weight((uv).Ds)× isDiffused((uv)Ds)

Ds∈S
weight((uv)Ds)
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An example with two simple scenarios

In this subsection, we provide a toy example for diffusion probabilities estima-
tion based on the WEDP. ConsiderG = (V = {u, v, j},E = {(u, v), (j, v)}) . We define 
two simple scenarios in each of which there are different sets of diffusion epi-
sodesS = {D0,D1} . The following Table 1 presents the activation time of each node 
in each diffusion episode in two scenarios. For example, AT0(u) = 1 indicates that 
node u is activated at time 1 in the diffusion episodeD0.

As given in Table 1, for Scenario 1, in D1 , multiple parents of node v are activated 
at time 1, while node v is activated at time 2. Thus, we need to consider different 
weights for the estimation of diffusion probabilities of edge (u, v) as PWEDP

uv  and edge 
(j, v) as PWEDP

jv  . On the other hand, in scenario 2, each parent of node v is activated 
in separate episodes. Therefore, function isdiffused returns different values for each 
edge to estimate diffusion probabilities.

The estimation of diffusion probabilities for two edges (u, v) and (j, v) are shown in 
Table 2. For calculation in function W  the Linear Decay Weighting scheme is used. 
The calculations related to each scenario are shown in different rows. As presented 
in Table  2, for each scenario, the calculated diffusion probabilities for edges (u, v) 
and (j, v)  are the same, whereas the returned values from isdiffused and weight func-
tions are different.

Table 1 Activation times for two simple scenarios

Scenario1, S = {D0,D1} AT0(u) = 1, AT0(j) = 3, AT0(v) = 2

AT1(u) = 1, AT1(j) = 1, AT1(v) = 2

Scenario2, S = {D0,D1} AT0(u) = 1, AT0(j) = 2, AT0(v) = 3

AT1(u) = 2, AT1(j) = 1, AT1(v) = 3

Table 2 Calculation of diffusion probabilities for two scenarios

Scenario1, isDiffused((u, v),D0) = 1 , isDiffused((u, v),D1) = 1

weight((u, v),D0) = 1,weight((u, v),D1) = W(2) = 1
2

PWEDP
uv =

1×1+ 1
2
×1

1+ 1
2

= 1

isDiffused((j, v),D0) = 0 , isDiffused((j, v),D1) = 1

weight((j, v),D0) = 1,weight((j, v),D1) = W(2) = 1
2

PWEDP
jv =

1×0+ 1
2
×1

1+ 1
2

= 1

Scenario2, isDiffused((u, v),D0) = 0 , isDiffused((u, v),D1) = 1

weight((u, v),D0) = 1,weight((u, v),D1) = 1

PWEDP
uv = 1×0+1×1

1+1
= 1

2

isDiffused((j, v),D0) = 1 , isDiffused((j, v),D1) = 0

weight((j, v),D0) = 1,weight((j, v),D1) = 1

PWEDP
jv = 1×1+1×0

1+1
= 1

2
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Time complexity

WEDP’s time complexity is discussed in this section. This is accomplished by cal-
culating the time required to drive Eq. (2). In every diffusion episode, two functions 
are executed, isdiffusion and weight . Each function has a time complexity of O(m) , 
where m is the number of edges in the graph. For one diffusion episode, the time 
complexity is O(2m) . In Eq.  (2), because there are n episodes in Ds , the time com-
plexity is O(2mn) . Thus, the time complexity of the WEDP is O(mn).

CT_WEDP: Continuous time weighted estimation of diffusion probabilities
Our proposed methods for predicting information diffusion for continuous time are 
described in this section. We are trying to answer the question: given a set of nodes in a 
social network as the initial nodes in a diffusion episode. Which users will be infected at 
the end of the diffusion episode?

One approach to answering this question is to learn a diffusion model and utilize it to 
simulate the diffusion episode. This will enable us to predict information diffusion. In 
this paper, we try to learn ICM parameters and use them for this purpose. One problem 
with the method explained in the previous section is that it does not consider continu-
ous time in diffusion episodes. This will happen in real online social networks’ diffusion 
episodes. Hence, we use the problem definition of the previous section, but we consider 
continuous time in diffusion episodes.

To overcome this problem, while estimating diffusion probabilities, if a parent node is 
active at time t , we consider that it can activate its child nodes at any time t ′ > t instead 
of t + 1 . Consequently, if a node is activated at time t, then any of its parents that were 
activated before this time may have activated it. To include continuous diffusion time, 
we redefine the isDiffused as isDiffused_CT  and weight as weight_CT  functions in Pseu-
docodes 3 and 4, respectively.

Pseudocode 3: Function isDiffused_CT

Pseudocode 4: Function weight_CT
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In Pseudocode 3, the function returns one if parent node u could have activated child 
node v . This will happen if v is activated after u . It returns zero otherwise. Pseudocode 4 
is similar to Pseudocode 2 but uses the isDiffused_CT  function instead of isDiffused.

Now, the diffusion probability for e = (u, v) can be calculated by (2), similar to the for-
mula proposed for WEDP. We refer to this method as Continuous Time Weighted Esti-
mation of Diffusion Probabilities (CT-WEDP).

The sparsity of information diffusion data on real‑world social networks

One of the problems with estimating diffusion probabilities in real-world social net-
works is the lack of learning data for most of the links in the network. More specifically, 
for many edges in the social network graph, it does not often happen that the parent 
node becomes active before its children. Additionally, most of the time, the number of 
a node’s parents who have been activated before it is much smaller than the number 
of times a child is not activated at all or just one of its parents has activated it. Conse-
quently, estimating diffusion probabilities for many edges is not as robust as others.

To get more insight, we collected tweets from a set of Twitter users between January 
 1st, 2018, and March 19th, 2018. We considered hashtag propagation as diffusion epi-
sodes. Further, we considered edges in the graph when at least one parent node activated 
a child during a diffusion episode (the isDiffused function returns one in at least one dif-
fusion episode). In the dataset, we have 6500 nodes, 512,144 edges, and 70,709 diffusion 
episodes.

Figure  1 represents the number of edges concerning their sum of weights. We used 
linear decay weighting in Fig. 1. We call the sum of weights of an edge the weight of the 
edge and refer to it as Wuv.

(2)PCT−WEDP
uv =

∑

Ds∈S
weight_CT ((uv).Ds)isDiffused_CT ((uv)Ds)

∑

Ds∈S
weight_CT ((uv)Ds)

Fig. 1 Number of edges with respect to the sum of weights of edges



Page 12 of 23Mashayekhi et al. Applied Network Science            (2023) 8:81 

According to Fig. 1, the number of edges with high weights is less than edges with low 
weights. It shows that data available for estimating diffusion probabilities for many edges 
are rare. Hence, diffusion probabilities in this manner have considerable error. 

Improving robustness

To learn diffusion probabilities, we improve the CT-WEDP. To this end, we use various 
social networking features to estimate the probability of the edges that have less data to 
learn by those edges that have more data to learn. Thus, the diffusion probability of the 
edge e = (u, v) using a set of diffusion episodes S = {D0, . . . ,Dn} is computed by the fol-
lowing formula:

In (3), PCT−WEDP
uv  is probability learned from CT-WEDP and Plearn

uv  learn is prob-
ability learned from edges with more data. To learn this term, we use edges with more 
weights. �uv is a balancing factor. We refer to this method as Continuous Time Regu-
larized Weighted Estimation of Diffusion Probabilities (CT-RWEDP).

We use the sum of the weights of the edge to compute �uv . We suggest a logarithm 
function as a concave function for �uv.

In (4), Wuv is the sum of the weights of the edge (u, v) and WAvgEstimate is the aver-
age of Wzw for all edges which are used for estimating purposes. We use 1+ ǫ in the 
denominator to ensure that it is greater than zero. These edges are α% of all edges, 
with more Wzw.

Consider Eq. (4). If Wuv < WAvgEstimate , the equation returns a value smaller than 1 
for Lambda. It means we need to improve robustness. In this situation, the informa-
tion obtained from the diffusion episode set for edge (u, v) is not enough, and more 
learning is needed. The logarithm function for �uv as a concave function simplifies 
calculations and means estimation curves downward. The logarithm function is com-
monly applied to many machine learning techniques such as Maximum Likelihood 
Estimation (MLE) (Failed 2006).

To learn Plearn
uv  , we extracted some features from the edges of the graph. Next, we 

applied some regression algorithms (linear regression, decision tree, KNN regression, 
and SVR) to learn this term. We gained better performance utilizing SVR and used 
this algorithm in this paper. We used five features described below:

• Child node activation rate: this feature specifies how many times the child node 
has been activated in diffusion episodes; with respect to the times it had the 
chance to be activated (at least one of these parents should be activated in the dif-
fusion episode). It is computed using the following formula:

(3)PCT−RWEDP
uv = �uvP

CT−WEDP
uv + (1− �uv)P

learn
uv

(4)�uv = Min

(

1
Log(Max(Wuv1))

Log
(

Max
(

WAvgEstimate1+
))

)

(5)

Child Positive Rateuv =

∣

∣

{

Ds |Ds ∈ S ATs(v) ≤ T (Ds)
}∣

∣

∣

∣

{

Ds |Ds ∈ S ATs(v) ≤ T (Ds) or
∣

∣w ∈ Nin(v) ATs(w) < T (Ds)
∣

∣ > 0
}∣

∣



Page 13 of 23Mashayekhi et al. Applied Network Science            (2023) 8:81  

• Parent node diffusion rate: this feature specifies what frac-
tion of children of the parent nodes have been activated if the par-
ent node has been activated before them. Let diffusionSet(u) be 
{Ds|Ds ∈ S,ATs(u) ≤ T (Ds),

∣

∣w ∈ Nout(u),ATs(u) < ATs(w)
∣

∣ > 0} . The feature is 
computed using the following formula:

• Parent node diffusion count: this feature specifies how many children of the parent 
nodes have been activated if a parent node has been activated before them. It is com-
puted using the following formula:

• Jaccard similarity coefficient: this feature specifies how many diffusion episodes both 
the parent and child nodes have been activated, based on at least one of them being 
activated. It is computed using the following formula:

• Parent node out-degree: This feature indicates the number of out-degree parent 
nodes (i.e., the number of followers in a social network). It shows a node is popular 
among other nodes.

Experimental evaluation
Experiment 1

The purpose of experiment 1 is to evaluate the performance of WEDP. WEDP is com-
pared with EM (Saito et al. 2008) in terms of mean absolute error (MAE), mean relative 
error (MRE), and training time. In (Saito et al. 2008), Saito et al. formulated the problem 

(6)

Parent Diffusion Rateuv =

∑

Ds∈diffusionSet(u)
|w∈Nout (u) ATs(u)<ATs(w)<T (Ds)|

|w∈Nout (u) ATs(u)<ATs(w)|
∣

∣diffusion Set(u)
∣

∣

(7)

Parent Diffusion Countuv =

∑

Ds∈diffusionSet(u)

∣

∣w ∈ Nout(u) ATs(u) < ATs(w) < T (Ds)
∣

∣

∣

∣diffusion Set(u)
∣

∣

(8)Jaccarduv =
|{Ds|Ds ∈ SATs(u) < T (Ds)ATs(v) < T (Ds)}|

|{Ds|Ds ∈ SATs(u) < T (Ds)orATs(v) < T (Ds)}|

Table 3 Statistics of datasets for Experiment 1

Dataset n m avgn maxn minn

Digg 30,398 86,404 296.31 3139 1

Slashdot 51,083 131,175 1018.96 8183 1

UC Irvine 1899 20,296 484.95 896 1

CitHepTh 27,770 352,807 719.41 5513 1

DBLP 12,591 49,743 12.82 270 1

Cora 23,166 91,500 3.45 66 1

Google + 23,628 39,242 2.08 29 1

Twitter 465,017 834,797 3.70 100 1
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of learning diffusion probabilities from a set of diffusion episodes as a likelihood func-
tion and used the EM algorithm to optimize it.

We applied the approach presented in Saito et  al. (2008) to choose diffusion proba-
bilities and create diffusion episodes. For each dataset, we generated 100 different dif-
fusion episodes with one uniformly randomly selected seed node for each episode. We 
tested the methods for different sizes of learning episodes. The diffusion probabilities are 
selected uniformly at random in the range [0.1, 0.3].

Table 3 lists the datasets used in the experiments. Self-edges are removed from data-
sets. Also, we considered the edges where the parent node activated before the child 
node in one diffusion episode. The datasets used in this experiment are Digg (Choud-
hury et  al. 2009), Slashdot (Gómez et  al. 2008), UC Irvine (Opsahl and Panzarasa 
2009), CitHepTh (Leskovec et al. 2007), DBLP (Ley 2002), Cora (Šubelj and Bajec 2013), 
Google + (Leskovec and Mcauley 2012), and Twitter (Choudhury et al. 2010).
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Fig. 2 Mean absolute error against the number of episodes in the Digg dataset
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Fig. 3 Mean absolute error against the number of episodes in the Slashdot dataset
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Fig. 4 Mean absolute error against the number of episodes in the UCIrvine dataset
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Fig. 5 Mean absolute error against the number of episodes in the CitHepTh dataset
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Fig. 6 Mean absolute error against the number of episodes in the DBLP dataset
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Fig. 7 Mean absolute error against the number of episodes in the Cora dataset
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Fig. 8 Mean absolute error against the number of episodes in the Google + dataset
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Fig. 9 Mean absolute error against the number of episodes in the Twitter dataset
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Table 4 Mean relative error against the number of diffusion episodes in the Digg dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.181 1.180 1.168 1.161 1.123 1.079 1.063 1.066 1.054 1.044

WEDP-Exp 1.177 1.189 1.170 1.160 1.122 1.079 1.065 1.065 1.051 1.043
EM 1.690 1.689 1.580 1.580 1.412 1.262 1.226 1.226 1.195 1.169

Table 5 Mean relative error against the number of diffusion episodes in the Slashdot dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.174 1.137 1.141 1.109 1.090 1.053 1.037 1.038 1.022 0.994

WEDP-Exp 1.171 1.140 1.141 1.113 1.091 1.059 1.040 1.041 1.023 0.990
EM 1.397 1.320 1.320 1.260 1.214 1.143 1.115 1.114 1.09 1.031

Table 6 Mean relative error against the number of diffusion episodes in the UCIrvine dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.355 1.292 1.134 1.105 1.073 1.071 1.066 1.072 1.059 1.058

WEDP-Exp 1.306 1.161 0.980 0.918 0.885 0.874 0.859 0.852 0.848 0.844
EM 1.377 1.333 1.303 1.279 1.250 1.229 1.198 1.177 1.165 1.158

Table 7 Mean relative error against the number of diffusion episodes in the CitHepTh dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.373 1.283 1.267 1.216 1.206 1.180 1.167 1.160 1.152 1.139

WEDP-Exp 1.379 1.296 1.262 1.210 1.201 1.158 1.133 1.129 1.119 1.104
EM 1.685 1.603 1.586 1.536 1.528 1.492 1.474 1.469 1.463 1.449

Table 8 Mean relative error against the number of diffusion episodes in the DBLP dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.231 1.206 1.235 1.238 1.208 1.205 1.198 1.192 1.185 1.177

WEDP-Exp 1.207 1.207 1.219 1.197 1.205 1.233 1.189 1.179 1.188 1.175
EM 1.715 1.731 1.697 1.703 1.619 1.608 1.568 1.517 1.517 1.467

Table 9 Mean relative error against the number of diffusion episodes in the Cora dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.636 1.36 1.268 1.297 1.251 1.252 1.282 1.251 1.218 1.247

WEDP-Exp 1.600 1.422 1.238 1.255 1.240 1.233 1.229 1.264 1.209 1.239
EM 1.656 1.741 1.653 1.619 1.573 1.549 1.555 1.537 1.592 1.595
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In Table 3, n and m show the number of nodes and edges in the network, respectively. 
Moreover, avg_n,maxn , and minn represent the average, maximum, and minimum num-
ber of nodes activated in diffusion episodes.

In Figs. 2, 3, 4, 5, 6, 7, 8, and 9, MAE is plotted against the number of diffusion epi-
sodes for each dataset.

In Tables  4, 5, 6, 7, 8, 9, 10, and 11, MRE is shown against the number of diffusion 
episodes for different datasets. The number of diffusion episodes used for learning is S. 
Bold values show the best result.

As it is clear from the results, WEDP shows better performance in terms of both 
mean absolute error and mean relative error than EM. We also observe that by 
increasing the number of diffusion episodes, all methods result in less error in learn-
ing diffusion probabilities. Hence, in this setting, WEDP has better performance. 
Also, we observed that WEDP-Exp had less error than WEDP-Lnr in some datasets, 

Table 10 Mean relative error against the number of diffusion episodes in the Google + dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.513 1.380 1.345 1.375 1.286 1.346 1.305 1.257 1.271 1.218
WEDP-Exp 1.392 1.368 1.367 1.333 1.328 1.397 1.235 1.240 1.242 1.266

EM 1.608 1.620 1.564 1.481 1.471 1.574 1.561 1.472 1.388 1.390

Table 11 Mean relative error against the number of diffusion episodes in the Twitter dataset

Bold values show the best result (the lowest in each column)

Method\S 10 20 30 40 50 60 70 80 90 100

WEDP-Lnr 1.250 1.176 1.277 1.146 1.206 1.180 1.141 1.161 1.159 1.161
WEDP-Exp 1.147 1.187 1.306 1.157 1.132 1.147 1.125 1.178 1.131 1.184

EM 1.715 1.658 1.647 1.564 1.553 1.551 1.503 1.497 1.503 1.505
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Fig. 10 Training time (Log-Scale) in each dataset
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demonstrating the importance of weighing lower the data obtained from diffusion 
episodes in which multiple parent nodes activated the child node.

Figure  10 shows the training time of methods in each dataset for 100 diffusion 
episodes.

As shown in Fig. 10, WEDP has less training time than EM, which is a significant 
improvement in learning diffusion probabilities. The reason is that EM uses an itera-
tive algorithm to learn diffusion probabilities. On the other hand, WEDP estimates 
diffusion probabilities directly from diffusion episodes. Learning diffusion probabili-
ties can be done through one scan of diffusion episodes. As a result, WEDP has fewer 
errors than EM, and its training time is much shorter than that of EM.

Experiment 2

In experiment 2, we evaluate CT-WEDP and CT-RWEDP performance. We compare 
them with the following methods:

• EM: Saito et  al. (2008) formulated the problem of learning diffusion probabilities 
from a set of diffusion episodes as a likelihood function and used the EM algorithm 
to optimize it. We refer to this method as EM.

• CTIC: Saito et al. (2009) formulated the problem of learning diffusion probabilities 
considering the continuous time of nodes’ activation times as a likelihood function. 
They used the EM algorithm to learn diffusion probabilities and time delays of node 
activations. We refer to this method as CTIC.

• DAIC: Lamprier et  al. (2016) proposed a method similar to EM to learn diffusion 
probabilities for ICM by focusing on the partial order of nodes’ activation times 
instead of exact activation times. They also considered exponential prior distribu-
tions of the diffusion probabilities to improve robustness. We refer to this method as 
DAIC.

We evaluate methods for the prediction of information diffusion. In a test diffusion 
episode, we must predict which nodes will be activated at the end. We use the training 
time of methods and F1-Score for evaluation, which is the harmonic average of precision 
and recall. Recall considers the ratio of nodes activated in a diffusion episode that has 
been retrieved as activated in the simulation. Precision is the ratio of correct activation 
predictions.

We use three datasets in this experiment. We considered the edges that, at least in one 
diffusion episode, the parent node activated before the child node:

Table 12 Statistics of Datasets for Experiment 2

Dataset n m c avg‑n max‑n min‑n

Digg 36,031 338,741 3553 564.75 10,404 108

Twitter 6500 512,144 70,708 2.53 1390 1

MemeTracker 16,285 161,385 62,097 5.79 1269 1
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• The Digg news portal lets users vote on stories (articles, blog posts, videos, etc.). The 
dataset is described in Hogg and Lerman (2012). Voting on each story was consid-
ered a diffusion episode.

• Twitter: In this dataset, we collected tweets from a set of Twitter users between Janu-
ary 1st, 2018, and March 19th, 2018. We started with ten random users. Next, we 
took 1000 followers from the collected users, which had more followers within the 
collected users. We followed this approach 10 times. We considered each hashtag 
propagation as a diffusion episode.

• MemeTracker: The MemeTracker corpus has diffusion episodes of short phrases. This 
dataset is described in Leskovec et  al. (2009). We considered this dataset between 
August 1st, 2008, and April 1st, 2009. We consider a link from blog A to blog B if 
blog B has at least one post having a post from blog A in it. In this way, we can con-
clude that blog B is watching blog A’s posts, and hence, diffusion will occur from blog 
A to B.

Table 12 gives some statistics for experiment datasets.
In Table 12, all parameters are the same as in Table 2. Moreover, parameter c shows 

the number of diffusion episodes in each dataset.

Table 13 F-Score for each dataset

The best results (the lowest in each column) is highlithed as bold

Method\dataset Digg Twitter MemeTracker

CT-WEDP-Lnr 0.133 0.231 0.133

CT-WEDP-Exp 0.052 0.316 0.155

CT-RWEDP 0.150 0.330 0.203
EM 0.069 0.214 0.100

CTIC 0.040 0.248 0.049

DAIC 0.126 0.249 0.154
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Fig. 11 Training time (Log-Scale) in each dataset
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Table 13 shows the result for the F1-Score for each dataset.
In all datasets, CT-RWEDP shows better performance. In this CT-RWEDP, we 

used CT-WEDP with the weighting scheme. In the Digg dataset, we employed CT-
WEDP-Lnr in CT-RWEDP because it has better performance than other methods. 
In the Twitter and MemeTracker datasets, we employed CT-WEDP-Exp in CT-
RWEDP because it has a higher F1-Score than other methods. These results show 
that CT-WEDP and CT-RWEDP are suitable methods for learning diffusion proba-
bilities in real-world social networks. As a result, learning regularization terms with 
reliable diffusion probabilities can be helpful when learning data for some edges in 
the network is less than others.

Figure 11 shows the training time of methods for each dataset.
CT-WEDP and CT-RWEDP have less training time than EM-based methods (EM, 

CTIC, DAIC). The reason is that EM-based methods use the EM algorithm in their 
learning phase, which is an iterative algorithm. Thus, CT-WEDP and CT-RWEDP 
have less training time and a better F1-Score, which shows that they are appropriate 
for learning diffusion probabilities in real-world social networks.

Conclusion and future work
In this paper, we tackled the problem of learning diffusion probabilities for a well-
known diffusion model, ICM. Next, we proposed a method to learn diffusion prob-
abilities for ICM considering continuous cascade time. Consequently, it can be used 
in information diffusion prediction. We also used some features of social networks to 
learn diffusion probabilities from edges with more reliable data. Our methods learn 
diffusion probabilities from diffusion episodes available for use in learning. The exper-
iments showed that our methods reduce error. As a result of the method proposed in 
this paper, probabilities are learned in much less time, making it more scalable.

Based on promising results with this approach, we can expect a variety of develop-
ments in the proposed method in the future. For instance, we intend to consider the 
dynamics of social networks. Users and the relationships between them change over 
time and it will be helpful to design methods that consider these changes. We can also 
use users’ profiles and content, propagated to result in a model close to true users’ 
behaviors.
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