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Abstract 

Random graphs are increasingly becoming objects of interest for modeling networks 
in a wide range of applications. Latent position random graph models posit that each 
node is associated with a latent position vector, and that these vectors follow some 
geometric structure in the latent space. In this paper, we consider random dot product 
graphs, in which an edge is formed between two nodes with probability given by the 
inner product of their respective latent positions. We assume that the latent position 
vectors lie on an unknown one-dimensional curve and are coupled with a response 
covariate via a regression model. Using the geometry of the underlying latent position 
vectors, we propose a manifold learning and graph embedding technique to pre-
dict the response variable on out-of-sample nodes, and we establish convergence 
guarantees for these responses. Our theoretical results are supported by simulations 
and an application to Drosophila brain data.

Keywords: Network inference, Vertex covariates, Random dot product graph, Manifold 
learning, Regression

Introduction
Random graphs have long been an area of interest for scientists from different disci-
plines, primarily because of their applicability in modeling networks (Erdos and Rényi 
1984; Goldenberg et al. 2010). Latent position random graphs (Hoff et al. 2002) consti-
tute a category of random graphs where each node is associated with an unobserved 
vector, known as the latent position. One popular model, the random dot product graph 
model (Young and Scheinerman 2007), comprise a subcategory of network models 
where the probability of edge formation between a pair of nodes is given by the inner 
product of their respective latent position vectors. This model was further generalized 
to the generalized random dot product graph model (Rubin-Delanchy et al. 2022) which 
replaces the inner product with the indefinite inner product (see Rubin-Delanchy et al. 
2022). A survey of inference problems under the random dot product model can be 
found in Athreya et al. (2017). In Rubin-Delanchy (2020), it is shown that under certain 
regularity conditions, latent position random graphs can be equivalently thought of as 
generalized random dot product graphs whose nodes lie on a low dimensional mani-
fold, which motivates the model we study in this work. Consider observing a random 
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dot product graph whose latent positions lie on an unknown one-dimensional mani-
fold in ambient space Rd , and suppose responses are recorded at some of these nodes. 
We choose to work in a semisupervised setting because in realistic scenarios, collect-
ing observations is easier than obtaining labels corresponding to those observations. It 
is assumed that the responses are linked to the scalar pre-images of the corresponding 
latent positions via a regression model. In this semisupervised setting, we aim to predict 
the responses at the out-of-sample nodes.

The semisupervised learning framework in network analysis problems has been con-
sidered in a number of previous works. In Belkin et  al. (2004), a framework for regu-
larization on graphs with labeled and unlabeled nodes was developed to predict the 
labels of unlabeled nodes. A dimensionality reduction technique was proposed from a 
graph-based algorithm developed to represent data on low dimensional manifold in high 
dimensional ambient space in Belkin and Niyogi (2003). In the context of latent position 
networks with underlying low dimensional manifold structure, Athreya et al. (2021) dis-
cusses the problem of carrying out inference on the distribution of the latent positions 
of a random dot product graph, which are assumed to lie on a known low dimensional 
manifold in a high dimensional ambient space. Moreover, Trosset et al. (2020) studies the 
problem of two-sample hypothesis testing for equality of means in a random dot prod-
uct graph whose latent positions lie on a one-dimensional manifold in a high dimen-
sional ambient space, where the manifold is unknown and hence must be estimated. To 
be more precise, Trosset et al. (2020) proposes a methodology to learn the underlying 
manifold, and proves that the power of the statistical test based on the resulting embed-
dings can approach the power of the test based on the knowledge of the true manifold.

In our paper, we study the problem of predicting response covariate in a semisuper-
vised setting, in a random dot product graph whose latent positions lie on an unknown 
one-dimensional manifold in ambient space Rd . Our main result establishes a conver-
gence guarantee for the predicted responses when the manifold is learned using a par-
ticular manifold learning procedure (see “Manifold learning by raw-stress minimization” 
section). As a corollary to our main result, we derive a convergence guarantee for the 
power of the test for model validity based on the resulting embeddings. To help develop 
intuition, we first consider the problem of regression parameter estimation assuming the 
underlying manifold is known, and we show that a particular estimator is consistent in 
this setting.

We present an illustrative example of an application of our theoretical results. A con-
nectome dataset consisting of a network of 100 Kenyon cell neurons in larval Drosophila 
(details in Eichler et al. (2017)) indicates the presence of an underlying low dimensional 
manifold structure. Each node (that is, each Kenyon cell) is coupled with a response 
covariate, and the latent position of each node is estimated by a six-dimensional vector, 
using adjacency spectral embedding (see “Preliminaries on random dot product graphs” 
section). A scatterplot is obtained for each pair of dimensions of the estimated latent 
positions, and thus a 6× 6 matrix of scatterplots is obtained (Fig. 5). Each dimension 
is seen to be approximately related to another, and hence it is assumed that the latent 
positions lie on an one-dimensional manifold in six-dimensional ambient space. In 
order to capture the underlying structure, we construct a localization graph on the esti-
mated latent positions and embed the dissimilarity matrix of shortest path distances into 
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one-dimension (see “Manifold learning by raw-stress minimization” section for descrip-
tion of the method of embedding). A scatterplot of the first two dimensions of the esti-
mated latent positions is presented in Fig. 1, where the size of the points varies as per the 
values of the associated response covariate. A scatterplot of the responses yi against the 
one-dimensional embeddings ẑi is also presented along with fitted regression line indi-
cating a significant effect. These results demonstrate that it will be reasonable to posit 
that the responses are linked to the embeddings via a simple linear regression model.

Our analysis raises the question of testing the validity of a simple linear regression 
model assumed to be linking the nodal responses to the scalar pre-images of the latent 
positions. Our theory shows that the power of the test for validity of the model based 
on the raw-stress embeddings approximates the power of the test based on the true 
regressors.

In “Background notations, definitions and results” section, we discuss key points about 
random dot product graphs and manifold learning. “Model and methodology” section 
discusses the models and the methods to carry out subsequent inference on the cor-
responding regression models. “Main results” section presents our theoretical results in 
both the settings of known and unknown manifolds. “Simulation” section presents our 
findings from simulations. “Application” section revisits our connectome application. 
“Conclusion” section discusses the results and poses some questions that require further 
investigation. The proofs of our theoretical results are given in “Appendix” section.

Background notations, definitions and results
In this section, we introduce and explain the notations used throughout the paper. We 
also state relevant definitions and results pertaining to random dot product graphs (in 
“Preliminaries on random dot product graphs” section) and manifold learning (in “Man-
ifold learning by raw-stress minimization” section).

Fig. 1 Illustrative application of response prediction in latent structure networks on unknown manifolds. 
Our methodology is applied to the connectome of the right hemisphere of the Drosophila larval mushroom 
body. Left panel: scatter plot of two dimensions of the estimated latent positions for the 100 Kenyon cell 
neurons, obtained from spectral embedding of the network; the dot size represents the response variable 
yi (the distance in microns between bundle entry point of neuron i and the mushroom body neuropil). 
Right panel: plot of responses yi against learnt 1-d embeddings ẑi approximating geodesic distances along 
this curve, for the 100 Kenyon cell neurons, together with the regression line. In the left panel we observe 
that a one-dimensional curve captures nonlinear structure in the spectral embedding. In the right panel 
we observe that response regressed against geodesic distance indicates a significant effect ( p < 0.01 for 
H0 : a = 0 in yi = aẑi + b+ ηi)
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Notations

We shall denote a vector by a bold lower-case letter, x for instance. Bold upper-case let-
ters such as P will be used to represent matrices. The Frobenius norm and the maximum 
row-norm of a matrix B will be denoted respectively by 

∥

∥B
∥

∥

F
 and B

2,∞ . The i-th row 
of a matrix B will be denoted by Bi∗ , and the j-th column of B will be denoted by B∗j . We 
will denote the n× n identity matrix by In , and Jn will denote the n× n matrix whose 
each entry equals one. Also, Hn = In − 1

n Jn will denote the n× n centering matrix. 
Unless otherwise mentioned, 

∥

∥x
∥

∥ will represent the Euclidean norm of a vector x . The 
set of all orthogonal d × d matrices will be denoted by O(d) . The set of all positive inte-
gers will be denoted by N and for any n ∈ N , [n] will denote the set {1, 2, 3..., n}.

Preliminaries on random dot product graphs

A graph is an ordered pair (V, E) where V is the set of vertices (or nodes) and E ⊂ V × V  
is the set of edges connecting vertices. An adjacency matrix A of a graph is defined as 
Aij = 1 if (i, j) ∈ E , and Aij = 0 otherwise. Here, we deal with hollow and undirected 
graphs; hence A is symmetric and Aii = 0 for all i. Latent position random graphs are 
those for which each node is associated with a vector that is called its latent position, 
denoted by xi , and the probability of formation of an edge between the i-th and j-th 
nodes is given by κ(xi, xj) where κ is a suitable kernel.

Random vectors drawn from any arbitrary probability distribution cannot be latent 
positions of a random dot product graph, as their magnitudes can be unbounded 
whereas probabilities must lie in the interval [0, 1]. The following definition allows us 
to work with a restricted class of distributions more amenable to random dot product 
graphs.

Definition 1 (Inner product distribution): If F is a probability distribution function on 
R
d such that for any x, y ∈ supp(F) , xTy ∈ [0, 1] , then F is called an inner product distri-

bution on Rd.

Next, we define the random dot product graphs, the basis of the models considered in 
this paper.

Definition 2 (Random Dot Product Graph): Suppose G is a hollow, undirected random 
graph with latent positions x1, . . . xn ∈ R

d . Let X = [x1| . . . |xn]T be its latent position 
matrix and A be its adjacency matrix. The graph G is called random dot product graph 
if for all i < j , Aij ∼ Bernoulli(xTi xj) independently. The probability distribution of A is 
given by

If x1, ...xn ∼iid F  are the latent positions where F is an inner product distribution, then 
we write (A,X) ∼ RDPG(F) . The distribution of the adjacency matrix conditional upon 
x1, ...xn , is

P[A] = �i<j(x
T
i xj)

Aij (1− xTi xj)
1−Aij .

P[A|X] = �i<j(x
T
i xj)

Aij (1− xTi xj)
1−Aij .
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The latent positions of a random dot product graph are typically unknown and need 
to be estimated in practice. The following definition puts forth an estimate of these 
latent positions via adjacency spectral embedding.

Definition 3 (Adjacency spectral embedding): Suppose �i is the i-th largest (in magni-
tude) eigenvalue of A , and let vi be the corresponding orthonormal eigenvector. Define 
S = diag(�1, . . . �d) and V = [v1| . . . |vd] . We define X̂ , the adjacency spectral embedding 
of A into Rd , via X̂ = V|S| 12.

Now, we present two results from the literature which give us the consistency and 
asymptotic normality of suitably rotated adjacency spectral estimates of the latent 
positions of a random dot product graph.

Theorem 1 (Theorem 3 from Rubin-Delanchy et al. (2022)): Suppose x1, x2, ...xn ∈ R
d 

denote the latent positions of a random dot product graph with n nodes, and let 
X(n) = [x1|x2|...|xn]T be the latent position matrix. Suppose A(n) denotes the correspond-
ing adjacency matrix and let X̂(n) be the adjacency spectral embedding of A(n) in Rd . 
There exists a constant c > 1 and a sequence W(n) ∈ O(d) such that

Observe that Eq. (1) implies 
∥

∥X̂(n)W(n) − X(n)
∥

∥

2,∞ →P 0 as n → ∞.

Henceforth, we will denote this optimally rotated adjacency spectral embedding by 
X̃(n) , that is, X̃(n) = X̂(n)W(n) . To simplify notations we will often omit the superscript 
n, and we will use x̃i to denote the i-th row of X̃ . Observe that in the attempt to esti-
mate the true latent positions from the adjacency matrix, we encounter an inherent 
non-identifiability issue: for any W ∈ O(d) , E(A|X) = XXT = (XW)(XW)T  . This is 
the reason why the adjacency spectral embedding needs to be rotated suitably so that 
it can approximate the true latent position matrix.

Theorem 2 (Athreya et al. (2016, 2017)): Suppose (A(n),X(n)) ∼ RDPG(F) be adjacency 
matrices and latent position matrices for a sequence of random dot product graphs, for 
which the latent positions are generated from an inner product distribution F on Rd . Let

where � = Ex∼F [xxT ] . Then, there exists a sequence W(n) ∈ O(d) such that for all u ∈ R
d

,

where �0,�(x)(.) denotes the distribution function of multivariate normal N (0,�(x)) 
distribution.

(1)max
i∈[n]

∥

∥(X̂(n)W(n) − X(n))i∗
∥

∥ = OP

(

(logn)c√
n

)

(2)�(x0) = �−1
Ex∼F

[

x0
Tx(1− x0

Tx)xxT
]

�−1

(3)lim
n→∞

P

[√
n(X̂(n)W(n) − X(n))i∗ ≤ u

]

=
∫

x∈supp(F)
�0,�(x)(u)dF(x)
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Under suitable regularity conditions, a combined use of Theorem  2 and Delta 
method gives us the asymptotic distribution of 

√
n(γ (x̃i)− γ (xi)) for a function 

γ : Rd → R , which depends on the true distribution F of the latent positions. There-
fore, var(γ (x̃i)− γ (xi)) can be approximated from the optimally rotated adjacency 
spectral estimates x̃i and their empirical distribution function. In a random dot product 
graph for which the latent positions lie on a known one-dimensional manifold in ambi-
ent space Rd , and the nodal responses are linked to the scalar pre-images of the latent 
positions via a simple linear regression model, we can use the approximated variance 
of (γ (x̃i)− γ (xi)) (motivated by works in Chapters 2, 3 of Fuller (1987)) to improve the 
performance (in terms of mean squared errors) of the naive estimators of the regression 
parameters, which are obtained by replacing xi with x̃i in the least square estimates of 
the regression parameters. We demonstrate this method in detail in “Conclusion” sec-
tion (see Fig. 7).

Remark 1 Suppose F is a probability distribution satisfying supp(F) = K ⊂ R
d , and 

z1, ....zn
iid∼F  are latent positions of a hollow symmetric latent position random graph 

with associated kernel κ . Extensive works presented in Rubin-Delanchy (2020) show that 
if κ ∈ L2(Rd × R

d) , then there exists a mapping q : Rd → L2(Rd) such that the graph 
can be equivalently represented as a generalized random dot product graph with latent 
positions xi = q(zi) ∈ L(Rd) . If κ is assumed to be Hölder continuous with exponent c, 
then the Hausdorff dimension of q(K) can be bounded by dc  , as shown in Rubin-Delanchy 
(2020). In Whiteley et al. (2022), it has been shown that if K is a Riemannian manifold, 
then stronger assumptions lead us to the conclusion that q(K ) ⊂ L2(Rd) is also Rie-
mannian manifold diffeomorphic to K. Thus, under suitable regularity assumptions, any 
latent position graph can be treated as a generalized random dot product graph with 
latent positions on a low dimensional manifold.

After stating the relevant definitions and results pertinent to random dot product 
graphs, in the following section we introduce the manifold learning technique we will 
use in this paper. Just for the sake of clarity, the topic of manifold learning in general has 
nothing to do with random dot product graph model; hence “Preliminaries on random 
dot product graphs” and “Manifold learning by raw-stress minimization” sections can be 
read independently.

Manifold learning by raw‑stress minimization

Our main model is based on a random dot product graph whose latent positions lie on 
a one-dimensional Riemannian manifold. Since one-dimensional Riemannian manifolds 
are isometric to one-dimensional Euclidean space, we wish to represent the latent posi-
tions as points on the real line. This is the motivation behind the use of the following 
manifold learning technique, which relies upon approximation of geodesics by short-
est path distances on localization graphs (Tenenbaum et al. 2000; Bernstein et al. 2000; 
Trosset and Buyukbas 2021). Given points x1, . . . xn ∈ M where M is an unknown 
one-dimensional manifold in ambient space Rd , the goal is to find ẑ1, . . . ẑn ∈ R , such 
that the interpoint Euclidean distances between ẑi approximately equal the interpoint 
geodesic distances between xi . However, the interpoint geodesic distances between xi 
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are unknown. The following result shows how to estimate these unknown geodesic dis-
tances under suitable regularity assumptions.

Theorem  3 (Theorem  3 from Trosset and Buyukbas (2021)) Suppose M is a one-
dimensional compact Riemannian manifold in ambient space Rd . Let r0 and s0 be the 
minimum radius of curvature and the minimum branch separation of M . Suppose ν 
is given and suppose � > 0 is chosen such that � < s0 and � < 2

π
r0
√
24ν . Additionally, 

assume x1, . . . xn ∈ M are such that for every u ∈ M , dM(u, xi) < δ . A localization graph 
is constructed on xi as nodes under the following rule: two nodes xi and xj are joined by an 
edge if 

∥

∥xi − xj
∥

∥ < � . When δ < ν�
4  , the following condition holds for all i, j ∈ [n],

where dn,�(xi, xj) denotes the shortest path distance between xi and xj.

Given the dissimilarity matrix D =
(

dn,�(xi, xj)
)n

i,j=1
 , the raw-stress function at 

(z1, . . . zn) is defined as

where wij ≥ 0 are weights. For the purpose of learning the manifold M , we set wij = 1 
for all i, j, and compute

Since the scalars ẑi are obtained by embedding D into one-dimension upon minimi-
zation of raw-stress, we shall henceforth refer to ẑi as the one-dimensional raw-stress 
embeddings of D.

Remark 2 In practice, raw-stress is minimized numerically by iterative majorization 
(Chapter 8 of Borg and Groenen (2005)). Standard algorithms can sometimes be trapped 
in local minima. However, repeated iterations of Guttman transformation (Chapter 8 
ofBorg and Groenen (2005)) can lead to nearly optimal solution, when the configurations 
are initialized by classical multidimensional scaling. In our paper, for theoretical results, 
we assume that the global minima is achieved.

Model and methodology
Here we describe our models under both the assumptions of known and unknown mani-
fold. In each case, we assume that we observe a random dot product graph for which the 
latent positions of the nodes lie on a one-dimensional manifold in d-dimensional ambient 
space. Under the assumption that the underlying manifold is known, each node is coupled 
with a response linked to the scalar pre-image of the corresponding latent position via a 
regression model, and our goal is to estimate the regression parameters. When the underly-
ing manifold is assumed to be unknown, our model involves a network with a small number 
of labeled nodes and a large number of unlabeled nodes, and our objective is to predict the 
response at a given unlabeled node assuming that the responses for the labeled nodes are 

(1− ν)dM(xi, xj) ≤ dn,�(xi, xj) ≤ (1+ ν)dM(xi, xj),

σ(z1, . . . zn) =
∑

i<j

wij(|zi − zj| − dn,�(xi, xj))
2

(ẑ1, . . . ẑn) = arg min σ(z1, . . . zn) = arg min
∑

i<j

(|zi − zj| − dn,�(xi, xj))
2.
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linked to the scalar pre-images of the respective latent positions via a regression model. In 
the setting of unknown manifold, we can approximate the true regressors only up to scale 
and location transformations, and due to this non-identifiablity issue we carry out pre-
diction of responses instead of estimation of regression parameters when the manifold is 
unknown.

Remark 3 We would like to remind the reader here that the setting of the known man-
ifold is not realistic. We take the setting of the known manifold into account to help 
familiarize the reader with the best case scenario, for sake of comparison with the results 
obtained in the realistic setting of the unknown manifold.

Regression parameter estimation on known manifold

Suppose ψ : R → R
d is a known bijective function and let M = ψ([0, L]) be a one-dimen-

sional compact Reimannian manifold. Consider a random dot product graph for which the 
nodes (with latent positions xi ) lie on the known one-dimensional manifold M in d-dimen-
sional ambient space. Let t1, . . . tn be the scalar pre-images of the latent positions such that 
xi = ψ(ti) for all i ∈ [n] , where n is the number of nodes of the graph. Suppose, for each i, 
the i-th node is coupled with a response yi which is linked to the latent position via the fol-
lowing regression model

where ǫi ∼iid N (0, σ 2
ǫ ) for all i ∈ [n] . Our goal is to estimate α and β.

If the true regressors ti were known, we could estimate α and β by their ordinary least 
square estimates given by

Since the true latent positions xi are unknown, we estimate the true regressors ti by
t̂i = arg mint

∥

∥x̃i − ψ(t)
∥

∥ where x̃i is the optimally rotated adjacency spectral estimate 
for the i-th latent position xi . The existence of t̂i is guaranteed by the compactness of the 
manifold M = ψ([0, L]) . We then substitute ti by t̂i in α̂true and β̂true to obtain the substi-
tute (or the plug-in estimators) given by

The steps to compute α̂sub and β̂sub are formally stated in Algorithm 1.

(4)yi = α + βti + ǫi, i ∈ [n]

(5)β̂true =
∑n

i=1(yi − ȳ)(ti − t̄)
∑n

i=1(ti − t̄)2
, α̂true = ȳ− β̂truet̄.

(6)β̂sub =
∑n

i=1(yi − ȳ)(t̂i − ¯̂t)
∑n

i=1(t̂i −
¯̂t)2

, α̂sub = ȳ− β̂sub
¯̂t.
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Prediction of responses on unknown manifold

Here, we assume that ψ : [0, L] → R
d is unknown and arclength parameterized, that 

is, 
∥

∥ψ̇(t)
∥

∥ = 1 for all t. Additionally, assume that M = ψ([0, L]) is a compact Rei-
mannian manifold. Consider an n-node random dot product graph whose nodes 
(with latent positions xi ) lie on the unknown manifold M = ψ([0, L]) in ambient 
space Rd . Assume that the first s nodes of the graph are coupled with a response 
covariate and the response yi at the i-th node is linked to the latent position via a 
linear regression model

where ǫi ∼iid N (0, σ 2
ǫ ) for all i ∈ [s] . Our goal is to predict the response for the r-th node, 

where r > s . First, we compute the adjacency spectral estimates x̂i of the latent positions 
of all n nodes. We then construct a localization graph on the adjacency spectral esti-
mates x̂i under the following rule: join two nodes x̂i and x̂j if and only if 

∥

∥x̂i − x̂j
∥

∥ < � , 
for some pre-determined � > 0 known as the neighbourhood parameter. Denoting the 
shortest path distance between x̂i and x̂j by dn,�(x̂i, x̂j) , we embed the dissimilarity matrix 
D =

(

dn,�(x̂i, x̂j)
)l

i,j=1
 into one-dimension by minimizing the raw-stress criterion, thus 

obtaining

where l is such that s < r < l ≤ n . We then use a simple linear regression model on the 
bivariate data (yi, ẑi)si=1 to predict the response for ẑr corresponding to the r-th node. The 
abovementioned procedure to predict the response at the r-th node from given observa-
tions is formally described in Algorithm 2.

Main results
In this section we present our theoretical results showing consistency of the estima-
tors of the regression parameters on a known manifold, and convergence guaran-
tees for the predicted responses based on the raw-stress embeddings on an unknown 
manifold. In the setting of unknown manifold, as a corollary to consistency of the 
predicted responses, we also derive a convergence guarantee for a test for validity of 
a simple linear regression model based on an approximate F-statistic.

(7)yi = α + βti + ǫi, i ∈ [s]

(8)(ẑ1, ....ẑl) = arg min

l
∑

i=1

l
∑

j=1

(|zi − zj| − dn,�(x̂i, x̂j))
2
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The case of known manifold

Recall that we observe a random dot product graph with n nodes for which the latent 
positions xi lie on a one-dimensional manifold. Our following result shows that we 
can consistently estimate (α,β) by (α̂sub, β̂sub).

Theorem  4 Suppose ψ : [0, L] → R
d is bijective, and its inverse γ satisfies 

∥

∥∇γ (w)
∥

∥ < K  for all w ∈ ψ([0, L]) , for some K > 0 . Let xi = ψ(ti) be the latent 
position of the i-th node of a random dot product graph with n nodes, and assume 
yi = α + βti + ǫi , ǫi ∼iid N (0, σ 2

ǫ ) for all i ∈ [n] . Assume xi ∼iid F  for all i where F is an 
inner product distribution on Rd . Let X(n) = [x1| . . . |xn] be the latent position matrix 
and suppose X̂(n) is the adjacency spectral embedding of the adjacency matrix A(n) into 
R
d . Assume Ŵ(n) = arg minW∈O(d)

∥

∥X̂(n)W − X(n)
∥

∥

F
 is known. Then, as n → ∞ , we 

have α̂sub →P α and β̂sub →P β , where (α̂sub, β̂sub) = EST(A(n), d, Ŵ(n),ψ ,
{

yi
}n

i=1
) (see 

Algorithm 1a).

A rough sketch of proof for Theorem  4 is as follows. Note that 
t̂i = arg mint

∥

∥x̃i − ψ(t)
∥

∥ where x̃i is the optimally rotated adjacency spectral estimate 
of xi , and ti = arg mint

∥

∥xi − ψ(t)
∥

∥ . Recall that Theorem 1 tells us that x̃i is consistent 
for xi . This enables us to prove that t̂i is consistent for ti which ultimately leads us to 
the consistency of α̂sub and β̂sub , because α̂sub and β̂sub are computed by replacing the 
true regressors ti with t̂i in the expressions of α̂true and β̂true which are consistent for 
α and β respectively. Theorem 4 gives us the consistency of the substitute estimators 
of the regression parameters under the assumption of boundedness of the gradient of 
the inverse function. Since continuously differentiable functions have bounded gradi-
ents on compact subsets of their domain, we can apply Theorem 4 whenever γ = ψ−1 
can be expressed as a restriction to a function with continuous partial derivatives. As 
a direct consequence of Theorem 4, our next result demonstrates that the substitute 
estimators have optimal asymptotic variance amongst all linear unbiased estimators.

Corollary 1 Conditioning upon the true regressors ti in the setting of Theorem 4, the fol-
lowing two conditions hold

(A) E(α̂sub) → α, E(β̂sub) → β as n → ∞.,

(B) For any two linear unbiased estimators α̃ and β̃ and an arbitrary δ > 0 , 
var(α̂sub) ≤ var(α̃)+ δ, var(β̂sub) ≤ var(β̃)+ δ for sufficiently large n.

The case of unknown manifold

Recall that our goal is to predict responses in a semisupervised setting on a ran-
dom dot product graph on an unknown one-dimensional manifold in ambient space 
R
d . We provide justification for the use of Algorithm 2 for this purpose, by showing 

that the predicted response ỹr at the r-th node based on the raw-stress embeddings 
approaches the predicted response based on the true regressors ti as n → ∞.
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Intuition suggests that in order to carry out inference on the regression model, we 
must learn the unknown manifold M . We exploit the availability of large number of 
unlabeled nodes whose latent positions lie on the one-dimensional manifold, to learn 
the manifold. Observe that since the underlying manifold ψ([0, L]) is arclength param-
eterized, the geodesic distance between any two points on it is the same as the inter-
point distance between their corresponding pre-images. Results from the literature 
(Bernstein et al. 2000) show that if an appropriate localization graph is constructed 
on sufficiently large number of points on a manifold, then the shortest path distance 
between two points approximates the geodesic distance between those two points. 
Therefore, on a localization graph of an appropriately chosen neighbourhood param-
eter � , constructed on the adjacency spectral estimates x̂1, x̂2, . . . , x̂n , the shortest path 
distance dn,�(x̂i, x̂j) between x̂i and x̂j is expected to approximate the geodesic distance 
dM(xi, xj) = |ti − tj| . Note that here is no need to rotate the adjacency spectral esti-
mates x̂i , because the shortest path distance is sum of Euclidean distances and Euclid-
ean distances are invariant to orthogonal transformations. Thus, when the 
dissimilarity matrix D =

(

dn,�(x̂i, x̂j)
)l

i,j=1
 is embedded into one-dimension by mini-

mization of raw-stress, we obtain embeddings ẑ1, . . . ẑl for which interpoint distance 
|ẑi − ẑj| approximates the interpoint distance |ti − tj| . In other words, the estimated 
distances from the raw-stress embeddings applied to the adjacency spectral estimates 
of the latent positions approximate the true geodesic distances, which is demon-
strated by the following result. This argument is the basis for construction of a 
sequence of predicted responses based on the raw-stress embeddings, which 
approach the predicted responses based on the true regressors as the number of aux-
iliary nodes go to infinity.

Theorem  5 (Theorem  4 from Trosset et  al. (2020)): Suppose the function 
ψ : [0, L] → R

d is such that 
∥

∥ψ̇(t)
∥

∥ = 1 for all t ∈ [0, L] . Let xi ∈ R
d be the latent position 

for the i-th node of the random dot product graph, and ti ∈ R be such that xi = ψ(ti) for 
all i, and assume ti ∼iid g where g is an absolutely continuous probability density func-
tion satisfying supp(g) = [0, L] and gmin > 0 . Let x̂i be the adjacency spectral estimate of 
the true latent position xi for all i. There exist sequences {nK }∞K=1 of number of nodes and 
{�K }∞K=1 of neighbourhood parameters satisfying nK → ∞ , �K → 0 as K → ∞ , such that 
for any fixed integer l satisfying s < l < nK  for all K,

holds, where (ẑ1, ....ẑl) is minimizer of the raw stress criterion, that is

Theorem  5 shows that the one-dimensional raw-stress embeddings ẑ1, . . . ẑl satisfy 
(|ẑi − ẑj| − |ti − tj|) → 0 as K → ∞ , for all i, j ∈ [l] . This means that for every i ∈ [l] , ẑi 
approximates ti up to scale and location transformations. Since in simple linear regres-
sion the accuracy of the predicted response is independent of scale and location trans-
formations, we can expect the predicted response at a particular node based on ẑi to 

(9)(|ẑi − ẑj| − |ti − tj|) →P 0, for all i, j ∈ [l]

(10)(ẑ1, ....ẑl) = arg min

l
∑

i=1

l
∑

j=1

(|zi − zj| − dnK ,�K (x̂i, x̂j))
2.



Page 12 of 26Acharyya et al. Applied Network Science            (2023) 8:75 

approach the predicted response based on the true regressors ti . The following theorem, 
our key result in this paper, demonstrates that this is in fact the case.

Theorem  6 Consider a random dot product graph for which each node lies on an 
arclength parameterized one-dimensional manifold ψ([0, L]) where ψ is unknown. Let 
xi = ψ(ti) be the latent position of the i-th node for all i. Assume yi = α + βti + ǫi , 
ǫi ∼iid N (0, σ 2

ǫ ) for i ∈ [s] , where s is a fixed integer. The predicted response at the r-th 
node based on the true regressors is ŷr = α̂true + β̂truetr . There exist sequences nK → ∞ 
of number of nodes and �K → 0 of neighbourhood parameters such that for every r > s , 
|ŷr − ỹ

(K )
r | →P 0 as K → ∞ , where ỹ(K )

r = PRED(A(K ), d, �K , l,
{

yi
}s

i=1
, r) (see Algo-

rithm 2), A(K ) being the adjacency matrix when the number of nodes is nK  and l being a 
fixed natural number that satisfies l > r > s.

Recall that the validity of a simple linear regression model can be tested by an F-test, 
whose test statistic is dependent on the predicted responses based on the true regressors. 
Since we have a way to approximate the predicted responses based on the true regres-
sors by predicted responses based on the raw-stress embeddings, we can also devise a 
test whose power approximates the power of the F-test based on the true regressors, as 
shown by our following result.

Corollary 2 In the setting of Theorem  6, suppose 
{

(ỹ
(K )
1 , ỹ

(K )
2 , ....ỹ

(K )
s )

}∞

K=1
 is the 

sequence of vector of predicted responses at the first s nodes of the random dot product 
graph, based on the raw-stress embeddings ẑ1, . . . , ẑs . Define

Consider testing the null hypothesis H0 : β = 0 against H1 : β �= 0 in the absence of the 
true regressors ti , and the decision rule is: reject H0 in favour of H1 at level of significance 
α̃ if F̂ (K ) > cα̃ , where cα̃ is the (1− α̃)-th quantile of F1,s−2 distribution. If the power of 
this test is denoted by π̂ (K ) , then limK→∞ π̂ (K ) = π∗ , where π∗ is the power of the test for 
which the decision rule is to reject H0 in favour of H1 at level of significance α̃ if F∗ > cα̃.

Thus, if one wants to perform a test for model validity in the absence of the true regres-
sors ti , then a test of approximately equal power, based on the raw-stress embeddings ẑi 
for a graph of sufficiently large number of auxiliary nodes, can be used instead.

Simulation
In this section, we present our simulation results demonstrating support for our theo-
rems. We conducted simulations on 100 Monte Carlo samples of graphs on known and 
unknown one-dimensional manifolds.

The case of known manifold

We take the manifold to be ψ([0, 1]) , where ψ : [0, 1] → R
3 is the Hardy Weinberg 

curve, given by ψ(t) = (t2, 2t(1− t), (1− t)2) . The number of nodes, n, varies from 600 
to 2500 in steps of 100. For each n, we repeat the following procedure over 100 Monte 

(11)F∗ = (s − 2)

∑s
i=1(ŷi − ȳ)2

∑s
i=1(yi − ŷi)2

, F̂ (K ) = (s − 2)

∑s
i=1(ỹ

(K )
i − ȳ)2

∑s
i=1(yi − ỹ

(K )
i )2

.
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Carlo samples. A sample t1, .....tn ∼iid U [0, 1] is generated, and responses yi are sam-
pled via the regression model yi = α + βti + ǫi , ǫi ∼iid N (0, σ 2

ǫ ) , i ∈ [n] , where α = 2.0 , 
β = 5.0 , σǫ = 0.1 . An undirected hollow random dot product graph with latent positions 
xi = ψ(ti) , i ∈ [n] is generated. More specifically, the (i,  j)-th element of the adjacency 
matrix A satisfies Aij ∼ Bernoulli(xTi xj) for all i < j , and Aij = Aji for all i, j ∈ [n] , and 
Aii = 0 for all i ∈ [n] . We denote the true latent position matrix by X = [x1|x2|...|xn]T , 
and the adjacency spectral estimate of it by X̂ . We compute

and finally, set X̃ = X̂Ŵ to be the optimally rotated adjacency spectral estimate of the 
latent position matrix X . Then we obtain t̂i = arg mint �x̃i − ψ(t)� for i ∈ [n] , and get 
α̂sub and β̂sub . Setting θ = (α,β) , θ̂ true = (α̂true, β̂true) and θ̂ sub = (α̂sub, β̂sub) , we compute 
the sample mean squared errors (MSE) of θ̂ true and θ̂ sub over the 100 Monte Carlo sam-
ples and plot them against n. The plot is given in Fig. 2.

Remark 4 The fact that the optimal rotation matrix Ŵ needs to be computed from the 
true latent position matrix X is what makes inference on the regression model in the sce-
nario of known manifold unrealistic, because X is typically unknown.

The case of unknown manifold

We assume that the underlying arclength parameterized manifold is ψ([0, 1]) where 
ψ : [0, 1] → R

4 is given by ψ(t) = (t/2, t/2, t/2, t/2) . We take the number of nodes at 
which responses are recorded to be s = 20 . Here, m denotes the number of auxiliary 
nodes, and n = m+ s denotes the total number of nodes. We vary n over the set 
{500, 750, 1000, .....3500} . For each n, we repeat the following procedure over 100 Monte 
Carlo samples. A sample t1, ....ts ∼iid U [0, 1] is generated, and responses yi are generated 
from the regression model yi = α + βti + ǫi , ǫi ∼iid N (0, σ 2

ǫ ) for all i ∈ [s] , where 

Ŵ = arg min
W∈O(d)

∥

∥

∥
X − X̂W

∥

∥

∥

F

Fig. 2 Plot showing consistency of the substitute estimator of the regression parameter vector on known 
manifold. For 100 Monte Carlo samples, substitute estimates are computed using the projections of the 
optimally rotated adjacency spectral estimates of the latent positions onto the manifold, and then the 
sample MSEs of the estimator based on the true regressors and the substitute estimator are computed. For 
graphs of moderate size ( n ≤ 2000 ), the substitute estimator performs significantly worse than the estimator 
based on the true regressors. However, as the number of nodes increases, the difference in performances of 
the estimators diminish and the mean squared errors of both the estimators approach zero
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α = 2.0,β = 5.0, σǫ = 0.01 . Additionally, we sample the pre-images of the auxiliary 
nodes, ts+1, ....tn ∼iid U [0, 1] . Thus, a random dot product graph with latent positions 
xi = ψ(ti) , i ∈ [n] is generated and the adjacency spectral estimates x̂i of its latent posi-
tions are computed. A localization graph is constructed with the first n/10 of the adja-
cency spectral estimates as nodes under the following rule: two nodes x̂i and x̂j of the 
localization graph are to be joined by an edge if and only if 

∥

∥x̂i − x̂j
∥

∥ < � , where 
� = 0.85× 0.99K−1 when n is the K-th term in the vector (500, 750, 1000, . . . 3500) . Then, 
the shortest path distance matrix D =

(

dn,�(x̂i, x̂j)
)l

i,j=1
 of the first l = s + 1 estimated 

latent positions is embedded into one-dimension by raw-stress minimization using mds 
function of smacof  package in R and one-dimensional embeddings ẑi are obtained. The 
responses yi are regressed upon the 1-dimensional raw-stress embeddings ẑi for i ∈ [s] , 
and the predicted response ỹs+1 for the (s + 1)-th node is computed. The predicted 
response ŷs+1 for the (s + 1)-th node based on the true regressors ti is also obtained. Due 
to identicality of distributions of the true regressors ti , the distribution of each of the 
predicted responses is invariant to the label of the node; hence we drop the subscript 
and use ŷtrue to denote the predicted response based on the true regressors ti , and use 
ŷsub to denote the predicted response based on the raw-stress embeddings ẑi (since raw-
stress embeddings are used as substitutes for the true regressors in predicting the 
response). Finally, the sample mean of the squared distances (ŷsub − ŷtrue)

2 over all the 
Monte Carlo samples is computed and plotted against n. The plot is given in Fig. 3.

Next, we focus on the issue of hypothesis testing based on the raw-stress embeddings 
ẑi . In order to test the validity of the model

where ǫi ∼iid N (0, σ 2
ǫ ) , i ∈ [s] , one would conduct hypothesis testing H0 : β = 0 against 

H1 : β �= 0 . If the true regressors ti were known, we would have used the test statistic F∗ 
of Eq. (11), but Corollary 2 tells us that with sufficiently large number of auxiliary latent 
positions, one can have a test based on the one-dimensional raw-stress embeddings ẑi , 
whose power approximates the power of the test based on the true F-statistic F∗ . We 
present a plot in Fig. 4 that speaks in support of Corollary 2. We show that the power 
of the test based on the raw-stress embeddings approaches the power of the test based 

yi = α + βti + ǫi

Fig. 3 Plot showing consistency of the predicted responses based on raw-stress embeddings on unknown 
manifold. The arclength parameterized manifold is taken to be ψ([0, 1]) where ψ(t) = (t/2, t/2, t/2, t/2) . 
The sample mean of the squared difference between the predicted response ŷsub based on raw-stress 
embeddings and predicted response ŷtrue based on the true regressors is plotted against the total number 
of nodes in the graph. The substitute predicted response ŷsub performs significantly worse than ŷtrue for 
moderate number of auxiliary nodes ( n ≤ 1000 ). However, as the number of auxiliary nodes increases further, 
the mean squared difference between ŷtrue and ŷsub goes to zero
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on the true regressors for a chosen value of the pair of the regression parameters. The 
setting is almost the same as the previous one, except that here the number n of nodes 
varies from 100 to 1000 in steps of 50. For each n, the true F-statistic (based on the true 
regressors ti ) and the estimated F-statistic (based on the raw-stress embeddings ẑi ) are 
computed for 100 Monte Carlo samples, and the power of the two tests are estimated by 
the proportion of the Monte Carlo samples for which the statistics exceed a particular 
threshold. Then, for each n, the difference between the empirically estimated powers of 
the two tests (one based on the raw-stress embeddings and the other based on the true 
regressors) is computed and plotted against n. The plot is given in Fig. 4 which shows 
that the difference between the empirically estimated powers of the tests based on the 
true regressors and the raw-stress embeddings approach zero as the number of auxiliary 
nodes grows.

Application
In this section, we demonstrate the application of our methodology to real world data. 
Howard Hughes Medical Institute Janelia reconstructed the complete wiring diagram of 
the higher order parallel fibre system for associative learning in the Drosophila brain. 
There are n = 100 datapoints corresponding to 100 Kenyon cell neurons forming a net-
work in a latent space. The distance (in microns) between the bundle entry point of 
a Kenyon cell neuron and mushroom body neuropil is treated as the response corre-
sponding to that neuron. We carry out hypothesis testing to test whether a simple lin-
ear regression model links the responses on the neurons of the right hemisphere of the 
larval Drosophila (Eichler et  al. 2017; Priebe et  al. 2017; Athreya et  al. 2017) to some 
dimension-reduced version of the latent positions of the neurons.

A directed graph representing a network of the 100 Kenyon cell neurons is observed. 
Since the graph under consideration is directed, the adjacency spectral embedding is 

Fig. 4 Plot of the difference between the empirical powers of tests for model validity based on the 
1-dimensional raw-stress embeddings and the true regressors. The arclength parameterized manifold is taken 
to be ψ([0, 1]) where ψ(t) = (t/2, t/2, t/2, t/2) . For a small fixed number ( s = 20 ) of nodes, responses yi are 
generated from yi = α + βti + ǫi , ǫi ∼iid N(0, σ 2

ǫ ) . A large number (n− s) of auxiliary nodes are generated 
on ψ([0, 1]) and a localization graph is constructed on the adjacency spectral estimates. When n is the K-th 
term of the vector (100, 150, 200, . . . 1000) , the neighbourhood parameter is taken to be � = 0.9× 0.99K−1 . 
The dissimilarity matrix of the shortest path distances is embedded into 1-dimension by minimization of 
raw-stress criterion. In order to test H0 : β = 0 vs H1 : β �= 0 , the test statistics F∗ based on the true regressors 
ti and F̂ based on the 1-dimensional raw-stress embeddings ẑi are comapared, where n is the total number 
of nodes in the graph. The corresponding powers are empirically estimated by the proportions of times in 
a collection of 100 Monte Carlo samples the test statistics reject H0 , for every n varying from 100 to 1000 in 
steps of 50. The plot shows that the difference between the estimated powers of the two tests goes to zero, 
indicating the tests based on the raw-stress embeddings are almost as good as the tests based on the true 
regressors, for sufficiently large number of auxiliary nodes
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formed by taking into account both the left and right singular vectors of the adja-
cency matrix. The latent position of each node is estimated by a 6-dimensional vector 
formed by augmenting the top 3 left singular vectors scaled by the diagonal matrix of 
the corresponding singular values, with the top 3 right singular vectors scaled by the 
diagonal matrix of the corresponding singular values. For each pair of components, 
we obtain a scatterplot of the bivariate dataset of all 100 points, thus obtaining a 6× 6 
matrix of scatterplots which is shown in Fig. 5.

Figure 5 shows that every component is approximately related to every other com-
ponent, thus indicating the possibility that the six-dimensional datapoints lie on a 
one-dimensional manifold. We construct a localization graph with neighbourhood 
parameter � = 0.50 on the 6-dimensional estimates of the latent positions and embed 
the dissimilarity matrix D =

(

d100,0.5(x̂i, x̂j)
)100

i,j=1
 of shortest path distances into one-

dimension by minimizing the raw-stress criterion to obtain the one-dimensional 

Fig. 5 Matrix of scatterplots indicating an underlying low-dimensional structure in the network of 100 
Kenyon Cell neurons in larval Drosophila. A directed graph is taken into account where every node represents 
a neuron. A 6-dimensional adjacency spectral estimate is obtained for every node by augmenting the 3 
leading left singular vectors scaled by corresponding singular values, with 3 leading right singular vectors 
scaled by corresponding singular values. A scatterplot is then obtained for every pair of these 6 components. 
Since each dimension appears to be approximately related to another dimension via a function, presence of 
an underlying 1-dimensional structure is assumed
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embeddings ẑi . Figure 6 presents the plot of responses yi against the one-dimensional 
raw-stress embeddings ẑi.

The plot in Fig. 6 gives an idea that a simple linear regression model links the responses 
with the raw-stress embeddings. We wish to check the validity the model

where ηi ∼iid N (0, σ 2
η ) , i ∈ [n] . For that purpose, we test H0 : b = 0 vs H1 : b �= 0 at level 

of significance 0.01. The value of the F-statistic, with degrees of freedom 1 and 98, is 
found to be 9.815. This yields p-value = P[F1,98 > 9.815] = 0.0023 which is lower than 
our level of significance 0.01. Therefore, we conclude that a simple linear regression 
model involving yi as values of the dependent variable and ẑi as values of the independ-
ent variable exist. Using Corollary  2, we conclude that the responses on the neurons 
are linked to the scalar pre-images of the latent positions via a simple linear regres-
sion model. Moreover, if the distances between the bundle entry point and the mush-
room body neuropil is not recorded for some Kenyon cell neurons, then the values can 
be predicted using the one-dimensional raw-stress embeddings ẑi as proxy for the true 
regressors.

Conclusion
In the presented work, theoretical and numerical results are derived on models where 
latent positions of random dot product graphs lie on a one-dimensional manifold in a 
high dimensional ambient space. We demonstrated that for a known manifold, the 
parameters of a simple linear regression model linking the response variable recorded 
at each node of the graph to the scalar pre-images of the latent positions of the nodes 
can be estimated consistently even though the true regressors were unknown. However, 
a key result of our work is to show that even when the manifold is unknown (the more 
realistic scenario) one can learn it reasonably well under favourable conditions in order 
to obtain predicted responses that are close to the predicted responses based on the true 
regressors.

yi = a+ bẑi + ηi

Fig. 6 Scatterplot indicating that the responses and the 1-dimensional raw-stress embeddings are linked 
via a simple linear regression model. From 6-dimensional estimates of the latent positions corresponding to 
100 Kenyon Cell neurons forming a directed network in larval Drosophila, 1-dimensional embeddings ẑi ’s are 
obtained by raw-stress minimization of the shortest path distances. The distance ( yi ) between bundle entry 
point of the i-th neuron and mushroom body neuropil is treated as the response corresponding to the i-th 
neuron. Scatterplot of (yi , ẑi) , with fitted regression line y = 4356.1+ 1296.6x indicates a significant effect 
( p < 0.01 for H0 : a = 0 vs H1 : a �= 0 in yi = a+ bi ẑi + ηi)
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We use the convergence guarantees for raw-stress embeddings (Trosset et al. 2020) to 
obtain the consistent estimators of the interpoint distances of the regressors when the 
underlying manifold is unknown. We demonstrate that as the number of auxiliary latent 
positions grow to infinity, at every auxiliary node the predicted response based on the 
raw-stress embeddings approach the predicted response based on the true regressors.

Observe that while the substitute estimators of the regression parameters (or the pre-
dicted responses based on the raw-stress embeddings) can deliver asymptotic perfor-
mances close to the performance of their counterparts based on the true regressors, in 
real-life scenarios we can be dealing with small samples, where the substitute estimators 
(or the predicted responses) are likely to be poor performers. When the underlying man-
ifold is known, we can overcome this issue by taking into account the measurement 
errors which are the differences between the estimated regressors and the true regres-
sors, thus making adjustments in the estimators of the regression parameters (Fuller 
1987). We conduct a simulation to compare the performances of the estimator based on 
the true regressors, the substitute (or naive) estimator and the measurement error 
adjusted estimators, on a known manifold. For a regression model yi = βti + ǫi , 
ǫi ∼iid N (0, σ 2

ǫ ) , where regressors ti are estimated by t̂i , the measurement error adjusted 
estimator is given by β̂adj,σ =

∑n
i=1 yi t̂i

∑n
i=1 t̂

2
i −

∑n
i=1 Ŵi

 where Ŵi = var(t̂i − ti) . In most realistic 

scenarios, it is not possible to know the true values of Ŵi . However, if they admit consist-
ent estimates Ŵ̂i , then we can use the proxy given by β̂adj,σ̂ =

∑n
i=1 yi t̂i

∑n
i=1 t̂

2
i −

∑n
i=1 Ŵ̂i

 . In order to 

compare the performances of these estimators, we sample a random dot product graph 
whose nodes lie on a one-dimensional curve in a high dimensional ambient space. We 
compute the adjacency spectral estimates of the latent positions, project them onto the 
manifold, and obtain estimates of the regressors which are then used to compute the val-
ues of β̂true , β̂naive , β̂adj,σ and β̂adj,σ̂ for 100 Monte Carlo samples. A boxplot of the values 
of these estimators computed over 100 Mont Carlo samples is shown in Fig. 7.

Fig. 7 Boxplot of squared errors of the four estimators of the regression slope parameter is given, 
where the intercept term of the regression model is zero. On each of 100 Monte Carlo samples, a 
random graph of n = 800 nodes is generated for which the latent position of the i-th node is given by 
xi = (t2i , 2ti(1− ti), (1− ti)

2) where ti ∼iid U[0, 1] . Response yi is generated at the i-th node via the 
regression model yi = βti + ǫi , ǫi ∼iid N(0, σ 2

ǫ ) where β = 5.0 , σǫ = 0.1 . The naive estimator was computed 
by plugging-in the pre-images of the projections of the optimally rotated adjacency spectral estimates of 
latent positions. In order to compute β̂adj,σ , we plug-in the sum of sample variances obtained from another 
set of Monte Carlo samples where the graphs are generated from the same model. We obtain 

∑n
i=1 Ŵ̂i , by 

using delta method on the asymptotic variance (see 2) of the optimally rotated adjacency spectral estimates 
of the latent positions, and thus compute β̂adj,σ̂
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Figure  7 clearly shows that the measurement error adjusted estimators β̂adj,σ and 
β̂adj,σ̂ outperform the naive estimator β̂naive . Moreover, it is also apparent that the per-
formances of β̂adj,σ and β̂adj,σ̂ don’t differ by a significant amount. This assures us that 
the use of measurement error adjusted estimator β̂adj,σ̂ is pragmatic and effective, since 
the computation of β̂adj,σ is not possible in many realistic scenarios owing to the lack of 
knowledge of the true values of Ŵi.

Unfortunately, in the case of unknown manifolds, one cannot readily apply this same 
methodology, as only interpoint distances, and not embeddings, are preserved, as dis-
cussed in “Main results” section. We believe it can be an interesting problem to approach 
in future.

We end our paper with comparisons of our procedure with other procedures such 
as direct regression on latent position estimates, a one-stage procedure and a predic-
tion procedure involving embedding in higher dimensions. A Monte Carlo sample of 
100 random dot product graphs on a one-dimensional manifold, along with responses 
associated with some of the nodes, is generated, and finally the means of squared errors 
of the predicted responses by different approaches are compared on a boxplot. Since the 
mean squared errors are of different orders of magnitudes, we plot their logarithms on 
the boxplot for convenience of comparison and the subsequent plot is given in Fig. 8. We 
find scenarios where our method is to be preferred to the use of other methods, how-
ever, this does not mean we can argue that our methodology outperforms other meth-
odologies in all possible scenarios. On the contrary, we also find instances where our 
method is outperformed by the predictor obtained from local linear regression on the 
adjacency spectral estimates of the latent positions. While in the absence of an extensive 

Fig. 8 Boxplot of logarithms of squared errors of different predictors, demonstrating superiority 
of our proposed algorithm to other methods. For each of 100 Monte Carlo samples, a random 
dot product graph with n = 750 nodes is generated for which the i-th latent position is given by 
xi = 1√

2
(cos(ti), sin(ti), cos(ti), sin(ti)) , ti ∼iid U(0, 1) . Based upon the responses from the first s = 5 nodes, 

the response at the 6-th node is predicted. The red box corresponds to the predicted responses based on 
the true regressors, and the orange box corresponds to the predicted responses obtained from our proposed 
algorithm. The green box corresponds to the predicted responses obtained from a nonparametric local linear 
regression model linking the responses with the adjacency spectral estimates of the latent positions. The blue 
box corresponds to the predicted responses obtained from nearest neighbour regression on the adjacency 
spectral estimates of the latent positions
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study comparing the efficacy of different methods in various scenarios we cannot make a 
general statement, we notice that in scenarios with too few labeled nodes at par with the 
number of dimensions of the latent positions, and with moderate sized graphs (number 
of nodes near 1000), our methodology tends to outperform other procedures. However, 
if these conditions are altered, it may so happen that predictions based on one of the 
direct methods outperform our algorithm. We believe a detailed study of comparison 
of different methods can be an interesting thing to investigate in future. We compare 
the performances of our method and direct procedures like local linear regression on 
the adjacency spectral estimates and kNN regression on the adjacency spectral estimates 
(see Table 1 in “Appendix” section, and although our method is seen to be outperformed 
by the direct approaches in certain scenarios, it still maintains a modest mean squared 
error at all the scenarios encountered, including the times when it gets outperformed by 
any of the other procedures. However, the procedure of local linear regression on the 
adjacency spectral estimates exhibit extremely high mean squared error in many sce-
narios, specifically in the cases where the graph is of moderate size (number of nodes 
near 1000) and the number of labeled nodes is small (below 10). The method of kNN 
regression is seen to be outperformed by our method in all scenarios encountered. Tak-
ing this into account, we argue that it is safer to use our method than it is to use the 
direct approaches.

We also compare our predicted response with a prediction obtained from a one-stage 
estimation. We adopt the following procedure to compute the one-stage predicted 
response. We minimize the loss function L(β; y,A) =

∑s
i=1(yi − AT

i∗β)
2 with respect to 

parameter β by gradient descent (with iterations ≤ 100 and threshold for convergence 
= 0.001 ), where the initialization for β was chosen to be a random sample from 
Uniform[0, 1]n . Denoting by β̂ the final value of the iterative procedure, the predicted 

Fig. 9 Boxplot showing the superiority of our procedure over a one-stage procedure. The manifold is taken 
to be M = ψ([0, L]) where ψ(t) = 1√

2
(cos(t), sin(t), cos(t), sin(t)) . A total of 100 Monte Carlo samples of a 

random dot product graph of size n = 500 are generated, and the logarithms of the squared errors of each 
of the predicted responses are plotted. The red box corresponds to the predicted response from the true 
regressors, the orange box corresponds to the predicted response obtained from our method and the green 
box corresponds to the predicted response obtained from the one-stage procedure. It is evident from the 
figure that our procedure outperforms the one-stage procedure
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response at the (s + 1)-th node is ŷos = AT
(s+1)∗β̂ . For both the one-stage procedure and 

our algorithm, the squared errors of the predicted responses are computed over each of 
100 Monte Carlo samples of a random dot product graph of size n = 500 . The one-
dimensional manifold on which the latent positions lie is chosen to be M = ψ([0, L]) 
where ψ(t) = 1√

2
(cos(t), sin(t), cos(t), sin(t)) . The logarithms of the squared errors are 

plotted in a boxplot for comparison and our method is found to outperform the one-
stage procedure by a huge margin. The plot is given in Fig. 9.

Finally, we provide a comparison amongst the performances of the predicted responses 
based on one-dimensional, two-dimensional and three-dimensional raw-stress embed-
dings. We generate 100 Monte Carlo samples of a random dot product graph lying on 
the manifold M = ψ([0, 1]) where ψ(t) = 1√

2
(cos(t), sin(t), cos(t), sin(t)) , find the adja-

cency spectral estimates of the latent positions and obtain the one-dimensional, two-
dimensional and three-dimensional raw-stress embeddings. We then compare the 
performances of the predicted response obtained from linear regression on the one-
dimensional embeddings and the predicted responses obtained from nonparametric 
(local linear) regression on the two-dimensional and the three-dimensional embeddings, 
by computing their squared errors over 100 Monte Carlo samples and subsequently 
obtaining a boxplot of the logarithms of the squared errors. The plot is presented in 
Fig. 10. The performances of the three procedures are seen to be close to one another, 
although upon closer inspection it can be seen that the prediction based on one-dimen-
sional embeddings being marginally outperformed by the prediction based on two-
dimensional embeddings, both being slightly better than prediction based on 
three-dimensional embeddings. However, we should state that the results of conver-
gence of the raw-stress embeddings of noisy versions of data on a one-dimensional 

Fig. 10 Boxplot showing comparison of performances of predicted responses based on one-dimensional, 
two-dimensional and three-dimensional raw-stress embeddings. The manifold is M = ψ([0, 1]) where 
ψ(t) = 1√

2
(cos(t), sin(t), cos(t), sin(t)) , the size of the graph is n = 750 , and the regression model is 

yi = α + βti + ǫi with ǫi ∼iid N(0, 10−4) , i ∈ [s] , s = 5 , α = 2.0 and β = 5.0 . The red box corresponds to 
the predicted response obtained from the true regressors. The orange box corresponds to the predicted 
response obtained from one-dimesnional embeddings. The green box corresponds to the predicted 
response obtained from the two-dimensional embeddings. The blue box corresponds to the predicted 
response obtained from the three-dimensional embeddings
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manifold are not yet analytically proven in generalized higher dimensional manifolds. 
Since theoretical guarantees of convergences are not yet established for two or higher 
dimensional raw-stress embeddings, we suggest that the user uses our procedure to pre-
dict responses with one-dimensional raw-stress embeddings when they have sufficient 
reason to assume that the underlying manifold is one-dimensional.

Remark 5 The pivotal result (Trosset et  al. 2020; Trosset and Buyukbas 2021) that 
we base our algorithm and theory on is that the shortest path distances between the 
adjacency spectral estimates of the latent positions approach the Euclidean distances 
between the pre-images of the corresponding latent positions, which are scalars. The 
proof of this result entails an ordering of the pre-images, which is possible when the 
underlying manifold is one-dimensional and hence isomorphic to the real line. This 
makes the generalization of this result to the higher dimension somewhat challenging.

Appendix
Theorem  4: Suppose ψ : [0, L] → R

d is bijective, and its inverse γ satisfies 
�∇γ (w)� < K  for all w ∈ ψ([0, L]) , for some K > 0 . Let xi = ψ(ti) be the latent 
position of the i-th node of a random dot product graph with n nodes, and assume 
yi = α + βti + ǫi , ǫi ∼iid N (0, σ 2

ǫ ) for all i ∈ [n] . Assume xi ∼iid F  for all i where F is an 
inner product distribution on Rd . Suppose x̃i is the optimally rotated adjacency spec-
tral estimate of xi for all i, and
t̂i = arg mint �x̃i − ψ(t)� . Then, α̂sub →P α , β̂sub →P β as n → ∞.

Proof Set ui = x̃i − xi for all i ∈ [n] and note that by Theorem  1, maxi �ui� →P 0 
as n → ∞ . Let ui = x̃i − xi and let hi be the vector of minimum length for which 
x̃i + hi ∈ ψ([0, L]) . Note that �hi� ≤ �ui� for all i.
Setting qi = hi + ui and using Taylor’s theorem, we observe that for all i,

Hence, by Cauchy–Schwarz Inequality,

Note that �qi� ≤ 2�ui� by Triangle Inequality, and therefore maxi �qi� →P 0 as n → ∞ , 
which implies maxi |t̂i − ti| →P 0 as n → ∞.
Recall that the regression parameter estimators based on true regressor values are

and the substitute or plug-in estimators are

t̂i = γ (xi + qi) = ti + qTi ∇γ (xi)+ o(�qi�).

|t̂i − ti| ≤ �qi��∇γ (xi)� + o(�qi�) ≤ K�qi� + o(�qi�).

β̂true =
1
n

∑n
i=1(yi − ȳ)(ti − t̄)

1
n

∑n
i=1(ti − t̄)2

, α̂true = ȳ− β̂truet̄,
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Note that by Triangle Inequality, as n → ∞ , maxi |t̂i − ti| →P 0 implies |t̄ − ¯̂t| →P 0 , 
| 1n

∑n
i=1(ti − t̄)2 − 1

n

∑n
i=1(t̂i −

¯̂t)2| →P 0 and | 1n
∑n

i=1
yi(ti − t̄)− 1

n

∑n
i=1

yi(t̂i − ¯̂t)| →P
0 . 

Thus, as n → ∞ , |β̂sub − β̂true| →P 0 and |α̂sub − α̂true| →P 0 . Recalling α̂true and β̂true 
are consistent for α and β respectively, we conclude α̂sub and β̂sub too are consistent for α 
and β . �

Corollary 1: Conditioning upon the true regressors ti in the setting of Theorem 4, the 
following two conditions hold 

(A) E(α̂sub) → α, E(β̂sub) → β as n → ∞.,
(B) For any two linear unbiased estimators α̃ and β̃ and an arbitrary δ > 0 , 

var(α̂sub) ≤ var(α̃)+ δ, var(β̂sub) ≤ var(β̃)+ δ for sufficiently large n.

Proof From Theorem 4 it directly follows that as n → ∞ , E(α̂sub) → α , E(β̂sub) → β . 
Moreover, note that (α̂sub − α̂true) →P 0 and (β̂sub − β̂true) →P 0 as n → ∞ . Thus, for 
any δ > 0 , var(α̂sub) ≤ var(α̂true)+ δ , var(β̂sub) ≤ var(β̂true)+ δ for sufficiently large n. 
Recalling that α̂true and β̂true are best linear unbiased estimators of α and β respectively, 
(B) follows.
Theorem  6: Consider a random dot product graph for which each node lies on an 
arclength parameterized one-dimensional manifold ψ([0, L]) where ψ is unknown. Let 
xi = ψ(ti) be the latent position of the i-th node for all i. Assume yi = α + βti + ǫi , 
ǫi ∼iid N (0, σ 2

ǫ ) for i ∈ [s] , where s is a fixed integer. The predicted response at the r-th 
node based on the true regressors is ŷr = α̂true + β̂truetr . There exist sequences nK → ∞ 
of number of nodes and �K → 0 of neighbourhood parameters such that for every r > s , 
|ŷr − ỹ

(K )
r | →P 0 as K → ∞ , where ỹ(K )

r = PRED(A(K ), d, �K , l,
{

yi
}s

i=1
, r) (see Algo-

rithm 2), A(K ) being the adjacency matrix when the number of nodes is nK  and l being a 
fixed natural number that satisfies l > r > s.

Proof Fix l ∈ N such that s < r ≤ l . For each K ∈ N , choose number of nodes nK  
to be observed and appropriate �K  such that eqn 9 holds, and recall from eqn 10 that 
(ẑ

(K )
1 , ....ẑ

(K )

l ) is the minimizer of the raw stress criterion:

From Theorem 5, we know that for all i, j ∈ [l] , as K → ∞,

β̂sub =
1
n

∑n
i=1(yi − ȳ)(t̂i − ¯̂t)

1
n

∑n
i=1(t̂i −

¯̂t)2
, α̂sub = ȳ− β̂sub

¯̂t.

σl(z1, ...zl) =
1

2

l
∑

i=1

l
∑

j=1

(|zi − zj| − dnK ,�K (x̂i, x̂j))
2

(12)(|ẑ(K )
i − ẑ

(K )
j | − |ti − tj|) →P 0.
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Define

where ¯̂z(K ) = 1
s

∑s
i=1 ẑ

(K )
i  . Then we can define the predictor of yr based on ẑ(K )

i  ’s to be

If original ti ’s were known, the predictor of yr would be

Now, recall that for all i, j ∈ [l] , (|ẑ(K )
i − ẑ

(K )
j | − |ti − tj|) →P 0 as K → ∞ . Thus, for any 

τ > 0 and ν > 0 , there exists K0 ∈ N such that for all K ≥ K0 , with probability at least 
(1− ν) , for all i ∈ [l],

where a(K ) ∈ {−1,+1} , b(K ) ∈ R . Note that (a(K ))2 = 1 for all K. Thus, taking sufficiently 
large K, we can bring 

∑s
i=1 yi(ti − t̄)(tr − t̄) and 

∑s
i=1 yi(ẑ

(K )
i − ¯̂z(K ))(ẑ

(K )
r − ¯̂z(K )) arbi-

trarily close with arbitrarily high probability. We can also bring 
∑s

i=1(ẑ
(K )
i − ¯̂z(K ))2 and 

∑s
i=1(ti − t̄)2 arbitrarily close with arbitrarily high probability, by choosing sufficiently 

large K. Recall that

Thus, we can bring ŷr and ỹ(K )
r  arbitrarily close with arbitrarily high probability, by 

choosing sufficiently large K, which means |ỹ(K )
r − ŷr | →P 0 as K → ∞.

Corollary  2: In the setting of Theorem  6, suppose 
{

(ỹ
(K )
1 , ỹ

(K )
2 , ....ỹ

(K )
s )

}∞

K=1
 is the 

sequence of vector of predicted responses at the first s nodes of the random dot product 
graph, based on the raw-stress embeddings ẑ1, . . . , ẑs . Define

Consider testing the null hypothesis H0 : β = 0 against H1 : β �= 0 in the absence of 
the true regressors ti , and the decision rule is: reject H0 in favour of H1 at level of sig-
nificance α̃ if F̂ (K ) > cα̃ , where cα̃ is the (1− α̃)-th quantile of F1,s−2 distribution. If the 
power of this test is denoted by π̂ (K ) , then limK→∞ π̂ (K ) = π∗ , where π∗ is the power of 
the test for which the decision rule is to reject H0 in favour of H1 at level of significance 
α̃ if F∗ > cα̃.

(13)β̃(K ) =
∑s

i=1(yi − ȳ)(ẑ
(K )
i − ¯̂z(K ))

∑s
i=1(ẑ

(K )
i − ¯̂z(K ))2

, α̃(K ) = ȳ− β̃(K ) ¯̂z(K )

ỹ(K )
r = α̃(K ) + β̃(K )ẑ(K )

r = ȳ+ β̃(K )(ẑ(K )
r − ¯̂z(K )).

ŷr = α̂ + β̂tr = ȳ+ β̂(tr − t̄).

(14)|a(K )ti + b(K ) − ẑ
(K )
i | ≤ τ =⇒ |a(K )(ti − t̄)− (ẑ

(K )
i − ¯̂z(K ))| ≤ 2τ

(15)
ỹ(K )
r = ȳ+

∑s
i=1 yi(ẑ

(K )
i − ¯̂z(K ))(ẑ

(K )
r − ¯̂z(K ))

∑s
i=1(ẑ

(K )
i − ¯̂z(K ))2

,

ŷr = ȳ+
∑s

i=1 yi(ti − t̄)(tr − t̄)
∑s

i=1(ti − t̄)2
.

(16)F∗ = (s − 2)

∑s
i=1(ŷi − ȳ)2

∑s
i=1(yi − ŷi)2

, F̂ (K ) = (s − 2)

∑s
i=1(ỹ

(K )
i − ȳ)2

∑s
i=1(yi − ỹ

(K )
i )2

.
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Proof From Theorem  5, we have maxi∈[s] |ỹ(K )
i − ŷi| →P 0 , which implies 

(F̂ (K ) − F∗) →P 0 as K → ∞ . Thus, for any (α,β) ∈ R
2 , as K → ∞ , 

Pα,β [F̂ (K ) > cα̃] → Pα,β [F∗ > cα̃].

Table 1: We add here the table for comparison of performances (by mean squared 
errors) of our method and direct methods like nonparametric local linear regression 
on the adjacency spectral estimates and kNN regression on the adjacency spectral 
estimates.
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Table 1 Table for comparison of the performances of our method and direct nonparametric 
approaches such as local linear regression and kNN regression for predicting a response at an 
unlabeled node

The manifold is M = ψ([0, 1]) where ψ(t) = 1√
2
(cos(t), sin(t), cos(t), sin(t)) , and the mean squared errors 

for predicted responses are computed over 100 Monte Carlo samples. The regression model is yi = α + βti + ǫi , 

ǫi
iid∼N(0, 10−4) , i ∈ [s] , α = 2.0 , β = 5.0 . Following our notation, d denotes the dimension of the ambient space, n 

denotes the total number of nodes and s denotes the number of labeled nodes. The columns titled “true”, “sub”,“llr”,“kNN” 
respectively correspond to the sample mean squared errors of the predicted responses obtained from linear regression on 
the true regressors, from linear regression on the raw-stress embeddings (which is our suggested method), from local linear 
regression on the adjacency spectral estimates and from kNN regression (with k = 3 in our simulations) on the adjacency 
spectral estimates. The “true” column has all zeros because the sample mean squared error for the predicted response from 
linear regression on the true regressors yield values in the order of 10−4 or 10−5 which get approximated by 0.00 when 
rounded up to two places after decimal

d n s true sub llr kNN

1 4.00 500.00 5.00 0.00 0.52 2266.60 1.39

2 4.00 750.00 5.00 0.00 0.27 5995.41 1.01

3 4.00 1000.00 5.00 0.00 0.23 197.57 1.43

4 4.00 1250.00 5.00 0.00 0.19 10914.72 1.13

5 4.00 1500.00 5.00 0.00 0.20 484.39 1.35

6 4.00 500.00 8.00 0.00 0.31 117.90 0.48

7 4.00 750.00 8.00 0.00 0.20 3.98 0.60

8 4.00 1000.00 8.00 0.00 0.25 0.92 0.55

9 4.00 1500.00 8.00 0.00 0.13 14.55 0.64

10 4.00 500.00 15.00 0.00 0.32 0.08 0.34

11 4.00 750.00 15.00 0.00 0.15 0.09 0.26

12 4.00 1000.00 15.00 0.00 0.10 0.05 0.30

13 4.00 1500.00 15.00 0.00 0.08 0.03 0.24
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