
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

London and Pluhár  Applied Network Science            (2023) 8:72  
https://doi.org/10.1007/s41109-023-00600-4

Applied Network Science

Intersection of random spanning trees 
in complex networks
András London1,2* and András Pluhár1 

Abstract 

In their previous work, the authors considered the concept of random spanning tree 
intersection of complex networks (London and Pluhár, in: Cherifi, Mantegna, Rocha, 
Cherifi, Micciche (eds) Complex networks and their applications XI, Springer, Cham, 
2023). A simple formula was derived for the size of the minimum expected intersec-
tion of two spanning trees chosen uniformly at random. Monte Carlo experiments 
were run for real networks. In this paper, we provide a broader context and motiva-
tions for the concept, discussing its game theoretic origins, examples, its applications 
to network optimization problems, and its potential use in quantifying the resilience 
and modular structure of complex networks.

Keywords: Random spanning trees, Small-world networks, Modularity, Network 
resilience, Spanning tree game

Introduction
Given an undirected connected graph G, a spanning tree T of G is a subgraph that is a 
tree containing all the vertices of G. In the case of weighted graphs, the concept of mini-
mum spanning tree, that is, a spanning tree with the smallest possible total edge weight, 
is of extraordinary importance. Spanning trees play a key role in many applications, such 
as network design, including computer networks, telecommunication networks, trans-
portation networks, water supply networks, and electrical grids, see for example (Wu 
and Chao 2004); clustering, see for example the single linkage method and applications 
in finance (Mantegna 1999; Tola et al. 2008); or image registration and segmentation (Ma 
et al. 2000; Xu and Uberbacher 1997), just to mention a few, without being exhaustive.

Spanning trees in complex networks have been studied from various perspectives. 
They have been considered as skeletons of the network (Kim et al. 2004), used for dimen-
sion reduction (Mantegna 1999), or used for efficient visualization of evolving networks 
(Chen and Morris 2003).

In this work, we provide a different perspective of using spanning trees to get a deeper 
understanding of the structure of small-world networks. We start with a closely related 
game-theoretic concept.
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An edge‑tree game

Alon et  al. (1995) studied the following two-player zero-sum game on a connected 
graph G. In a round, tree player chooses a spanning tree T of G, while edge player 
chooses an edge e of G. The payoff to the edge player is defined by the function 
cost(T , e) as follows. If e is an edge of T, then cost(T , e) = 0 , while if e is not in T, then 
the cost is the length of the unique cycle (also called fundamental cycle) formed by 
adding e to T. They derived bounds for cost(T , e) for various classes of graphs and 
pointed out that the game arises in the context of the k-server problem, an online 
optimization problem on road networks.

Remarks

Motivated by the work of Alon et al., Bartal (1996) introduced the idea of hierarchi-
cally well-separated tree, or HST, which proved to be extremely useful in studying 
randomized algorithms on finite metric spaces. Essentially, a metric space M can be 
approximated with polynomially many randomly chosen weighted trees of a special 
property. (The property is that starting from the root the edge weights decrease expo-
nentially.) Note that later Fakcharoenphol et al. gave the optimal form of this approxi-
mation (Fakcharoenphol et al. 2003).

Tree intersection game

Inspired by the ideas above we introduce a similar one replacing the edge player with 
another tree player. In this scenario, we are given a connected graph G, two players, 
Big and Small , choose a spanning tree, TB and TS of G, respectively, without knowing 
of each other’s choices. The goal of Big is to maximize the number of common edges 
of TB and TS , i.e. the intersection of the two trees, while the goal of Small is the oppo-
site. Finding optimal strategies and the value of this game seems far from obvious 
for general graphs. Optimal strategies can be found among mixed strategies, meaning 
that players choose each spanning tree with a probability given by a probability distri-
bution over all spanning trees of the graph.

For some classes of graphs, the optimal strategy for both players is to choose a uni-
form random spanning tree. To compute the payoff (i.e. the intersection of the chosen 
spanning trees) in this case, we come to the problem of intersection of random span-
ning trees. This is the number of common edges of two spanning trees chosen uni-
formly at random.

Although this choice is not an optimal strategy (of any player) of the game in gen-
eral, the parameter it provides (the size of the intersection) captures a lot about the 
structure of a graph. For real small-world networks, the size of the mean intersec-
tion provides powerful insights into their structure. It seems that mainly the modular 
structure of the network and the number of weak links (i.e. links between communi-
ties) Granovetter (1973) determine the value of the parameter, since links between 
communities tend to be part of the spanning trees of the network. Roughly speaking, 
one expects large spanning tree intersections for networks with high Newman mod-
ularity, since the edges between communities, the weak links, are often overrepre-
sented in the spanning trees. On the other hand, interestingly, our results suggest that 
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network heterogeneity, i.e. heterogeneous degree distribution, does not itself indicate 
higher spanning tree overlap as the expected minimum.

Remarks

A somewhat similar game was introduced and analyzed by Gueye et  al. (2010), often 
referred to as the secure broadcast game, see e.g. Kottegoda (2020). In this game, a broad-
caster B located in a network node wants to broadcast a message to all other nodes. This 
is done by choosing a spanning tree. The other player, called eavesdropper E , can observe 
the transmission along a single link. B wins the game if the spanning tree avoids E ’s edge, 
while E wins if the tree includes it. The game has been used for an interpretation of the 
p-modulus theory of graphs, see (Kottegoda 2020; Albin et al. 2021).

The rest of the paper is organized as follows. At first, we briefly introduce spanning 
tree games on graphs and show simple examples. Then we discuss the main concepts 
and definitions we are dealing with. We derive a lower bound on the expected intersec-
tion of two random spanning trees. This is done by considering a more general problem 
using hypergraphs. Finally, we present experimental results on both synthetic network 
models and real-world networks, as well as some possible directions for future work.

Throughout this paper, G = (V ,E) will be a finite, connected, undirected and 
unweighted graph with |V | = n and |E| = m.

Spanning tree games on graphs
The games mentioned in the Introduction, (Alon et al. 1995; Kottegoda 2020), and the 
tree overlap game are so-called matrix games, which are in a sense perfectly described. 
The available (pure) strategies of Big can be listed as R1, . . . ,Rk , while those of Small as 
O1, . . . ,Oℓ . Then matrix A such that aij , the element in the ith row and jth column is the 
payoff of Big playing strategy Ri , assuming Small plays the strategy Oj.

The Minimax theorem, see e.g. at Chvátal’s book (Chvatal 1983), states that there are 
probability distributions x and y on the rows and columns, which are the optimal strate-
gies for the players. These strategies can be computed efficiently by linear programming. 
However, in the case of combinatorial games the number of strategies is usually too large 
to consider this approach.

Case of G is a union of two disjoint spanning trees

This construction plays an important role in the solution of the Shannon switching game 
by Lehman (1964). For a given simple graph G two players, Maker and Breaker, alter-
nately claim the edges of G by taking turns. Maker wins by claiming a connected span-
ning subgraph, otherwise Breaker wins.

Theorem 1 (Lehman 1964) For a graph G, Maker as a second player wins the Shannon 
switching game on G if and only if G contains two edge-disjoint spanning trees.

Observation 1 If a graph G on n vertices is the union of two disjoint spanning trees, 
then the number of different trees in G is at least 2n−1.
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Proof For a simple argument we recall the celebrated Erdős-Selfridge heorem (Erdös 
and Selfridge 1973). A hypergraph F = (V ,H) is a ground set V (nodes) and H ⊂ 2V  
(hyperedges). A Maker-Breaker game on F  is as before, the players take the elements of 
V and Maker wins by taking all elements of an A ∈ H.

Theorem  2 (Erdös and Selfridge 1973) Breaker can win a Maker-Breaker game 
F = (V ,H) , as a first player, if �(F) := A∈H 2−|A| < 1.1

Now let V = E(G) , the edge set of G and H be the set of spanning trees. Every span-
ning tree has n− 1 edges, that is �(F) = 2n−1|H| . Since Maker wins by Theorem 1, by 
Theorem 2 we have �(F) ≥ 1 , which gives 2n−1 ≤ |H| . 

Observation 2 If a graph G on n vertices is the union of two disjoint spanning trees, 
then the value of the tree intersection game is (n− 1)/2.

Proof Let G be the union of T1 and T2 . Big takes both T1 and T2 with probabil-
ity 1/2− 1/2 . If for a spanning tree T, |T ∩ T1| = i , then |T ∩ T2| = n− i − 1 , so the 
expected payoff of Big is (n− 1)/2 . On the other hand, Small can follow the same strat-
egy with expected payoff (n− 1)/2 .  �

Some other cases

Observation 3 The value of the tree intersection game is 2(n− 1)/n , if G = Kn.

Proof If n is even, we can divide the edge set of Kn to n/2 disjoint trees T1, . . . ,Tn/2 . 
Taking those by probability 2/n each, is optimal strategy for both players, with value 
2(n− 1)/n . If n is odd, we divide the edge set into (n− 1)/2 Hamiltonian circuits 
C1, . . . ,C(n−1)/2 , and within each Ci we consider the Hamiltonian paths Pi

1, . . . ,P
i
n , where 

Pi
j ⊂ Ci missing the j th edge of Ci . Taking the appropriate uniform distribution on 

{Pi
j }i,j one observes that this is optimal for both players and gives expected intersection 

2(n− 1)/n .  �

Observation 4 If graph G has an edge-transitive automorphism group,2 then the value 
of the tree overlap game is (n− 1)2/m , where m = |E(G)|.

Proof Take the uniform distribution of a arbitrary fixed tree T over the automorphism 
group. We claim that this is optimal for both players. Every edge e ∈ E(G) is covered by 
probability (n− 1)/m , which gives the expected intersection (n− 1)2/m of T with any 
fixed tree T ′ .  �

�

1 In the original form Maker is the first player, and the �(F) < 1/2 condition is needed.
2 Automorphism of a graph is mapping onto itself that preserves the edge-vertex connectivity. The set of automor-
phisms of a given graph, under the composition operation, forms a group, the automorphism group of the graph.
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Remarks

One can argue that Observation 3 is a simple consequence of Observation 4. It is still 
worth separating them, since the proof of Observation 3 uses only linear number of 
trees, while the proof of the other may need super exponential number of trees. It is 
not clear if this number can be reduced in general.

Random spanning trees
Let TG be the set of all spanning trees of a graph G. The cardinality of TG , i.e. the num-
ber of spanning trees of G, is explicitly known by Kirchhoff ’s matrix tree theorem and 
can be calculated as the product of the positive eigenvalues of the graph Laplacian 
matrix L, divided by n. Moreover, it can be calculated in polynomial ( ∼ n3 ) time, by 
removing the ith row and ith column (for any i) of L and calculate the determinant of 
the remaining (n− 1)× (n− 1) matrix. This allows us to precisely define the uniform 
random spanning trees, i.e. the uniform probability distribution over all spanning 
trees. Note also that for an edge e ∈ E(G) we can compute the probability p(e) that 
the edge e is in a uniform random spanning tree of G in polynomial time. This will be 
important in the use of Observation 5.

Another results of Kirchhoff states that the probability of e ∈ T  for any edge e and 
a random tree T equals to the effective resistance of that edge, when considering the 
graph as an electrical network with unit edge conductance. For more details and com-
putation methods see (Ellens et al. 2011).

Although we are able to determine what the probability of picking a spanning tree 
uniformly at random is, it is not straightforward how to actually generate one. Several 
algorithms have been provided to generate random spanning trees of an undirected 
graph, see, for instance Broder’s (1989), Wilson’s (1996) algorithms. In our experi-
ments we utilized Wilson’s algorithm available in Python package DPPy (Gautier et al. 
2019).

We should note here that more general random spanning trees can be considered 
given any probability mass function over TG . Related problems and results are dis-
cussed e.g. in Albin et al. (2021). In this paper, we consider only the uniform distribu-
tion case.

Minimum expected intersection of random spanning trees

In order to provide a lower bound on the expected value of the number of common 
edges of two random spanning trees of G we consider a more general problem on hyper-
graphs. We point out that the calculations can be easily done directly for graphs and its 
random spanning trees.

Now, let F = (V ,H) be a uniform hypergraph, i.e. all hyperedge A ∈ H contains the 
same number of nodes. Let |V | = µ , |H| = κ and |A| = ν for each hyperedge A ∈ H.

Let A and B be two hyperedges of F  chosen independently with probability 1/κ . The 
expected hyperedge intersection of hypergraph F  is E(|A ∩ B|).

The key theorem that works for any hypergraph H is the following.

Theorem 3 For any hypergraph F  the expected hyperedge intersection is at least ν2/µ.
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Proof The degree dF (x) of a node x ∈ V  is the number of hyperedges containing x. 
Then 

∑

x∈V dF (x) = κν , while the average degree is dF = κν/µ . If we pick two hyper-
edges A and B randomly, then the probability that they both contain a node x with 
degree dF (x) is

and hence the expected number of edges in the intersection is

by noting that the expectation is minimized when all nodes have the same degree.  �

Observation 5 Let F = (V ,H) and p(x) = Pr(x ∈ A) , where A ∈ H chosen uniformly 
at random. The exact hyperedge intersection value of F  is 

∑

x∈V p2(x).3

Now let us define F = (V ,H) as follows. Each node x ∈ V  of F  corresponds to an 
edge e ∈ E of a graph Gand a hyperedge A ∈ H corresponds to a spanning tree T of G. 
That is, V (F) = E(G) and H = TG . Hence, F  is an ( n− 1)-uniform hypergraph with 
|V | = m , and using Theorem 3 we get the following lower bound on the expected span-
ning tree intersection for any graph.

Corollary Given a connected graph G of n nodes and m edges and T1,T2 ∈ TG two ran-
dom spanning trees of G. The minimum expected intersection of T1 and T2 , i.e. the mini-
mum expected spanning tree intersection of G, is (n− 1)2/m.

Remarks

In the special case where G is the union of two spanning trees the minimum expected 
intersection (n− 1)/2 is easily obtained using Theorem  3, by noting that in this case 
ν = n− 1 and µ = 2(n− 1) . Observe that it is equal to the value of the game in the 
2-player game on this graph introduced above.

For G = Kn , we have ν = n− 1 and µ =

(

n
2

)

 , according to Theorem 3 the minumum 

expected intersection is 2(n− 1)/n , which is the value of the game in the 2-player game 
on this graph introduced above.

Experiments
In this section, through numerical experiments, we investigate how the experimentally 
calculated intersection values (using Monte-Carlo simulations) differ from the previ-
ously derived minimum expected intersection. To provide a simple metric that shows 
how likely a network’s random spanning trees are to intersect, compared to the mini-
mum expected intersection, we use the following normalized score:

Pr(x ∈ A ∩ B) =

(dF (x)
2

)

κ2

E(|A ∩ B|) =
∑

x∈V

(dF (x)
2

)

κ2
≥ µ

(

κν
µ

)2

κ2
=

ν2

µ
,

3 As we mentioned, the value p(x) is polynomially computable if F  is the set of spanning trees of a graph G.
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RTI takes values between 0 and 1. RTI = 0 means that the empirical mean intersection 
is equal to the minimum expected intersection, while RTI = 1 if and only if the network 
is a tree. Note that the maximum possible intersection of two spanning trees is n− 1 
(when they are identical), but we used n in the formula to avoid division by zero.

We conducted our experiments using the following setup. For each network we ran-
domly sampled 100 pairs of spanning trees with bootstrap sampling (i.e. a sample may 
be used multiple times) and computed the empirical mean intersection and the corre-
sponding standard deviation value. This is called the observed mean intersection. The 
minimum expected intersection, according to the results of the previous section was 
calculated as (n− 1)2/m.

Experiments on random model networks

At first we performed experiments on some synthetic networks including Erdős-Rényi 
random graphs G(n, p) Erdős and Rényi (1960) (i.e. a graph of n nodes where the prob-
ability of drawing an edge between any pair of nodes is p) with n = 100, 200, 500, 1000 
and p = 0.1, 0.2, . . . , 1 ; random regular graphs RR(n,  d) (i.e. a random graph of n 
nodes where each node has degree d) with n = 100, 200, 500, 1000 and d = 3, 4, . . . , 9 ; 
Preferential attachment networks PA(n, k) Barabási and Albert (1999) (i.e. a network 
of n nodes created by a process where at each step a new node is added to the net-
work and connected to k already existing nodes) with n = 100, 200, 500, 1000 and 
k = 1, 2, . . . , 10 ; Watts-Strogatz networks WS(n, k, p) Watts and Strogatz (1998) (i.e. 
starting from a 4-regular network of n nodes each edge is rewired with probability p) 
with n = 100, 200, 500, 1000 , k = 4 and p = 0.1, 0.2, . . . , 1 . For each parameter we gen-
erated 10 graphs (e.g. 10 graphs for G(1000, 0.1) or BA(1000, 2), etc.). For each graph 
we sampled 100 pairs of spanning trees. Then the sample means and standard devia-
tions were calculated.

The results for n = 1000 are shown in Fig. 1 and suggest that in case of random net-
work models the minimum expected intersection value is equal to the observed 
(empirical) intersection value obtained by the simulations. Similar conclusions can be 
drawn for n = 100, 200, 500 . For almost all cases the standard deviation was close to 
zero confirming the robustness of the simulations. An interesting observation is that 
heterogeneous degree distribution (e.g. the power-law), by itself does not indicate a 
higher spanning tree intersection value as minimally expected. A deeper investigation 
of the intersection value as the function of the model graph’s parameter (such as the 
parameter p for WS(n, k, p), or power-law exponent of PA graphs) could be the sub-

ject of another study. For example, since m ∝

(

n
2

)

p for G(n, p) we expect an inter-

section size 2/p, which is confirmed by our simulations (Fig. 1 top right).
In this work we are more interested in that how the minimum expected value differs 

from the real one in the case of real complex networks. In the next section we present 
our experiments considering networks with various global structural characteristics.

RTI =
observed mean −min. expected

maximum −min. expected
=

observed mean −
(n−1)2

m

n− (n−1)2

m

.
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Fig. 1 Experimental results on synthetic networks: Erdős–Rényi, random regular, Barabási–Albert and Watts–
Strogatz (top-down) with 1000 nodes each. Red diamonds (with red lines indicating standard deviaton) show 
the observed results based on bootstrap Monte-Carlo experiments, while blue bars show the minimum 
expected intersection values



Page 9 of 12London and Pluhár  Applied Network Science            (2023) 8:72  

Experiments on real‑networks

To perform experiments on real-world networks we considered the largest connected 
component in the case of unconnected networks and we did not consider the direc-
tion and/or weight of the edges in the case of directed and/or weighted networks, 
respectively.

We compared the RTI score with some metrics that are commonly used as indicators 
of the small-world structure of a network. These are the network density ρ = m/

(n
2

)

 , the 
clustering coefficient cc = 3× number of triangles/

(n
3

)

 and the average shortest path 
length ℓ = 1/

(n
2

)

·
∑

i �=j ℓij , where ℓij is the length of the shortest path between nodes i 
and j.

Table 1 shows the results on 15 real-world complex networks including social, biological 
and technological networks as well (the network data are available on the websites Mark 
Newman’s network data, Network Repository, Kunegis 2013, and Stanford Large Network 
Dataset Collection). The network size varies from n = 15 (marriage ties between Florentine 
families) to n = 33, 696 (Enron email communication network). The average shortest path 
length varies between ℓ = 2.235 (collaboration network of jazz musicians) and ℓ = 6.053 
(collaboration network of the fields general relativity and quantum computing based on 
Arxiv articles), except for the US power grid and EuroRoad technological networks with 
ℓ = 19 and ℓ = 18.4 , respectively. Almost all networks have a relatively high clustering 
coefficient providing a strong small-world property of the studied networks.

The highest RTI scores were obtained for the Erdős co-authorship network (RTI=0.493) 
and the Enron email network (RTI=0.376), for which the difference between the empiri-
cally observed mean and the minimum expected intersection value is more than 10,000, i.e. 
more than 5% of the total number of edges. Figure 2 shows the RTI values in terms of the 
value (observed mean - min. expected)/m, i.e. the difference between the real tree intersec-
tion value and the expected lower bound as a percentage of the total number of edges in 

Table 1 Network statistics and random spanning tree intersection values of some real-world 
network. Data sources: Mark Newman’s network data, Network Repository, Kunegis (2013), Stanford 
Large Network Dataset Collection

network n m ρ cc ℓ Min. exp. Obs. mean RTI

Florentine 15 20 0.190 0.191 2.486 9.8 10.5 (0.888) 0.166

Zachary 34 78 0.140 0.256 2.408 13.961 15.00 (2.291) 0.052

Dolphins 62 159 0.084 0.309 3.357 23.40 28.34 (2.19) 0.131

Iceland 75 114 0.041 0.157 3.200 48.035 57.21 (2.08) 0.353

Adjnoun 112 425 0.068 0.157 2.535 29.00 38.8 (4.3) 0.120

Jazz 198 2742 0.141 0.520 2.235 14.15 23.51 (3.66) 0.051

C-elegans 297 2148 0.049 0.180 2.455 40.79 57.8 (5.5) 0.067

NetSci 379 914 0.013 0.431 6.042 156.328 182.12 (7.98) 0.116

Wiki-Vote 889 2914 0.007 0.127 4.096 270.61 430.47 (9.66) 0.259

EuroRoad 1039 1305 0.002 0.035 18.395 825.63 853.5 (7.07) 0.131

Polblogs 1222 16717 0.022 0.226 2.737 89.18 300 (10.55) 0.186

Arxiv GR-QC 4158 13428 0.002 0.629 6.053 1287 2102 (21.65) 0.284

Erdős 4491 7428 0.0006 0.042 5.51 3352 4160 (17.45) 0.493

Power grid 4941 6594 0.0005 0.103 18.99 3700.87 3921 (16.71) 0.178

Email-Enron 33696 180811 0.0003 0.085 4.025 6279.225 16602 (64.73) 0.376
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the network. The Iceland sexual contact network, the Arxiv collaboration network and the 
Wiki-Vote network also provided high RTI (equals 0.353, 0.284 and 0.259, resp.).

Spanning tree intersection and modularity

Comparing RTI and Newman modularity scores provides another interesting aspect of ran-
dom tree intersection. Modularity is calculated as

given a partition C of the nodes, such that Ci ∈ C is the class to which node i belongs, 
aij is the element of the network’s adjacency matrix indicating whether nodes i and j are 
connected or not, di is the degree (number of connections) of node i, while δ(Ci,Cj) = 1 
if i and j belong to the same class and 0 otherwise. Q is computed by considering the 
community structure (partition) obtained by the “Leuven” fast greedy method (Blondel 
et al. 2008).

Among the investigated networks the Word adjacencies (Adjnoun), the Jazz musician, the 
Zacharay and the C-elegans networks show the lowest RTI score (in the range 0.051–0.12) 
and the lowest modularity score (in the range 0.293–0.364) as well. On the other hand, 
Erdös, Email-Enron, Iceland and Arxiv GR-QC (have RTI scores that are among the high-
est) have high modularity scores between 0.504 and 0.793, see Fig. 2. However, Powergrid, 
Euroroad and NetSci networks have the highest modularities (0.838–0.934), but we need to 
note here that, according to Good et al. (2010), increasing n (or increasing number of clus-
ters) generally tend to increase maxQ . These suggest that not only modularity, but prob-
ably also the density and the clustering coefficient correlates with RTI, the former positively 
(0.34, on the investigated dateset), while the latter two negatively ( − 0.5 and − 0.33, resp.). A 
Deeper analysis on correlations and relationship of RTI to other metrics remains the topic 
of a future study.

Conclusions
In this work we investigated that how randomly chosen spanning trees are likely to 
intersect in order to gain some new insights on the macrocopic structure of complex 
networks. First, we derived a formula for the lower bound of the expected value of the 
intersection (i.e. the number of common edges of two randomly chosen spanning trees) 

Q =
1

2m

∑

i<j

[

aij −
didj

2m

]

δ(Ci,Cj),

Fig. 2 Relationship between RTI and modulaity (left) and RTI and clustering (right) on the investigated 
real-world dataset. Dot size is adjusted according to the number of nodes
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as a function of the number of nodes and edges of the network. We compared this value 
with the empirical (real) intersection value (obtained by simulation experiments) and 
found that in case of random model networks, such as the preferential attachment or the 
Watts-Strogatz small world network model, there is no significant difference between 
the two values.

On the other hand, and more interestingly, experiments show that for some real net-
works, the empirical mean intersection is very different from the expected minimum, 
suggesting the existence of special links that are likely to appear in most spanning trees 
of the network. Comparing the networks’ Newman modularity with the introduced 
random tree intersection (RTI) score we observed a positive correlation on the investi-
gated network dataset and we hypothesise that network size, density and modularity are 
the main drivers of the RTI value. This is consistent with the existence of “weak links” 
(Granovetter 1973), connecting separate clusters (or modules) of the network, as they 
are often over-represented in the spanning trees of the network. Looking at RTI in this 
context, it could be seen as a measure of network resilience, as the edges that appear 
more often in the spanning trees are more crucial for the connectivity of the network. 
This suggest at least two direction of future work. Firstly, the relationship between the 
probability of an edge being in a randomly chosen spanning tree and the edge between 
value seems interesting. Secondly, network connectivity and resilience are worth exam-
ining from this perspective. Other possibilities include deriving the exact bounds of 
spanning tree intersection for random model networks, and examining the relationship 
between the spanning tree intersection value and widely used global structural metrics 
of complex networks in more detail.
Acknowledgements
The authors would like to thank the anonymous referee for carefully reading the manuscript.

Author contributions
All authors contributed to the conception and design of the study.

Funding
AL is partially supported by the National Research, Development and Innovation Office - NKFIH, Fund No. SNN-13564.

Availability of data and materials
The data and all implementations in Python language used in the current study are available from the corresponding 
author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 21 February 2023   Accepted: 28 September 2023

References
Albin N, Clemens J, Hoare D, Poggi-Corradini P, Sit B, Tymochko S (2021) Fairest edge usage and minimum expected 

overlap for random spanning trees. Discrete Math 344(5):112282
Alon N, Karp RM, Peleg D, West D (1995) A graph-theoretic game and its application to the k-server problem. SIAM J 

Comput 24(1):78–100
Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
Bartal Y (1996) Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of 37th 

conference on foundations of computer science. IEEE, pp 184–193
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 

Theory Exp 2008(10):10008
Broder AZ (1989) Generating random spanning trees. FOCS 89:442–447



Page 12 of 12London and Pluhár  Applied Network Science            (2023) 8:72 

Chen C, Morris S (2003) Visualizing evolving networks: minimum spanning trees versus pathfinder networks. In: IEEE 
symposium on information visualization 2003 (IEEE Cat. No. 03TH8714). IEEE, pp 67–74

Chvatal V (1983) Linear programming. Macmillan, New York
Ellens W, Spieksma FM, Van Mieghem P, Jamakovic A, Kooij RE (2011) Effective graph resistance. Linear Algebra Appl 

435(10):2491–2506
Erdős P, Rényi A et al (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60
Erdös P, Selfridge JL (1973) On a combinatorial game. J Comb Theory Ser A 14(3):298–301
Fakcharoenphol J, Rao S, Talwar K (2003) A tight bound on approximating arbitrary metrics by tree metrics. In: Proceed-

ings of the thirty-fifth annual ACM symposium on theory of computing, pp 448–455
Gautier G, Polito G, Bardenet R, Valko M (2019) DPPy: DPP sampling with python. J Mach Learn Res 20:180–1
Good BH, De Montjoye Y-A, Clauset A (2010) Performance of modularity maximization in practical contexts. Phys Rev E 

81(4):046106
Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380
Gueye A, Walrand JC, Anantharam V (2010) Design of network topology in an adversarial environment. In: International 

conference on decision and game theory for security. Springer, pp 1–20
Kim D-H, Noh JD, Jeong H (2004) Scale-free trees: the skeletons of complex networks. Phys Rev E 70(4):046126
Kottegoda K (2020) Spanning tree modulus and secure broadcast games. Kansas State University, Manhattan, Kansas
Kunegis J (2013) KONECT—the Koblenz network collection. In: Proceedings of the international conference on world 

wide web companion, pp 1343–1350. http:// dl. acm. org/ citat ion. cfm? id= 24881 73
Lehman A (1964) A solution of the Shannon switching game. J Soc Ind Appl Math 12(4):687–725
London A, Pluhár A (2023) Intersection of random spanning trees in small-world networks. In: Cherifi H, Mantegna RN, 

Rocha LM, Cherifi C, Micciche S (eds) Complex networks and their applications XI. Springer, Cham, pp 337–345
Ma B, Hero A, Gorman J, Michel O (2000) Image registration with minimum spanning tree algorithm. In: Proceedings 

2000 international conference on image processing (Cat. No. 00CH37101), vol 1. IEEE, pp 481–484
Mantegna RN (1999) Hierarchical structure in financial markets. Eur Phys J B Condens Matter Complex Syst 11(1):193–197
Mark Newman’s network data. http://www-personal.umich.edu/∼mejn/netdata/. Accessed 02 Feb 2023
Network Repository. https:// netwo rkrep osito ry. com/. Accessed 02 Feb 2023
Stanford Large Network Dataset Collection. https:// snap. stanf ord. edu/ data/. Accessed 02 Feb 2023
Tola V, Lillo F, Gallegati M, Mantegna RN (2008) Cluster analysis for portfolio optimization. J Econ Dyn Control 

32(1):235–258
Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442
Wilson DB (1996) Generating random spanning trees more quickly than the cover time. In: Proceedings of the twenty-

eighth annual ACM symposium on theory of computing, pp 296–303
Wu BY, Chao K-M (2004) Spanning trees and optimization problems. Chapman and Hall, New York
Xu Y, Uberbacher EC (1997) 2d image segmentation using minimum spanning trees. Image Vis Comput 15(1):47–57

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://dl.acm.org/citation.cfm?id=2488173
https://networkrepository.com/
https://snap.stanford.edu/data/

	Intersection of random spanning trees in complex networks
	Abstract 
	Introduction
	An edge-tree game
	Remarks

	Tree intersection game
	Remarks


	Spanning tree games on graphs
	Case of G is a union of two disjoint spanning trees
	Some other cases
	Remarks


	Random spanning trees
	Minimum expected intersection of random spanning trees
	Remarks


	Experiments
	Experiments on random model networks
	Experiments on real-networks
	Spanning tree intersection and modularity


	Conclusions
	Acknowledgements
	References


