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Abstract 

Influence maximization (IM) is the task of finding the most important nodes in order 
to maximize the spread of influence or information on a network. This task is typically 
studied on static or temporal networks where the complete topology of the graph 
is known. In practice, however, the seed nodes must be selected before observing 
the future evolution of the network. In this work, we consider this realistic ex ante set-
ting where p time steps of the network have been observed before selecting the seed 
nodes. Then the influence is calculated after the network continues to evolve for a total 
of T > p time steps. We address this problem by using statistical, non-negative matrix 
factorization and graph neural networks link prediction algorithms to predict the future 
evolution of the network, and then apply existing influence maximization algorithms 
on the predicted networks. Additionally, the output of the link prediction methods can 
be used to construct novel IM algorithms. We apply the proposed methods to eight 
real-world and synthetic networks to compare their performance using the suscepti-
ble-infected (SI) diffusion model. We demonstrate that it is possible to construct quality 
seed sets in the ex ante setting as we achieve influence spread within 87% of the opti-
mal spread on seven of eight network. In many settings, choosing seed nodes based 
only historical edges provides results comparable to the results treating the future 
graph snapshots as known. The proposed heuristics based on the link prediction 
model are also some of the best-performing methods. These findings indicate that, 
for these eight networks under the SI model, the latent process which determines 
the most influential nodes may not have large temporal variation. Thus, knowing 
the future status of the network is not necessary to obtain good results for ex ante IM.

Keywords:  Diffusion, Dynamic networks, Graph neural networks, Influence 
maximization, Link prediction

Introduction
Influence maximization (IM) is a canonical problem in the computational analysis of 
social networks where the goal is to find seed nodes that maximize the reach of infor-
mation diffusion (Kempe et al. 2003; Chen et al. 2009; Li et al. 2018). Ever since Kempe 
et al.’s seminal paper (Kempe et al. 2003), this topic has attracted great attention from 
researchers across various domains. The IM problem is typically studied under one of 
two settings. The first considers a static network where the information spreads through 
the network over time, but the topology of the network remains fixed. This assumption 
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is violated in many real-world settings, so recently there has also been interest in devel-
oping methods where the network structure is also allowed to vary with time (Holme 
and Saramäki 2012). But there are also unrealistic assumptions that typically accompany 
this case. For a given temporal network G = (G1, . . . ,GT ) , it is typically assumed that 
the network topology is known for all t ∈ {1, . . . ,T } , i.e., the ex post assumption. Then 
at time t = 1 , a researcher chooses a seed set to maximize the influence on the evolv-
ing network. In other words, the researcher can “peer into the future” to pick the most 
influential nodes at time t = 1 . Assuming complete foresight of the network evolution, 
however, is unrealistic. In practice, one must choose the seed nodes based on the past 
evolution of the network without knowing exactly what the network will look like in the 
future. In the temporal network literature, this is known as the ex ante setting where the 
solution is based on forecasts and not actual results.

In this paper, we consider the more realistic and difficult setting highlighted in Fig. 1. 
Here, the researcher observes some network G1, . . . ,Gp from t = 1, . . . , p . Then after 
observing these first p snapshots of the network, he/she chooses the seed nodes which 
will maximize the influence over the next T − p snapshots, Gp+1, . . . ,GT , before observ-
ing them. Then the number of influenced nodes after the spreading process has finished 
on the final snapshot is calculated. The formal problem statement is as follows: given 
some network G = (G1, . . . ,Gp, . . . ,GT ) evolving over time, what seed nodes should be 
chosen at time t = pbased only on G1, . . . ,Gp in order to maximize the influence on the 
network at time t = T + 1?

Influence maximization problem

We begin by defining the influence maximization (IM) problem. Let G = (G1, . . . ,GT ) 
be a temporal network where the graph at time t, Gt = (V ,Et) is a collection of nodes 
V and edges Et . Notice that the nodes are fixed but the edge set is allowed to vary over 
time. Each snapshot Gt is defined by an n× n adjacency matrix A(t) such that A(t)

ij = 1 
if nodes i and j have an edge at time t, and 0 otherwise. Given some process by which 
information is diffused on the network and integer k < n , the IM problem tries to find 
a set of nodes S = {v1, . . . , vk} such that, if the nodes in S are initially “influenced” or 
“infected” with the information, then the spread of influence on the network is maxi-
mized at time t = T + 1.

Crucial to this problem is the information diffusion mechanism. There are many popu-
lar choices in the literature including the Independent Cascade (IC) model (Wang et al. 

Fig. 1  Schematic of proposed setting
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2012; Wen et  al. 2017), Linear Threshold (LT) model (Chen et  al. 2010b; Goyal et  al. 
2011b), triggering (TR) model (Kempe et al. 2003; Tang et al. 2014), and more. For this 
work, we adopt the susceptible-infected (SI) model often used in epidemiological studies 
(Allen 1994; Murata and Koga 2018). At each step in the process,1 a node is either in a 
susceptible state (S)2 or infected state (I). If a node is in the S state, then the information 
has not yet reached it, and a node in the I state has already received the information. At 
the beginning of the process ( t = 1 ), nodes in the seed set are set to the I state and all 
other nodes are in the S state. Then at time t, if node u is in I and node v is in S and there 
is an edge between the two nodes, i.e., A(t)

uv = 1 , then node v will change to state I at time 
t + 1 with probability � . The susceptibility or infection parameter � controls the rate at 
which information propagates throughout the network. The diffusion process ends once 
t = T + 1 . Thus, if σ(S) is the expected number of nodes infected at time T + 1 when 
nodes in S are initialized to I state under the SI model, the IM problem seeks the set of 
seed nodes of size k that maximizes σ(S) on G , i.e.,

The IM problem is NP-hard under the IC, LT, TR and SI models (see, e.g., Kempe et al. 
2003; Li et al. 2018). Thus, the optimal solution is unfeasible in many cases so heuristics 
must be exploited to find a suitable seed set. Indeed, even evaluating σ(S) is #P-hard 
(e.g., Chen et al. 2010a, b). In practice, we estimate σ(S) via Monte Carlo (MC) simula-
tions by simulating the spreading process a large number of times and taking the average 
number of nodes infected at time T + 1.

Notice that in this definition, the future evolution of the network is taken as given. 
In other words, the seed nodes are selected at time t = 1 under the assumption that 
the topology of the graph at time t = 2, . . . ,T  is known. In practice, however, this is 
an unreasonable assumption; a practitioner needs to select seed nodes without having 
access to the future dynamics of the network. While we are interested in this more real-
istic and difficult setting, we begin by highlighting some of the existing IM algorithms.

Static IM

We first highlight some of the existing approaches for IM in the static case, i.e., T = 1 . 
Please see Li et al. (2018) for a comprehensive survey. Kempe et al. (2003) was the first 
to postulate this as a combinatorial optimization problem and used a greedy algorithm 
to find the optimal seed set. At each step in the greedy algorithm, the node which maxi-
mizes the marginal gain in σ(S) is added, and the process continues until |S| = k . Math-
ematically, node v is added to S where

(1)S∗ = arg max
S⊆V ,|S|=k

σ(S).

(2)v = arg max
u∈V \S

{σ(S ∪ {u})− σ(S)}.

1  We assume that the graph evolution process and diffusion process run at the same time similar to Gayraud et  al. 
(2015), i.e., the diffusion process occurs and then the graph evolves one time step before the diffusion process starts 
again.
2  Note that we use S to represent the seed set and if a node is susceptible. From context, however, it should be clear 
which definition is used.



Page 4 of 23Yanchenko et al. Applied Network Science            (2023) 8:70 

The authors prove that the solution yielded by the greedy algorithm is within a factor of 
(1− 1/e) of the optimal solution. Thus, in studies it is often considered the “gold-stand-
ard” of IM. The approach, however, is extremely computationally expensive and, there-
fore, infeasible for large networks. Efforts to make this algorithm more efficient include 
estimating the upper bound on the marginal influence (Leskovec et al. 2007; Goyal et al. 
2011a) and simplifying the calculation of σ(S) (Wang et al. 2010). Another class of IM 
algorithms ranks nodes according to some metric and then selects the k nodes with larg-
est metric value as the seed nodes. For example, in Chen et al. (2009), nodes are ranked 
according to their degree and once a node u is selected for the core, all nodes which 
share an edge with u have their degree “discounted” by a specified factor to take into 
account the nodes’ overlap in influence. Liu et  al. (2014) takes a similar approach for 
PageRank. These approaches avoid calculating σ(S) which leads to computational speed-
ups, but lack performance guarantees.

Temporal IM

Assuming that information diffuses on a static network is often times unreasonable, 
so recently there have been many works that study the IM problem for temporal or 
dynamic networks. First, the Greedy algorithm of Kempe can easily be extended to the 
temporal case and many extensions of this method have been studied (e.g., Liqing et al. 
2019; Erkol et al. 2020). Michalski et al. (2014) show that temporal IM methods greatly 
outperform their static counterparts under the LT model. While this paper assumes that 
the future snapshots of the network are unknown, there is no attempt to forecast its evo-
lution. Osawa and Murata (2015) adopt the SI model and develop a heuristic method by 
approximating the probability that a node is infected in the next time step. This method 
performs similarly to a greedy algorithm but is significantly faster. Several static network 
IM heuristics are extended in Murata and Koga (2018) including a Dynamic Degree dis-
count algorithm, based on dynamic degrees from Yu et al. (2010). This method is faster 
than greedy and Osawa and Murata (2015) while yielding comparable influence spread. 
Lastly, Erkol et al. (2020) leverage the SIR model and use an individual node mean field 
approximation to compute the expected influence with a greedy algorithm. One interest-
ing finding from this work is that simply using the first temporal layer of the network to 
find the seed nodes can often times still yield good performance. This paper also briefly 
mentions the problem we are interested in, where the future evolution of the network is 
unknown, but do not thoroughly explore it.

Main contributions

In this paper, we study the temporal IM problem under the realistic ex ante setting 
where the future evolution of the network is unknown. Given the observed network 
snapshots, we first predict the future topology of the network using statistical, non-neg-
ative matrix factorization and graph neural network link prediction techniques. We also 
propose a novel heuristic for IM based on the link prediction model output. Then, we 
use greedy and dynamic degree IM algorithms to find the optimal seed nodes on the 
estimated future networks. We conduct extensive experiments on synthetic and real-
world networks and show that, in almost all cases, finding the optimal seed nodes on an 
aggregated graph using only the historical snapshots yields an influence spread within 



Page 5 of 23Yanchenko et al. Applied Network Science            (2023) 8:70 	

80% of the influence spread when the seed nodes are found using the actual future evo-
lution. Additionally, the proposed IM heuristics yield influence spreads as good or bet-
ter than actually predicting the future network evolution. These results together indicate 
the potential existence of an influential node latent process that does not vary tempo-
rally. More importantly, the IM problem can still be solved with good performance in 
this realistic and difficult setting. The remainder of this paper is structured as follows. In 
“Methodology” section, we propose our methodology and discuss various link predic-
tion and IM algorithms. We also propose a novel ex ante IM algorithm based on the link 
prediction models. We conduct experiments on eight synthetic and real-world networks 
in “Experiments” section and share concluding thoughts in “Conclusions” section.

Finally, the most similar works to ours consider a temporally evolving network and 
selecting a new seed set at each snapshot. For example, Singh and Kailasam (2021) adopt 
the IC model for spreading dynamics and a conditionally temporal restricted Boltzmann 
machine (ctRBM) for link prediction (Li et al. 2014). The authors propose to choose new 
seed nodes for each graph snapshot and update the set using an Interchange Heuris-
tic (Nemhauser et al. 1978). Our paper differs from that of Singh’s in several key areas 
including, but not limited to: only selecting a seed set once, predicting multiple time 
steps in the future, allowing edges to form and disappear, comparing several link pre-
diction algorithms, and using the SI model. Our problem is also different than that of 
Zhuang et al. (2013) and Han et al. (2017). These papers assume that the future networks 
are unobserved but that they can be partially known through probing different nodes. 
Conversely, our work assumes the future networks are completely unknown.

Methodology
The goal of this paper is to develop a method for ex ante influence maximization where 
seed nodes are selected before observing the future evolution of the network. We pro-
pose the following approach: 

1.	 Observe networks G1, . . . ,Gp.
2.	 Predict the future evolution of the network Ĝp+1, . . . , ĜT based on the observed net-

works.
3.	 Apply an IM algorithm to the predicted networks Ĝp+1, . . . , ĜT treating t = p+ 1 as 

the starting time to obtain optimal seed nodes S = {v1, . . . , vk}.
4.	 Allow the network to continue to evolve as Gp+1, . . . ,GT and compute the influence 

of S on the true networks.

There are two key components in the proposed method: step (2) predicting the future 
networks and step (3) the IM algorithm.

Link prediction

The goal of link prediction methods is determining the most likely missing and/
or future links in a network. There is a rich body of literature on this problem with 
numerous approaches such as statistical, non-negative matrix factorization (NMF) 
and graph neural networks (GNN). We refer the interested reader to the following 
surveys for a thorough review of link prediction methods (Lü and Zhou 2011; Kumar 
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et al. 2020; Divakaran and Mohan 2020; Zhou 2021). In general, static link prediction 
methods look for missing links in the network, thereby not allowing for the possibility 
of removing links. Temporal methods, on the other hand, must account for the pos-
sibility of new edges arising and existing edges disappearing. In our scenario, we are 
interested in the dynamic evolution of the network so we are interested in temporal 
link prediction methods.

For this work, we consider one link prediction method from each of the following 
popular paradigms: statistical, NMF and GNN.

Statistical: Zou et al. (2021) use a linear regression model with LASSO penalty to 
predict future links in the network. We slightly modify their approach to perform 
logistic regression with LASSO. Let xi(t) = 1 if node pair i had an edge at time t and 0 
otherwise, for i = 1, . . . ,M where M is the number of node pairs with at least one link 
in G1, . . . ,Gp . Then for i = 1, . . . ,M , 

where

 Thus for each node pair i, we fit a logistic regression model to find the best fitting 
βi = (βi0,βi1, . . . ,βiM)T . Since many edge pairs are likely uninformative in this model, 
the authors add a LASSO penalty ( L1 regularization) to shrink the absolute value of each 
βij to 0, i.e., α M

j=1 |βij| where α determines the strength of the penalty. A small value 
of α corresponds to little regularization and vice-versa for a large value. The optimal α 
is chosen from a grid of values to minimize the validations set area under the receiver 
operating curve (AUC). To predict the probability of an edge at several time steps in the 
future p̂i(p+ t) , we sequentially use the fitted β̂i and the estimated probabilities of an 
edge, i.e., 

where

The main advantage of this method is that it yields a valid probability of a link for 
each edge pair and not simply a similarity score like the following methods. We can 
also predict edges multiple time steps in the future without having to re-fit the model. 
A notable limitation of this method is that it can only predict links for edge pairs with 
at least one historical edge. Additionally, the simplicity of the linear model may not 
be able to capture the complex mechanism behind link formation and fitting separate 

(3a)xi(t + 1) ∼ Bernoulli

[

1

1+ exp{−νi(t)}

]

(3b)νi(t) = βi0 +

M
∑

j=1

xi(t)βij .

(4a)p̂i(p+ t) = expit







β̂0i +

M
�

j=1

p̂i(p+ t − 1)β̂ij







(4b)expit(x) =
1

1+ exp(−x)
.
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models for every edge pair means that method may not scale well for networks with a 
large number of edges.

Non-negative matrix factorization: For a given n× n matrix A, non-negative matrix 
factorization (NMF) seeks to find an n× q matrix U and q × n matrix V such that 
A ≈ UV  , q < n and all entries of U and V are non-negative. In other words, U and V are 
low-dimensional representations of A. Ahmed et al. (2018) applies this approach for link 
prediction in temporal networks. Let A1, . . . ,Ap be the adjacency matrices correspond-
ing to graphs G1, . . . ,Gp . Then the author seek to find a sequence of matrices Ut ,Vt such 
that At ≈ UtVt and all Ut and Vt are close to some consensus matrices U∗ and V∗ , respec-
tively. Mathematically, this means minimizing the following loss function: 

where

 subject to Ut ,Vt are non-negative. Here, φ is an attenuation coefficient gives a larger 
weight to more recent graphs and || · ||F is the Frobenius norm. The authors derive 
an iterative algorithm to minimize (5a). Once the algorithm has converged, the 
the rows of V∗ represent a low-dimensional embedding for each node, (V∗)i . Thus, 
Sij = sim{(V∗)i, (V∗)j} is a score for the likelihood of a link between nodes i and j at time 
p+ 1 where (V∗)k is the kth row of V∗ and sim(·, ·) is a measure of similarity. In this work, 
we use the cosine similarity. To extend this method to predict multiple time steps in 
the future, we first use Sij to predict At+1 using a threshold cutoff (see below for further 
discussion). Then the appropriate terms are added to the loss function to find the non-
negative matrix factorization of this new adjacency matrix, i.e.,

Once the algorithm converges, we obtain a new estimate of V∗ and this process 
continues.

This method captures the temporal patterns of the network in the low-dimensional 
representations U∗ and V∗ . Additionally, this method can predict a link for any edge pair, 
even if there has yet to be one. Yet, there are several challenges to using this method in 
our context. First, it is well-known that NMF is a non-convex optimization problem so 
we may end up with a local optimum. Additionally, we must chose q, the latent dimen-
sion space of the non-negative matrices, and φ , the attenuation factor.

(5a)

L(Ut ,Vt) =

p
∑

t=1

φp−t ||At − UtVt ||
2
F +

p
∑

t=1

φp−t ||Ut − U∗||
2
F

+

p
∑

t=1

φp−t ||Vt − V∗||
2
F

(5b)U∗ =
1

M

t
∑

t=1

φp−tUt , V∗ =
1

M

t
∑

t=1

φp−tVt , M =

p
∑

t=1

φp−t ,

(6)

L(Ut ,Vt) =

p+1
∑

t=1

φp+1−t ||At − UtVt ||
2
F +

p+1
∑

t=1

φp+1−t ||Ut − U∗||
2
F

+

p+1
∑

t=1

φp+1−t ||Vt − V∗||
2
F .
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Graph neural network: We also consider a state-of-the-art deep learning graph neu-
ral network method for link prediction called EvolveGCN (Pareja et al. 2020). The basic 
idea of this method is that for a given time t, this method performs a graph convolution 
step on Gt and then the corresponding weights are updated in the temporal direction 
using a recurrent neural network (RNN). Specifically, let At ,H

(ℓ)
t  and W (ℓ)

t  be the adja-
cency, node embedding and weight matrices, respectively, at time t ∈ {1, . . . , p} for layer 
ℓ ∈ {1, . . . , L} . Then the node embeddings for time t are updated using a graph convolu-
tion step, i.e.,

The initial embedding matrix H (0)
t  is the node features at time t and the GCONV 

function simply normalizes the adjacency matrix before multiplying the normalized 
adjacency matrix with the other two inputs. Next, the authors propose two ways to 
temporally update the weight matrices for each graph convolution layer. The -H ver-
sion treats W (ℓ)

t  as the hidden state of a dynamical system and updates the weights using 
the current node embeddings H (ℓ)

t  via a gated recurrent unit. The -O approach ignores 
the node embeddings and instead updates the weights using a long short term memory 
(LSTM) cell. These two steps together make up the EvolveGCN framework.

This approach can easily be leveraged for link prediction. In particular, if hip and hjp are, 
respectively, the ith and jth rows of the final embedding matrix Hp , then  their dot prod-
uct yields a similarity score Sij for the likelihood of a link between the nodes i and j, i.e., 
Sij = (hip)

Th
j
p . The larger Sij , the more we expect an edge to exist between nodes i and j 

at time p+ 1 , similar to the NMF approach. As such, this method can predict a link for 
any edge pair, regardless of whether there has been a historical link. Note that negative 
sampling and cross-entropy loss function are used to optimize the weights. In order to 
extend this method for predicting multiple time steps ahead, we first predict the state 
of the network one time step ahead, Ĝp+1 . Then this network can be fed into the fitted 
model to predict the ensuing time step Ĝp+1 and so on.

There are several practical considerations for using this method for the IM problem. 
First, this method requires node attributes. If these are unavailable, we compute the 
node2vec (Grover and Leskovec 2016) embedding for each node at each snapshot and 
then use the output as the node feature. Since we believe that the graph structure plays 
a bigger role in the evolution of the network rather than these node features, we choose 
the -O version, per the authors’ suggestion. This method scales well for large networks 
and can capture complicated dynamics driving link formation. This method, however, 
relies on negative sampling which is an important open problem in GNNs (e.g. Robinson 
et al. 2020). It also requires node features and it is not clear if node2vec is the optimal 
choice in the absence of meaningful domain features.

From output to predicted edges: Each link prediction method yields either a probability 
or similarity score for each edge pair. But this still leaves the important step of convert-
ing these continuous outcomes to a binary prediction of “link” or “no link.” To the knowl-
edge of the authors, using link prediction methods for downstream tasks has received 
relatively little attention in the literature so this is a non-trivial step. The approach that 
we adopt preserves the “average” edge density in the network. Specifically, let ρ̂t be the 
average probability of an edge for snapshot t for t = 1, . . . , p , i.e.,

(7)H
(ℓ+1)
t = GCONV(At ,H

(ℓ)
t ,W

(ℓ)
t ).
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Instead of taking the average of each, we give a larger weight to the more recent values. 
Then the weighted, average edge density is

where 0 ≤ ξ ≤ 1 . Thus, for each method, we select the top 
(n
2

)

ρ̂∗ edge pairs and predict 
that they will have a link at the next time step. This also ensures that each method pre-
dicts the same number of edges for each future time step.

Influence maximization

Once we have predicted the future evolution of the network, the second step of the pro-
posed method is the IM algorithm. While there exists many temporal IM algorithms 
(e.g., Michalski et  al. 2014; Osawa and Murata 2015; Erkol et  al. 2020), we consider a 
greedy algorithm and the dynamic degree discount algorithm (Murata and Koga 2018).

Greedy: The first algorithm that we consider is based on a greedy heuristic. At each 
step, a node is added to the seed set which results in the greatest expected marginal gain 
in influence spread (Algorithm 1). Kempe et al. (2003) prove that for the IC and LT static 
propagation model, the greedy algorithm yields a solution within a factor of (1− 1/e) of 
the optimal spread so it is considered the “gold standard” in IM problems. This method 
also trivially accommodates any diffusion process. Since it requires computing the 
expected influence spread for O(n) nodes at each of k steps, however, the algorithm is 
computationally intensive and only feasible on small networks.

Dynamic degree discount: In order to address the computational complexity of the 
greedy algorithm, Murata and Koga (2018) propose an IM heuristic algorithm based on 
dynamic degrees. First, the authors define the dynamic degree, DT (v) , of node v for a 
temporal network with T snapshots as

where Nv,t is the set of neighbors of node v at time t, i.e., Nv,t = {u ∈ V : A
(t)
uv = 1} . Then 

they extend the Degree Discount algorithm for static networks by Chen et al. (2009) to 
the temporal case. This method chooses the k nodes with largest dynamic degree where 

(8)ρ̂t =
∑

i<j

A
(t)
ij

(n
2

) .

(9)ρ̂∗ =
1

∑p
t=1 ξ

p−t

p
∑

t=1

ξp−t ρ̂t

(10)DT (v) =

T
∑

t=2

|Nv,t−1\Nv,t |

|Nv,t−1 ∪ Nv,t |
|Nv,t |
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the effect of selected nodes is removed or “discounted” from the remaining nodes. See 
Algorithm 2 for details. Murata and Koga (2018) show that this method yields compara-
ble results with the greedy algorithm but at a fraction of the run time.

Link prediction output heuristic

Thus far, we have laid out the path to combine link prediction algorithm with IM to 
find the seed nodes which maximize the influence on the unobserved future evolution 
of the network. Since we are primarily focused on IM, we are not strictly interested in 
the future evolution of the network, so much as in determining which nodes are the 
most “important” in the future. Thus, predicting the exact future evolution is not com-
pletely necessary. Additionally, we have seen how it is non-trivial to choose a cutoff to 
determine which edges to predict for the future and any sort of threshold that we use to 
predict edges will inherently lose information. Therefore, we propose the following IM 
heuristics based on the fitted link prediction model to determine the most likely influ-
ential nodes in the future networks. The idea is that if a node is likely to have edges with 
many other nodes, then it is also likely to be a good candidate for the IM seed set. Thus, 
if P̂ is an n× n matrix returned by a link prediction algorithm where P̂ij is the probability 
of an edge or similarity between nodes i and j, the column sums of P yield a useful meas-
ure of node importance for the IM task. Below, we describe the specific procedure for 
each method and include a general Algorithm in 3.

LogRegSum: The output of LogReg is the probability of a link for each edge pair that 
has previously been observed, i.e., p̂(p+1)

ij := P̂ij is the probability of an edge at time 
t = p+ 1 returned by the algorithm where Pij = 0 if A(t)

ij = 0 for t ∈ {1, . . . , p} . Thus, for 
each node i, we can sum the probabilities of node i having an edge with every other node 
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as a measure of importance, i.e., θi =
∑

j P̂
(p+1)

ij  . Then the k nodes with largest value of θi 
are selected as the seed nodes.

NMFSum: The output of NMF is the similarity score P̂ij for each link (i, j), computed 
as the cosine similarity between (V∗)i and (V∗)j , i.e., P̂ij = cos((V∗)i, (V∗)j) . The k nodes 
with largest θi =

∑

j P̂ij are again chosen as seed nodes.
GNNSum: Once the GNN model is fit, the similarity score P̂ij for each link (i, j) is the 

dot product of hip and hjp where hkp is the kth row of the embedding matrix for time t = p , 
i.e., P̂ij = (hip)

Th
j
p and the seed nodes are chosen as in the other two cases.

There are several desirable features of these heuristics. First, they do not require a cut-
off to predict future edges which is non-trivial. The lack of a threshold also means that 
we do not lose any information from the link prediction output; all of the information 
in the model is incorporated into the θ value. Similarly, we found in practice that often 
times the link prediction output will only have np < n nodes which are active, i.e., have 
at least one predicted future edge. If np < k , then it is not clear how to chose the other 
k − np nodes to include in the seed set. These heuristics, however, can always select k 
seed nodes for any k. Another advantage is that we get the IM results for “free” after fit-
ting the link prediction model, so it will be faster than any method that requires a second 
IM step, i.e., greedy or DynDeg. Lastly, the seed node selection does not depend on how 
far in the future we want to predict, nor the infection parameter � , which is generally 
unknown in practice.

Experiments
We perform experiments on one synthetic network and seven real-world networks from 
various domains in order to compare the different link prediction and IM algorithms.

Datasets

We begin by briefly describing each dataset used in these experiments. See Table 1 for 
some relevant summary statistics. Synthetic is a synthetically generated network. For 
the first time step, an Erdos–Renyi (Erdös and Renyi 1959) graph was generated with 
p = 0.002 . Then for all subsequent time steps, 50% of the previous edges were kept, and 
an equal amount were newly generated, thus preserving the total number of edges for 

Table 1  Summary statistics and temporal network measures for datasets under consideration

n: number of nodes; m: number of unique links; p̄ : average edge density across time steps; T(p): number of time steps 
(number used for training time); fNT: fraction of nodes present at half the sampling time; fLT: fraction of unique links present 
at half the sampling time; FNT: fraction of nodes present in the first and last 5% of the sampling time; FLT: fraction of unique 
links present in the first and last 5% of the sampling time; DA: degree assortativity

Dataset n m p̄ T(p) fNT fLT FNT FLT DA

Synthetic 500 5174 0.002 20(10) 1.00 0.53 0.75 0.00 0.00

Reality 64 722 0.024 24(20) 0.97 0.39 0.52 0.00 −0.17

Email4 168 3250 0.038 39(30) 0.98 0.88 0.78 0.12 −0.30

HS 1 312 2242 0.005 20(16) 0.98 0.74 0.39 0.02 0.09

Hospital 75 1139 0.052 16(12) 0.83 0.64 0.29 0.02 −0.18

Office 92 755 0.042 7(6) 0.98 0.69 0.63 0.05 −0.06

CopenB 703 21,318 0.002 100(90) 0.94 0.64 0.27 0.00 0.08

College 1899 13,838 0.000 50(40) 0.93 0.92 0.02 0.00 −0.19



Page 12 of 23Yanchenko et al. Applied Network Science            (2023) 8:70 

each snapshot. All other networks are real-world networks. Several record an edge if two 
people are within close proximity: Reality, High School 1, Hospital, Office and Copenha-
gen Bluetooth. The remaining networks come from online interactions: emails in Email4 
and communication on a social media platform in College. These networks were selected 
because they have a wide range of nodes and edges, comprise different network-gener-
ating mechanisms, and come from a variety of domains. We stress that we intentionally 
chose different network sizes (n, m), numbers of aggregation layers (T, p), seed sizes (k) 
and infection parameters � in order to compare the methods across a wide range of set-
tings. Note that � varies between networks in order to ensure a reasonable amount of 
influence spread, and to be able to discriminate between the different methods.

Methods

For each method, we use the given algorithm to find the optimal seed set on the pre-
dicted future graphs using different link prediction approaches. Then, using these seed 
sets, we compute the influence spread on the actual future evolution of the network, 
taking the average results over 1000 MC samples. We seek to find the methods with larg-
est influence spread.

•	 Oracle: assumes the future evolution of the network is known when finding the 
seeds nodes at the IM step, i.e., finds the nodes which maximize the spread on 
Gp+1, . . . ,GT .

•	 Static (last): uses Gp to find the optimal seed nodes and, therefore, implicitly assumes 
that the network does not continue to evolve

•	 Static (mem): constructs Gmem where there is a link between every edge pair with at 
least one link in G1, . . . ,Gp . Mathematically, if A(t) is the adjacency matrix associated 
with Gt and Amem is for Gmem , then Amem

ij = 1 if A(t)
ij = 1 for any t ∈ {1, . . . , p} and 0 

otherwise and IM algorithms are implemented on Gmem.
•	 JC: a simple link prediction heuristic based on Jaccard coefficients (JCs) (Liben-

Nowell and Kleinberg 2003). Consider Gp and let nodes u and v be such that 
there is no edge between them, i.e., Auv = 0 . Then the JC of nodes u and v is 
|Nu ∩ Nv|/|Nu ∪ Nv| where Ni is the neighbors of node i. We find the JC for all edge 
pairs without a link at time p and predict an edge at time p+ 1 for the node pairs 
corresponding to the largest 5% of JCs. In order to preserve the density of the net-
work, we also randomly remove 5% of edges. Once we have obtained Ĝp+1 , then this 
process can be repeated in order to predict the evolution of the network multiple 
steps in the future.

•	 LogReg: Uses the logistic regression method with LASSO penalty. The optimal pen-
alty parameter is chosen from a grid search based on the best validation AUC using 
75% of the network time steps for training. The cutoff is chosen to preserve ρ̂∗ , the 
average network sparsity.

•	 LogRegSum: Top k nodes chosen as seed nodes based on LogReg heuristic described 
in Sect. 2.3

•	 NMF: Non-negative matrix factorization method. The dimension of U, V is 0.05n, 
i.e., five percent of the number of nodes. The algorithm is run 25 times with random 
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initialization and the results with the lowest loss function are kept. The cutoff is cho-
sen to preserve ρ̂∗.

•	 NMFSum: Top k nodes chosen as seed nodes based on NMF heuristic described in 
Sect. 2.3

•	 GNN: EvolveGCN method. Node features are constructed using d = 16 dimension 
node2vec embeddings. The model is trained over 200 epochs and the cutoff is cho-
sen to preserve ρ̂∗.

•	 GNNSum: Top k nodes chosen as seed nodes based on GNN heuristic described in 
Sect. 2.3

Note that the dynamic degree algorithm does not apply to static networks—Static (last) 
and Static (mem)—so we apply a simple algorithm based on degrees. Please see the 
appendix for details.

Results

Synthetic

First, we generate a synthetic network using the process described in Sect. 3.1. This net-
work has n = 500 nodes and m = 5174 unique edges. There are T = 20 time steps with 
the first p = 10 used for training and the last T − p = 10 used for prediction. We fix 
� = 0.05 and vary the size of the seed set. The results are in Fig.  2a where we imple-
mented the Dynamic Degree algorithm. LogReg yields the largest influence spread while 
NMFSum and GNNsum yield the smallest, but all methods are approximately the same. 
The total influence spread roughly increases linearly with k for each method. When 
k = 50 , the influence spread from LogReg is about 87% of that of Oracle. Note that the 
link prediction task for this network is extremely challenging as the process of adding 
and removing nodes is random and the time horizon for prediction is long compared 
with the number of training time steps.

Reality

The first real-world data set is the Reality network from Eagle and Pentland (2006). 
This network has n = 64 nodes and m = 26, 260 edges where links were recorded every 
5  s over an 8.63  h period. We aggregate the network into evenly-spaced snapshots 
G1, . . . ,GT where T = 24 . We fix � = 0.10, p = 20,T − p = 4 and vary the size of the 
seed set. The results are in Fig. 2b using the Greedy algorithm. Note that Static (last), JC 
and GNN have a ∗ because each method has less than k active nodes for large k. Static 
(mem) and LogRegSum perform the best for almost all k and come within about 67% of 
the influence spread of Oracle. Both LogRegSum and GNNSum perform substantially 
better than LogReg and GNN, respectively, whereas NMFSum fares much worse than 
NMF. Static (last) and JC do not perform well in this scenario.

Email

Next, we consider an Email network (email4) from Michalski et al. (2011). This network 
has n = 167 nodes and m = 82, 927 edges collected over 271 days with a granularity 
of 1  s. We aggregate the network into roughly one-week snapshots G1, . . . ,GT where 
T = 39 . Then we consider the first p = 30 for training the link prediction algorithms 
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and compare the results on the remaining T − p = 9 graphs. For this network, we fix 
� = 0.05 , vary the seed size k and use the Dynamic Degree algorithm. The results are 
in Fig.  3a. Several methods come within 98% of the performance of Oracle including 
LogReg, LogRegSum and GNNSum. For k ≥ 15 , Static (mem) yields the largest influ-
ence spread of the proposed methods while Static (last) and JC do well for small k. NMF 
and NMFSum perform the worst of all methods. LogRegSum performs about the same 
as LogReg and GNNSum also outperforms GNN. NMF and NMFsum are roughly the 
same.

High school

The High School 1 network comes from Mastrandrea et  al. (2015). This network has 
n = 312 nodes and m = 2242 unique edges collected at 20 s intervals over 5 h. We aggre-
gate the network into roughly 15-min snapshots G1, . . . ,GT where T = 20 . Then we 

Fig. 2  Influence maximization results on synthetic and reality networks
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consider the first p = 16 for training the link prediction algorithms and compare the 
results on the remaining T − p = 4 graphs. We vary the seed size k and use the Dynamic 
Degree algorithm, fixing � = 0.10 . The results are in Fig.  3b. Static (last) is the best 
method for k ≤ 15 while LogReg yields the largest influence spread for large k. When 
k = 20 , LogReg achieves 90% of the influence of Oracle. This is the only setting where 
LogReg outperforms LogRegSum. Static (mem) also performs well for large k while 
GNN, NMF, GNNSum and NMFSum all struggle.

Office

The Office network comes from Génois et al. (2015) and consists of n = 92 nodes and 
m = 755 unique edges. There are no links in the temporal middle of this dataset, which 
is presumably the weekend when no workers interact at the office. Dropping these times, 
we aggregate the data into T = 7 snapshots, representing one work day and predict the 

Fig. 3  Influence maximization results on Email4 and high School 1 networks
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evolution of the network on the last day (T − p = 1 ). We use the Greedy algorithm for 
IM and the results are in Fig. 4a with � = 0.10 . Since we are only predicting one snap-
shot into the future, Static (last) and JC yield the largest influence spread and come 
within 90% of Oracle. Static (mem), GNNSum and LogRegSum also perform well here. 
GNNSum outperforms GNN for all k and LogRegSum fares better than LogReg for most 
k. Again, NMF and NMFSum yield the lowest influence spread.

Hospital

With n = 75 nodes and m = 1139 unique links, the hospital network (Vanhems et  al. 
2013) is the next that we consider. We aggregate the network at six hour intervals, yield-
ing T = 16 snapshots and we use the first p = 12 for training the models and the final 
day for prediction. The results are in Fig. 4b using the Greedy algorithm and � = 0.10 . 

Fig. 4  Influence maximization results on Office and Hospital networks
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GNN, GNNSum and LogRegSum yield the largest influence spread which is about 91% 
of that of Oracle. LogRegSum also does much better than LogReg. Static (last) and JC 
perform better than Static (mem) for small k and about the same for k ≥ 8 . Both NMF 
methods have the lowest spread of influence.

Copenhagen bluetooth

Sapiezynski et  al. (2019) collected the Copenhagen Bluetooth network with n = 703 
nodes and m = 21, 318 unique edges. Data was collected over several weeks at 5  min 
intervals. We aggregate the network at T = 100 evenly spaced intervals and use the 
first p = 90 for training the model. We set � = 0.05 , vary the seed size k and compute 
the optimal seed nodes using the Dynamic Degree algorithm. The results are in Fig. 5a. 
Static (mem) yields the largest influence spread and comes within 99% of the spread of 

Fig. 5  Influence maximization results on Copenhagen Bluetooth and College networks
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Oracle. LogRegSum has almost the same influence as Static (mem), especially for large k. 
Part of the reason that Static (last) does not perform as well for large k is that it has less 
than 150 active nodes, similar to GNN and JC. NMF and NMFSum perform similarly 
and are comparable to GNNSum when k ≥ 100.

College

The college network Panzarasa et  al. (2009) has m = 13, 838 unique edges among 
n = 1899 nodes. Links are recorded at 1  s intervals over the 193 days. We aggregate 
the network into T = 50 snapshots over equally spaced intervals and hold out the last 
T − p = 10 snapshots for prediction. We fix � = 0.25 and vary k, using the Dynamic 
Degree algorithm to find the optimal seed nodes. The results are in Fig. 5b. For smaller 
k, Static (last) and JC yield the greatest influence. For larger k, however, Static (mem), 
LogReg and LogRegSum do the best and come within 96% of Oracle. Static (last) and JC 
are again hampered by having less than k active nodes for large k. NMF and NFMSum 
continue to yield the smallest influence spread.

Discussion

There are several interests trends that emerge from these experiments. First, we observed 
that for every data set, save Reality, the best performing method came within 87% of the 
influence spread of the Oracle method, and in one case (Copenhagen Bluetooth), was as 
high as 99%. This is a promising finding as it shows that meaningful seed nodes can be 
found for IM, even when the future evolution of the network is unobserved. Of the pro-
posed methods, LogRegSum proved itself to be the best method as it yielded the largest 
influence spread for many settings, followed by GNN/GNNSum, while NMF/NMFSum 
regularly yielded the smallest influence. Perhaps the most interesting finding, however, 
is that the simple heuristic based solely on historical edges, Static (mem), consistently 
yielded one of the best performances. These results held across networks with different 
sizes, temporal characteristics, prediction duration, and IM algorithms. Because Static 
(mem) does not have a link prediction step, it is substantially faster than all of the pro-
posed methods (including LogRegSum), so we suggest this method for use in practice.

There are also some noteworthy connections between the temporal network statis-
tics from Table 1 and the IM results. For example, in the Email 4 network, all methods 
may have performed well because this network has less temporal variation. fNT, fLT, 
FNT and FLT are all higher in this data set than for other networks, indicating there 
might be less temporal variation. For instance, FNT being large means that the majority 
of nodes are present at the beginning and end of the network’s life cycle (and presum-
ably in-between as well). Another observation is that the GNN methods do comparably 
worse in networks with a strong community structure (High School 1 and Copenhagen 
Bluetooth), as measured by degree associativity. Interestingly, even though the College 
network has very few nodes and edges in the first and last 5% of the sampling time which 
indicates significant temporal variation, several methods still perform well. Static (mem) 
also performs well on sparser networks (High School 1, Copenhagen and College). Hav-
ing fewer edges in the network likely makes the link prediction task more difficult, so 
aggregating across time turns out to be the best way to illuminate a node’s influence. 



Page 19 of 23Yanchenko et al. Applied Network Science            (2023) 8:70 	

In the Appendix, we also report the true positive rate (TPR) and relative degree mean 
square error (MSE) for JC, LogReg, NMF and GNN on each network which quantifies 
the quality of the link predictions. These results highlight the difficulty of link prediction 
as a TPR greater than 0.40 is never achieved, nor is an MSE below 0.60.

The strong performance of LogRegSum and Static (mem) yields some key insights 
into the ex ante IM task on temporal networks. It first demonstrates that predicting the 
future evolution of the network is not strictly necessary to determine the most influential 
seed nodes. Instead, the majority of the information needed to select seed nodes can be 
extracted from the previous edge history while the actual evolution of the network does 
little to change the importance of nodes. This unexpected result—somewhat in disagree-
ment with results from the related, yet distinct, vaccination problem (Lee et al., 2012)—
indicates that while a network is evolving over time, the underlying importance of nodes, 
from an IM-sense, may not change. Thus, elucidating the influential nodes from the 
observed network is more important than predicting the future evolution. Indeed, link 
predictions may yield noisy results and inherently lose information due to cutoffs and 
thresholds, so methods that only consider historical data, such as LogRegSum and Static 
(mem), may perform better by “averaging out” some of this noise. Additionally, in light 
of Static (mem) performing so well, it should be no surprise that LogRegSum also does 
well since this method only predicts links for edge pairs with at least one historical edge. 
Thus, even though GNN and NMF can predict links for any edge pairs, this may not 
be an advantageous feature. We stress that these findings only apply for the SI model, 
and may not be applicable under other diffusion mechanisms. Lastly, we saw that if a 
link prediction method or heuristic yielded predictions with np < k active nodes, then 
choosing the remaining k − np seed nodes becomes a non-trivial task. This problem is 
avoided with methods such as LogRegSum and Static (mem), which always allow for all 
n nodes to be considered for the seed set. We stress that these conclusions only apply to 
these datasets and the SI diffusion model.

Conclusions
In this work, we addressed the important problem of ex ante influential maximization on 
temporally-varying networks. We first predict the future evolution of the network and 
then use a standard temporal IM algorithm on the predicted network to find the optimal 
seed nodes. We also proposed IM heuristics using the model fit of the link predictions to 
find seed nodes, omitting the actual link prediction step. Across many settings, we dem-
onstrated influence spread using the proposed methods on par with the gold standard 
method of comparison, with LogRegSum performing the best. These results show that 
it is possible to construct satisfactory seed sets for the IM task, even when the future 
topology of the network is unknown. Additionally, we found that in many cases, a simple 
heuristic based on historical edges yielded the best results and in practice we suggest 
this method due to its performance, simplicity and computational advantage. Our sur-
prising results indicate that the most influential nodes may not vary with time, even as 
the network topology does.

We emphasize that these results were shown under the SI diffusion model. It is pos-
sible that under a different model, e.g., IC or LT, Static (mem) may not perform as well. 
Indeed, since the SI model allows nodes to activate their neighbors at any time following 
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infection (nodes never become inactive), it is possible that the timing of when links 
occur is less important than the absence or presence of a link at any time. For example, 
Gayraud et al. (2015) and Michalski et al. (2014) both highlight the importance of the 
timing of links and that the performance of their methods suffers when all snapshots 
are simply aggregated, but this was for the IC and LT models. Even when using the SIR 
model, a close cousin of the SI model, Erkol et al. (2020) show that an approach based on 
aggregated temporal snapshots performed poorly. That being said, Gayraud and Erkol’s 
results were shown under the ex post assumption. Regardless, in practice it is paramount 
to understand the diffusion mechanism for the particular problem at hand as the perfor-
mance of these algorithms may vary.

There are several interesting avenues of future work. Using link prediction methods 
for down-stream tasks has received relatively little attention and we have highlighted 
several challenges. We proposed a heuristic to side-step this challenge and it would be 
interesting to study other ex ante tasks and see if the same results hold. Additionally, any 
link prediction method inherently has uncertainty in its outputted edges. Another direc-
tion of future work is determining how to incorporate this uncertainty into the IM task. 
LogReg would be a sensible method to work with since it yields probabilities of edges, as 
compared to NMF or GNN which only yield similarity scores.

Appendix
Degree algorithm for static networks

IM algorithm used for Static (last) and Static (mem) for all simulation settings where 
Dynamic Degree Algorithm was used. Note that we could have directly used the algo-
rithm from Chen et al. (2009), but we found that the algorithm below yielded slightly 
better performance in practice.

Link prediction metrics

In Table 2, we report metrics which quantify the quality of the link prediction algo-
rithms. We report the true positive rate (TPR) and relative degree root mean squared 
error (MSE) for each method and each network. TPR is the proportion of future 
edges that the method correctly predicted averaged over all time steps where larger 
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is better. MSE is the root mean squared error between the aggregated degrees of the 
future and predicted networks, divided by the future average degree. Mathematically, 
if d0 and d1 are the true and estimated aggregated degree sequence of Gp+1, . . . ,GT  , 
respectively, then

Here smaller is better. The TPR is particularly low for each method for Synthetic, Reality 
and High School 1, which also corresponds to some of the weaker performances of the 

MSE =

√

√

√

√

1

n

n
∑

i=1

(

d0i − d1i

d0i

)2

.

Table 2  True positive rate (TPR) and relative degree root mean squared error (MSE) for each method 
and each network

TPR is the proportion of future edges that the method correctly predicted averaged over all time steps (larger is better). MSE 
is the root mean squared error between the aggregated degrees of the future and predicted networks, divided by the future 
average degree (smaller is better)

Dataset Method TPR MSE

Synthetic JC 0.08 0.65

LogReg 0.04 0.58

NMF 0.00 1.22

GNN 0.01 2.24

Reality JC 0.02 1.26

LogReg 0.04 1.19

NMF 0.04 0.99

GNN 0.04 1.28

Email 4 JC 0.39 0.65

LogReg 0.22 0.82

NMF 0.06 1.49

GNN 0.22 1.38

High School 1 JC 0.00 1.05

LogReg 0.00 1.02

NMF 0.08 1.64

GNN 0.05 1.67

Hospital JC 0.36 2.38

LogReg 0.08 1.26

NMF 0.11 1.42

GNN 0.27 1.53

Office JC 0.34 0.86

LogReg 0.20 0.79

NMF 0.16 1.19

GNN 0.15 1.26

CopenB JC 0.05 2.16

LogReg 0.02 1.69

NMF 0.02 2.13

GNN 0.02 4.56

College JC 0.14 7.25

LogReg 0.02 6.09

NMF 0.00 4.98

GNN 0.03 19.14
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respective methods. Some of the best results occur for Email 4, which also corresponds 
to some of the largest influence spread results compared with Oracle. These results show 
how difficult link prediction is as a TPR greater than 0.40 is never achieved, nor is an 
MSE below 0.60.
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