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Introduction
Mass vaccination represents a crucial strategy in preventing and mitigating the spread 
of infectious diseases through the establishment of herd immunity (John and Samuel 
2000), protecting even unvaccinated individuals. Despite its demonstrated benefits, 
vaccine hesitancy remains a persistent issue, compounded by challenges posed by the 
ongoing COVID-19 pandemic (WHO 2019; Hudson and Montelpare 2021; Cascini et al. 
2021; Coustasse et al. 2021; de Miguel-Arribas et al. 2022; Jentsch et al. 2021). Height-
ened concerns regarding vaccine safety and efficacy have exacerbated the long-standing 
challenge of voluntary vaccination (Larson 2013; Determann et al. 2014; Kennedy 2020).
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Of particular interest, the study of how social networks influence public health behav-
ior and vaccine choices is a significant area of research (Christakis and Fowler 2013). The 
dynamic spread of changing opinions on vaccination and its impact on disease outbreaks 
through social networks constitutes a “dueling contagion” process (Fu et al. 2017). It is 
imperative to recognize that social contagions can also perpetuate non-socially optimal 
health behaviors. For instance, the diffusion of vaccine scares among parents through 
social networks has led to a decline in infant vaccination rates, resulting in a surge in 
childhood diseases (Jansen et al. 2003). Both pro- and anti-vaccine opinions are not only 
transmitted through personal interactions (Shaham et al. 2020) but also through digital 
social media platforms (Salathé and Khandelwal 2011; Nayar et al. 2019). A comprehen-
sive understanding of these spreading mechanisms (see, for example, a comprehensive 
review in Ref.  Pastor-Satorras et  al. (2015)) is vital to leverage the positive impacts of 
social contagion and mitigate its adverse effects in public health efforts (Campbell and 
Salathé 2013; Salathé and Bonhoeffer 2008).

In recent years, the role of social factors in epidemiology has attracted growing 
attention (Bauch and Galvani 2013; Nayar et  al. 2019). Researchers have used behav-
ior-disease interaction models to investigate the impact of various factors, such as vac-
cine scares or heightened disease awareness, on vaccine compliance (Bauch 2005; Fu 
et al. 2011; Cardillo et al. 2013; Zhang et al. 2012; Bhattacharyya et al. 2019). We refer 
to Refs.  Bhattacharyya and Bauch (2012), Wang et  al. (2016), Bedson et  al. (2021) for 
systematic reviews in this regard. Going beyond interacting diffusion of the same sort 
(Gomez et al. 2013; Nguyen et al. 2018; Chang and Fu 2019), prior studies have consid-
ered the spread of disease, health behavior, and/or information can interact in a close 
feedback manner, either through the same network (single-layered) (Funk et al. 2009) or 
through multilayer networks (Granell et al. 2013; Wang et al. 2014; Liu et al. 2016; Pan 
et al. 2019; Kahana and Yamin 2021). In the latter, spread of infectious disease on one 
layer interacts with the diffusion of health behavior on the other (Mao and Yang 2012), 
or coupled with a third layer of information diffusion (Mao 2014).

Motivated by the empirical work using social network targeting for improving pub-
lic health interventions  (Kim et  al. 2015), here we propose and compare a number of 
network-based targeting algorithms that aim to maximize the influence of initial seeds 
who are early supporters of health intervention (e.g., vaccination). This problem is also 
known as influence/diffusion maximization: how to select the seed users so that the total 
number of triggered adopters can be maximized. It is common practice to identify and 
target influential individuals based on various centrality measures (Masuda 2009; Zhao 
et al. 2014; Gupta et al. 2016) in both real-life networks and social media (Morone and 
Makse 2015). Despite that such targeting concept is similar to identify superspreaders 
and targeted vaccination  (Pastor-Satorras and Vespignani 2002; Cohen et  al. 2003) in 
epidemiology, much is unknown about diffusion maximization on multiplex networks. 
In this work, we fill this theoretical gap and study a variety of targeting algorithms in a 
multiplex setting and assess their effectiveness of mitigating an ongoing epidemic.

Specifically, we consider a two-layer multiplex, one with a social contagion network 
of opinion formation and the other with a spatial network of disease transmission. The 
novelty of our approach is twofold. First, we consider heuristic context-dependent tar-
geting methods explicitly using multiplex networks by coupling the dynamics of social 
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influence and behavior changes with an ongoing epidemic. Second, aside from such 
interplay of concurrent disease and opinion propagation, we also consider dueling con-
tagions of opposing views on the influence network (not just the pro-vaccine opinion 
but also the anti-vaccine together with neutral ones) and study how they impact target-
ing effectiveness. In so doing, our work represents a step forward in the field of net-
work-based interventions, by improving our understanding of how to optimize targeting 
interventions with potential applications across a wide range of domains.

Our present work extends beyond our previous preliminary study  (Fügenschuh and 
Fu 2023) with two key contributions. First, when measuring targeting effectiveness, we 
not only consider the final size of the epidemic (how the disease spreading is suppressed 
overall), but also the peak of the epidemic (how the targeting intervention flattens the 
epidemic curve). Second, we test the robustness of our targeting algorithms against vari-
ations of modeling parameters including initial conditions, network size, and density. 
Our results help improve our understanding of how to optimize targeting interventions 
by making them more practical and scalable in the real world.

Model and methods
Model overview The multiplex we study consists of two network layers, each contain-
ing the same set of individuals but with different connections between them. The first 
layer represents an individual’s typical environment, including in-person interactions 
with family, coworkers, friends, and others during daily activities (including leisure time 
or hobbies). We assume a degree-regular network of these contacts among all individ-
uals, and represent these relationships using a square lattice graph. On this layer, we 
simulate the spread of a disease. The second layer represents a virtual social network 
and provides a platform for opinion exchange (Mastroeni et al. 2019). The connections 
between individuals on this layer are degree-heterogeneous, generated by the Barabási–
Albert network model  (Barabási and Albert 1999). Such network structure allows the 
position of an individual to differently influence the dynamics of opinion dissemination. 
Past research has shown that single-layered scale-free networks promote both vaccina-
tion behavior and effective immunization (Cardillo et al. 2013). In this work we explicitly 
consider a dueling contagion process (Fu et al. 2017) on two-layered networks as follows.



Page 4 of 19Fügenschuh and Fu  Applied Network Science            (2023) 8:67 

The simulation alternates probabilistically between disease spread on one layer and 
opinion formation (and vaccine uptake) on the other. In each iteration, an individ-
ual is chosen at random to update their current states. The next step is to determine 
which layer the process should continue on. As the dynamics of the processes on the 
two layers are different, the probability of choosing a layer need not be equal. To this 
end, we introduce the parameter ω to control the relative time scales of biological and 
social contagions: with probability ω , a state update of that individual takes place on 
the disease transmission layer, and otherwise with probability 1− ω , an opinion state 
update occurs on the other network layer (see Algorithm  1). A full overview of all 
simulation parameters can be found in Table 1. Once a network layer is selected for 
update, the corresponding process is continued based on the individual’s state in that 
layer (see Fig. 1), as described in further detail below.

Fig. 1 An example of a multiplex with an opinion (top) and disease (bottom) layer, initialized on a 15× 15

-square lattice and using default values of model parameters m, υ− , υ+ ,Os and ι as listed in Table 1

Table 1 Default parameters used in the agent-based simulations

Layer Notation Default Parameter definition

ω 0.75 Probability of selection of the disease layer

n 50 Size of the square lattice graph, n2 is the total number of nodes in each layer

m 1 Number of edges to be attached from a new node in the Barabási–Albert 
network

Opinion υ− 10% Initial percentage of anti-vaccine opinions

υ+ 10% Initial percentage of pro-vaccine opinions

Os Rand Placement strategy to assign supporters

Oa All Opinion adoption method

ρ 0.25 Probability that the contrary opinion is adopted

Disease ι 1% Percentage of initial infection seeds

β 0.95 Base probability that a susceptible gets infected provided infections in the 
neighborhood

γ 0.25 Probability that an infected recovers

η 0.02 Probability that a susceptible individual with neutral opinion gets vaccinated
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The opinion contagion layer and network targeting algorithms

Our objective is to study networks targeting methods that harness the social conta-
gion of pro-vaccine opinions, ultimately increasing the willingness of the population 
to prevent an epidemic through vaccinations. Therefore, we simulate an exchange of 
views on the subject of vaccines. Based on the way the individuals represent their 
opinions, we consider a voter model with a single discrete variable with more—in 
our case three—states, according to the classification given in Ref. Sîrbu et al. (2017), 
Jedrzejewski and Sznajd-Weron (2019). In our setting, an individual can have one of 
the three discrete opinions: anti-, neutral or pro-vaccine, indicated by the values −1, 0 
and 1 respectively. The number of supporters and opponents at the start is given by 
the parameters υ+ and υ− respectively. To assess the impact of the supporters’ exact 
positions in the network on the opinion formation process and consequentially on the 
epidemic, we consider the following network-based targeting methods for the initial 
placement of pro-vaccine opinions. 

1. Hubs: The supporters are chosen from the vertices with the highest degree, referred 
to as hubs.

2. Betweenness: The probability of a vertex being chosen as a supporter is based on its 
betweenness centrality. The higher the betweenness value, the greater the likelihood 
of being selected.

3. High-degree: Pro-vaccine opinions are assigned according to the degree distribu-
tion of the vertices. Again, the higher the degree, the higher the probability of being 
selected.

4. Random: Vertices are randomly selected from the entire population with a uniform 
probability.

5. Hub-community: A heuristic approach is used, starting by filling the supporter set 
with a vertex of the highest degree and its neighbors. Then, new vertices are repeat-
edly added to the supporter set by choosing neighbors of supporters with the highest 
degree in the opinion layer as long as they have not been chosen yet and there are 
places available to do so.

6. Low-degree: The least connected vertices have a higher probability of being chosen 
as vaccination supporters. Pro-vaccine opinions are assigned based on the degree 
distribution of the vertices, with the lower the degree, the higher the probability of 
being selected.

7. Hub-neighbors: The individuals selected are those adjacent to hubs, but not them-
selves hubs.

8. Mod-community: Supporters are members of communities determined using the 
Clauset-Newman-Moore greedy modularity maximization algorithm (Clauset et al. 
2004), designed to find communities in scale-free networks, among others. Commu-
nities are selected in the order of their size until the desired number of supporters is 
reached.

9. Coworkers: Pro-vaccine opinions are assigned to vertices that form a connected rec-
tangular-shaped sub-grid on the disease layer.
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After the initial pro-vaccine opinions are assigned, the individuals with anti-vaccine 
views are randomly selected from the remaining nodes. The rest of the individuals are 
set to neutral. We use the parameter Os to designate the targeting method used in the 
simulation.

Figure  2 demonstrates how the placement of vaccine supporters varies with the 
different targeting methods. The network, which remains constant for all methods, 
is comprised of vertices arranged on a 25× 25 lattice for the disease layer, while 
the opinion layer is generated using the Barabási–Albert preferential attachment 
model  (Barabási and Albert 1999) (in which each new node is connected to exist-
ing nodes with one edge, m = 1 ). Both pro- and anti-vaccine opinions are present at 
a proportion of 10% of the total population. The sizes of vertices are scaled based on 
their degree and the edges connecting the vaccine supporters are displayed to give an 
indication of the strength of connections within the assigned pro-vaccine group. Note 
that all other edges have been omitted for clarity.

Fig. 2 Network-based targeting. Shown are specific examples of initial supporter placements for each 
targeting method considered. Individuals are situated on the underlying spatial lattice and highlighted are 
only the potentially long-range connections between those supporters chosen within the opinion layer 
according to different targeting methods
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Opinion updating rule After the initial views are assigned, the opinion formation pro-
cess unfolds  (Castellano et  al. 2009). The opinion of a selected individual is updated 
using one of the following five updating rules.

The focal individual adopts the opinion 

1. Of a randomly chosen neighbor (random) Sood and Redner (2005)) or
2. Of the majority of the neighbors (max) Fu and Wang (2008) or
3. Indicated by the sign of the sum of the opinions of the neighbors (sum) or
4. The closest to the average of the neighboring opinions (mean) Kozitsin (2022).

We also implement a hybrid method of opinion adoption that incorporates all above 
updating rules by randomly choosing one at each iteration step. We use the parameter 
Oa to specify the opinion updating rule used in the simulation.

In addition, it is often difficult for individuals to accept opposing opinions (Deffuant 
et  al. 2002), which is why we use the parameter ρ to represent the probability of ulti-
mately accepting the calculated opposing opinion. This assumption of an inertia effect 
when revisiting contrary opinions aligns with prior experimental observations  (Pitz 
1969; Traulsen et  al. 2010) and modeling studies  (Stark et  al. 2008; Zhang et  al. 2011; 
Wang et al. 2020).

The disease transmission layer

The epidemic spreading process we consider on the disease layer is based on the Suscep-
tible-Infected-Recovered (SIR) model, with an extension to include the state of immu-
nization (Hens et al. 2012; Newman 2002). Individuals who opt to receive the vaccine, 
in particular the initial supporters in the opinion layer, once vaccinated, will remain in 
immunized state throughout the epidemic simulation. Infection seeds are prescribed by 
a predefined number of individuals in the population—given by the parameter ι—who, 
of course, are not vaccinated. Once the simulation is started and if it is the turn of the 
disease layer to update, the state of the chosen individual is updated according to one 
of the following rules. (At each iteration, an individual can only record at most a single 
state change at a given time.) 

1. A susceptible pro-vaccine supporter is vaccinated without hesitancy, whereas a sus-
ceptible individual with neutral attitude will get vaccinated with a predefined very 
low probability η . In contrast, a susceptible anti-vaccine individual will never choose 
to be vaccinated.

2. If not vaccinated, a susceptible can get infected, provided that there are active infec-
tions in the immediate neighborhood. As a matter of fact, the more infected neigh-
bors the higher risk of infection (Pastor-Satorras et al. 2015). Thus, the parameter β 
that represents the base probability of getting infected, increases by the percentage of 
the infections in the neighborhood: β 1+

Iu
Nu

 , where Nu is the number of all neigh-

bors of the focal susceptible u and Iu is the number of infectious neighbors.
3. An infected recovers with a predefined probability γ.
4. Once vaccinated or recovered, individuals remain in their assumed state until the 

end of the simulation.



Page 8 of 19Fügenschuh and Fu  Applied Network Science            (2023) 8:67 

In our simulations, we focus on exploring how the initial pro-vaccine opinion individu-
als should be placed on the opinion layer in order to achieve the most efficient diffu-
sion of vaccine support views in terms of suppressing the epidemic spreading on the 
disease layer. Thus we mainly concentrate on varying the parameters that govern social 
contagion on the opinion layer, including the initial number of individuals holding pro- 
and anti-vaccine opinions as well as targeting methods for the pro-vaccine supporter 
placement and specific assumptions of individuals’ view adoption. Simulation results, 
averaged over 100 realizations, are shown as boxplots. Unless noted otherwise, we use 
default model parameter values given in Table 1.

Results
To begin with, we show the results of a typical simulation run initialized with the default 
values as given Table 1, which gives us an intuitive understanding of how the contagion 
process on the opinion layer can be harnessed to control disease spread (Fig. 3). On the 
left panels of Fig. 3, we show the simultaneous progression of both social and biological 
contagions—on the opinion layer (upper left) and on the disease layer (lower left). For 
comparison, the panels on the right display the epidemic spread with the same initial 
model parameters as in the left panels but without the influence of the opinion layer: 
The individuals are either vaccinated only in the initial phase (upper right) or not at all 
(lower right). To assess the impact of the epidemic and compare various scenarios, we 
keep track of the number of individuals who contract the illness during each simulation 
run. Based on the three scenarios of disease transmission provided, we see that when 
the spread of the disease is suppressed by increasing vaccinations based on opinion 

Fig. 3 Impact of dueling contagions. Shown is an example of an opinion formation process (upper left) 
which is concurrent with a disease spread course (lower left). Such multiplex disease-behavior interactions 
can lead to the outgrowth of vaccination supporters and thus the suppression of the disease transmission, 
as compared to scenarios having a constant rate of vaccination (upper right) or absent of any immunized 
individuals (lower right). All other parameters are set to be default values as given in Table 1
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formation, 54% of the population becomes infected. On the other hand, 87% of the pop-
ulation becomes infected when the number of immunized individuals remains constant 
throughout (no social contagion of vaccination), and 99% if there is no vaccination at all. 
In the latter scenario, the epidemic lasts significantly longer, with a duration of 60,000 
iterations compared to 45,000 iterations when vaccinations are administered.

In evaluating the effectiveness of targeted interventions, we not only consider the final 
size of the epidemic (Fügenschuh and Fu 2023), but also the peak as a measure of disease 
mitigation effort. In the following, we present a comprehensive analysis of the effective-
ness of targeting algorithms, and we validate the robustness of these findings through 
simulations that take into account varying model parameters such as initial conditions, 
network size, and density.

Comparison of different network targeting algorithms along with opinion updating rules

Here we investigate and compare the extent to which the spread of the disease can be 
impacted jointly by the initial placement of pro-vaccine supporters ( Os ) and the spe-
cific opinion adoption method ( Oa ) applied to the opinion layer. To this end, we vary the 
parameter combinations governing Os and Oa and set all others to defaults, as given in 
Table 1.

The simulation results are presented in Fig. 4. The upper plot displays boxplots of the 
peak of the epidemic, indicating the maximum percentage of infected individuals during 
all iterations. In the lower plot, the boxplots show the final epidemic size, i.e. the total 
percentage of individuals ever infected across all iterations. Corresponding to each ini-
tial placement method of vaccine supporters (as ordered on the x-axis), each of the five 
opinion adoption methods that are grouped together is distinguished by different colors.

The evaluation of the impact of different opinion adoption methods on the spread of 
pro-vaccine support demonstrates that both the initial placement of vaccine supporters 
on the opinion layer and the chosen opinion adoption method have a crucial impact on 
the effectiveness of mitigating the epidemic. It is clear that the vertices with the high-
est network centrality values are the most influential in this social contagion process, 
and that the potential number of nodes that a pro-vaccine supporter can influence is a 
critical factor. However, when the best-connected nodes are part of a like-minded com-
munity, as seen in the hub-community and mod-community cases, their performance 
is similar to or even worse than the completely random approach. The density of con-
nections between the initially placed vaccine supporters does not appear to significantly 
affect the spread of pro-vaccine opinions. In the case of coworkers, it is apparent that 
seeding a pro-vaccine opinion within a physically connected group, such as coworkers, 
does not result in an effective spread of pro-vaccine views. Our simulations also revealed 
that the scenario where low-degree vertices acting as hub neighbors could spread pro-
vaccine opinions to their hub neighbors and trigger a ripple effect through the entire 
network is unlikely.

The assessment of the opinion adoption methods Oa reveals a consistent ordering of 
corresponding results (the colored boxplots in Fig. 4) per initial placement method for 
pro-vaccine supports, indicated by the x-axis. Among all five different opinion updating 
rules considered, the one yielding the most impact on disease mitigation appears to be 
taking the sign of the sum of neighboring opinions (indicated by the purple color Fig. 4). 



Page 10 of 19Fügenschuh and Fu  Applied Network Science            (2023) 8:67 

This method is followed by the random approach, which exhibits a noticeable gap in per-
formance. The methods max and mean trail closely behind and perform almost equally 
with a slight disadvantage compared to the other majority approach.

The exceptional case of mod-community-based targeting highlights the limitation in 
exchanging or spreading opinions within a closed like-minded community, regardless of 
the specific opinion adoption method used. This is due to the restricted flow of informa-
tion, which results in saturation when this method of targeting is applied.

Impact of varying initial conditions of opinion formation

The outcome of an epidemic is shaped by the combination of the initial number of indi-
viduals holding pro-vaccine and anti-vaccine opinions at the outbreak. Specifically, 
we quantify the effect of these initial conditions on the infection curve by altering the 
parameters υ+ and υ− , which denote the percentage of individuals holding pro- and anti-
vaccine opinions, respectively, at the beginning of each simulation. The top and bottom 

Fig. 4 Comparison of effectiveness of different targeting algorithms. Shown are the peak of infections (the 
maximum percentage of infections over all iterations of the epidemic spreading process) (top) and the final 
epidemic size (the total percentage of individuals ever infected (bottom), grouped for each targeting method 
of initial placement of pro-vaccine supporters (as indicated on the x-axis ) with respect to different opinion 
updating rules (corresponding to the color map in the legend). Each boxplot is based on 100 independent 
simulations
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panels of Fig. 5 depict the results of simulations with different targeting methods for the 
pro-vaccine opinion messengers, with Os set to high-degree in the top panel and random 
in the bottom panel. All parameters other than υ+ and υ− are fixed to their default values 
as specified in Table 1, and each simulation run starts with the generation of a fresh pair 
of networks for both layers.

In Fig. 5, each boxplot corresponds to a combination of initial conditions υ+ and υ− 
with values taking from the set {5, 20, 15, 20, 25}% , as indicated on the x-axis. On the 
y-axis, we have the total percentage of infected individuals (final epidemic size). As a 

Fig. 5 Robustness of network-based targeting. Shown is the final epidemic size (the percentage of 
individuals ever infected) for varying initial proportions of individuals holding pro-vaccine υ+ and 
anti-vaccine υ− , with the targeting method Os set to high-degree in the top panel and random in the bottom. 
The insets show the case of υ+

= υ− . Degree-based targeting provides more effective interventions than 
random placement. Each boxplot is based on 100 independent simulations
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comparison, we also show the base case where every individual has neutral attitude 
towards vaccine, that is, υ+ = υ−

= 0 . The insets of Fig. 5 show how the final epidemic 
size decreases with an increasing equal presence of pro- and anti-vaccine individuals, 
including values of υ+

= υ− beyond 25%.
As expected, for a fixed proportion, υ+ , of individuals seeded as pro-vaccine support-

ers, increases in anti-vaccine opinion individuals υ− can cause greater final epidemic 
sizes, suggesting an approximately linear relationship with positive slopes. However, a 
larger initial presence of pro-vaccine individuals υ+ leads to a greater extent of disease 
mitigation that strongly counteracts the negative impact due to the increase in υ− . For 
example, for υ+

= 20% , the increase in total infections for bigger υ− is limited, exhibit-
ing a much smaller slope compared to the scenario υ+

= 5% . Regarding the symmetric 
initial conditions υ+

= υ− , the final epidemic size decreases with increasing υ+
= υ− ; in 

particular, as υ+
= υ− increases beyond 30% , the spread of disease will be significantly 

suppressed. At υ+
= υ−

= 50% we see that essentially little or no disease outbreaks can 
unfold. These results hold for both targeting methods: high-degree-based and random. 
The former is much more effective than the latter, which is inline with Fig. 4. Overall, we 
confirm similar impact of varying initial conditions for other targeting methods Os.

Impact of varying couplings of disease transmission and opinion contagion

The time scale parameter ω controls the relative time scales governing the dynam-
ics of disease transmission and opinion contagion on the two layers. The strength of 
interlayer coupling determined by ω may impact the effectiveness of targeting meth-
ods. Intuitively, greater ω values render more frequent updating on the disease layer, 
thereby representing less favorable conditions for network targeting. We thus evalu-
ate the robustness of our three representative targeting methods Os , including the 
most effective “high-degree”, the moderate one “random” and the least effective “cow-
orkers”, by adjusting ω values beyond its default value, which is ω = 0.75 , as used in 
our simulations. Figure 6 shows that increases in ω compromise the effectiveness of 
targeting, resulting in larger sizes of infections. These results confirm that a larger 
ω corresponds to a more challenging condition for interventions. We also see that 
“high-degree”-based targeting is robust to increasing ω as the increase in disease inci-
dences is slow, exhibiting a concave upward curvature. In contrast, the other two 

Fig. 6 Comparing the effectiveness of selected Os-methods by using the total percentage of infections 
while varying the time scale parameter ω . Each boxplot is based on 100 simulations. Other model parameters 
as in Table 1
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targeting methods are more sensitive to the increase in ω , showing a concave down-
ward curvature. For instance, the least effective “coworkers”-based targeting shows a 
much sharper rise than others, while the most effective “high-degree”-based targeting 
starts slowly and steepens at higher ω values, but still is lower than the other two even 
at ω = 90%.

In addition, we vary the disease transmission rate β and assess how targeting methods 
may depend on β . For a larger β , the disease is more contagious, making it more diffi-
cult to contain. Overall, the effectiveness of the three aforementioned targeting methods 
shows qualitatively the same pattern in their changes while having their order of effec-
tiveness attained: for each Os , the total number of infections increases with β and is satu-
rated at higher β values (Fig. 7). Regarding the opinion layer, we also vary the parameter 
ρ—namely, the probability of adopting a contrary opinion. Accepting the opposite view 
works both ways; that is, switching from pro-vaccine to anti-vaccine and vice versa is 
equally likely, both with probability ρ . Therefore, as demonstrated in Fig. 8 specifically 
for the “hubs”-based targeting, the parameter ρ does not significantly influence the effec-
tiveness of targeting methods. Neither does the effect of opinion adoption methods Oa 
on containing the disease depend much on ρ . For example, we see that “random”-based 
opinion adoption remains in between the other two opinion updating rules concerning 

Fig. 7 Comparing the effectiveness of selected Os-methods by using the total percentage of infections while 
varying the disease transmission rate β . Each boxplot is based on 100 simulations. Other model parameters 
as in Table 1

Fig. 8 Comparing the effectiveness of the “hubs”-based targeting method for selected opinion updating 
rules Oa (as indicated in the legend), using the total percentage of infections while varying the probability 
ρ of adopting a contrary opinion. Each boxplot is based on 100 simulations. Other model parameters as in 
Table 1



Page 14 of 19Fügenschuh and Fu  Applied Network Science            (2023) 8:67 

their ultimate impact on disease mitigation. For each Oa , we observe a slight decrease in 
the total number of infections as ρ increases.

Impact of network size

The previous simulations have been conducted with a fixed network size of 2500 indi-
viduals. Figure 9 provides insight into the sensitivity of our simulation to larger network 
sizes. Beginning with the default 50× 50 for the bottom layer of square lattice and top 
layer of Barabàsi–Albert network, the remaining ticks on the x-axis represent network 
sizes of 10000, 22500, 40000, and 62500 nodes, respectively. To compare the impact of 
initial supporter placement methods (denoted as Os ) in these test scenarios, we focus on 
three targeting algorithms Os , each of which corresponds to high-degree, random, and 
coworkers, as indicated by the legend in Fig. 9. Each boxplot summarizes the results of 10 
independent simulations.

We observe an intriguing finite size effect: as the number of nodes in the layers 
increases, the final epidemic size decreases with smaller fluctuations, as shown in the 
left plot of Fig. 9. The relative position between the boxplots of different colors, repre-
senting different targeting methods, remains unchanged: high-degree-based targeting 
remains most effective in mitigating the disease impact, followed by random and then 
coworkers. This result further underscores the robustness of the simulation with regard 
to network size in comparing effectiveness of targeting methods. Overall, we confirm 
that the relative positions of the boxplots obtained for different targeting methods Os 
as well as initial conditions of (υ−, υ+)-pairs remain qualitatively the same as in Fig. 4 
and 5, respectively.

It is important to consider computing times when working with larger network sizes. 
The right plot in Fig. 9 shows that the simulation times, which were conducted on a 3.2 
GHz 16-Core Intel Xeon W with Turbo Boost up to 4.4 GHz and 768 GB RAM, increase 
steadily, approximately quadratically with the number of nodes. Starting with approxi-
mately one minute for a 50× 50 square lattice/Barabàsi–Albert network, the compu-
tation time can reach over three hours for a 250× 250 network. We also find that the 
computation time is less sensitive to the specific targeting method Os.

Fig. 9 Quantifying network size effect. Shown are the epidemic size (the percentage of individuals ever 
infected) (left panel) and the running times of the simulations (right panel) as a function of the total number 
of nodes in the network layers. Each boxplot is based on 100 independent simulations
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Furthermore, we perform a comprehensive comparison of simulation times with 
respect to specific targeting methods Os and opinion update methods Oa using the same 
default network size (Fig. 10). Except for betweenness-based targeting, the computation 
times roughly track the trend of the final epidemic size (total infections) presented in 
Fig. 4. Generally and intuitively, the fewer infections there will be, the sooner the simula-
tion will end.

Impact of average degree of the opinion layer

Lastly, we investigate the robustness of our simulation results with respect to varying 
the average degree of the opinion network layer. Keeping all other parameters fixed, 
we vary the number of edges added from a new node to existing ones (as indicated by 
the parameter m in Table  1) from m = 1 (average degree �k� = 2 , density d = 0.0008 ) 
to m = 4 ( �k� = 8 , density d = 0.0032 ) when generating the Barabási–Albert network 
as the opinion formation layer in our model. As shown in Fig. 11, the effectiveness of 
disease mitigation by targeting high-degree, random, and coworkers nodes as initial 

Fig. 10 Comparing the running times of agent-based simulations with respect to specific implementations 
Oa of different targeting methods Os . This plot supplements the final results shown in Fig. 4. Each boxplot is 
based on 100 independent simulations

Fig. 11 Effect of varying average degree of the opinion network layer. Shown is the final epidemic size 
(percentage of individuals ever infected) for selected targeting methods ( Os indicated on the x-axis) based 
on high degree nodes, random choosing, and community coworkers respectively with increasing network 
parameter, m. The average degree of the opinion layer is approximately 2m, and thus larger m values mean 
greater density of the network ( d = 8 · 10−4

m for network size 2500)
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pro-vaccine supporters remains largely unchanged. We also see that increasing the den-
sity of the opinion layer (via the parameter m) appears to yield noticeably yet insignifi-
cant lesser final epidemic size. Taken together, the density of the opinion layer has little, 
if any, impact on the social contagion process, whereas it is primarily the very structure 
of peer influence network and the network-based targeting methods that jointly play an 
important role in shaping the opinion propagation process.

Discussions and conclusion

In this work we investigate how various centrality-based targeting algorithms seeding 
the opinion influence network can impact the social contagion of pro-vaccine support 
as a means to control epidemic spreading on the other disease layer. For simplicity, the 
disease layer uses regular square lattices to capture the spatial transmission dynamics 
of local community neighborhoods. However, the use of degree-regular lattices leads to 
a lack of network heterogeneity, which can impact the threshold for disease outbreaks. 
On the other hand, by varying the transmission rate β in our extended simulations on 
spatial lattices, the resultant effective basic reproductive ratio can approach values 
expected in degree-heterogenous networks (cf. the bottom right panel in Fig. 3 which 
shows a total 99% infection). In this context, our findings offer preliminary insights for 
studying more nuanced scenarios in multilayer networks (Kivelä et al. 2014). While our 
model does not explicitly account for interlayer dependence during network generation, 
our simulations and targeting algorithms, such as those focusing on hub-community 
and co-workers ones, do incorporate certain aspects of interlayer correlations to some 
extent (Kivelä et al. 2014). This is qualitatively evidenced by the varying levels of connec-
tivity of selected targeting seeds and their corresponding spatial distributions for each 
targeting algorithm, as shown in Fig. 2. Nonetheless, future work is needed to quantify 
how interlayer network characteristics, for example, selection of initial seeds based on a 
combined centrality measure from both layers, can enhance the efficiency of multiplex 
targeting strategies.

While we consider a range of widely used opinion updating rules  (Sobkowicz 2009), 
it is helpful for future work to incorporate more realistic contagion models (Dodds and 
Watts 2004; Campbell and Salathé 2013) and high-order interactions  (Iacopini et  al. 
2019; Barrat et  al. 2022), such as hypergraphs  (Barrat et  al. 2022). The targeting algo-
rithms also need to account for other factors, such as homophily (‘birds of a feather to 
flock together’) (Centola 2011), and the presence of central top-down campaign influ-
ence (Wang et al. 2020) apart from peer influence. By incorporating these extensions, we 
can enhance public confidence in vaccines at a time when coverage from child vaccina-
tions to COVID-19 vaccinations may be declining or stagnant.

Our model primarily focuses on an ongoing epidemic where healthy and susceptible 
individuals exchange opinions on vaccine uptake when they are not infected. It is thus 
important to note that vaccine uptake is only considered for individuals who have 
not contracted the disease. Once individuals are infected, vaccination is no longer a 
consideration. However, a meaningful extension of our current model is to incorpo-
rate the reciprocal relationship between infection status and vaccine opinion. Specifi-
cally, it is not only peer influence that matters, but also an individual’s own experience 
with the disease, and particularly how their health outcomes, impacted by contracting 
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the disease, shape their opinion about the necessity of vaccinations. Previous research 
suggests that a higher perceived cost of infection leads to a greater tendency to vacci-
nate (Fu et al. 2011). Thus, incorporating such experiential learning feedback, beyond 
just word-of-mouth, into the disease and behavior interactions could provide a more 
comprehensive understanding of the dueling contagion dynamics.

The present work assumes a challenging scenario where the exchange and accept-
ance of views is much slower than disease spreading (using the time scale parameter 
ω = 0.75 ). To verify the robustness of our findings, we conducted a comprehensive 
sensitivity analysis on key model parameters. These include the disease transmis-
sion rates β , the probability ρ of adopting a contradictory opinion, and the impact of 
varying the time scale parameter ω . The parameter ω essentially controls the extent 
of interdependence (or coupling) of disease transmission and opinion contagion, 
thereby impacting the effectiveness network-based targeting algorithms (see Fig. 6). It 
is worth noting that a prompt response from the population (smaller ω valuers) would 
create favorable conditions for mitigating the spread of disease (Fu et al. 2017). More-
over, it is promising for future work to consider the impact of external shocks in the 
form of vaccine scares or skepticism, in order to overcome the hysteresis effect previ-
ously discovered in Ref. Chen and Fu (2019). The multiplex network targeting algo-
rithms explored in this study can be further refined to identify individuals that are not 
only susceptible, but also responsive to, interventions. Keeping these in mind when 
optimizing network-based targeting methods, we will be able to harness the social 
contagion of vaccine knowledge and positive attitudes towards vaccination, with the 
goal of overcoming the hysteresis effect and increasing vaccination rates in areas of 
need.

In conclusion, our results demonstrate that network-based targeting algorithms 
seeding the opinion layer with pro-vaccine supporters can greatly enhance attitude 
and behavior changes that are needed to control the spread of disease. Among those 
considered, targeting hubs—individuals with the highest degrees in the influence 
network—yields the most effective intervention that is not only able to flatten the 
curve with the smallest peak of infections but also able to curb the outbreak of the 
disease with the least number of total infections. The betweenness-based approach 
is similarly effective, but slightly lags behind the hub-based method. On the contrary, 
targeting groups of closely connected individuals either in the influence network 
(mod-community) or in the physical network (co-workers) leads to the least effec-
tive intervention due to the saturation effect, which is similarly observed in the field 
experiment (Kim et al. 2015). Therefore, our study offers simulation-based insights to 
enhance the targeting effectiveness for future experiments.
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