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Introduction
Bitcoin is the oldest and most used cryptocurrency, attracting broad interest from the 
general public and researchers. In contrast to traditional financial networks, transactions 
can be observed by anyone on the public blockchain, on which users exchange Bitcoins 
pseudonymously. This data allows researchers to study economic activities in fine detail. 
One of the objectives of those research is to understand how the Bitcoin socio-technical 
system works, particularly (1) Who are the important actors of the Bitcoin economy? 
(Lischke and Fabian 2016; Liu et al. 2021; Meiklejohn et al. 2016); (2) How is the network 
of transactions organized? (Lischke and Fabian 2016; Nerurkar et  al. 2021; Vallarano 
et al. 2020); and (3) How to identify and track illegal activity? (Chainalysis Team 2022; 
Bartoletti et al. 2021; Weber et al. 2019).

Tracing the flow of money—where the money goes, to whom, and when—is also an 
essential task in cryptocurrencies and critical for financial forensics to trace money from 
suspicious sources and characterize different users’ behaviors. However, it is still an 
understudied and challenging question in the Bitcoin research domain.
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In this work, we explore how to leverage money-flow analysis to recognize source 
actors. We propose an original way to synthesize the money flow from a given source 
into a concise dynamic network called a taint network. We subsequently apply whole 
graph embedding methods to assign taint networks to their origin actor automatically. 
Beyond the demonstration that each actor has a characteristic flow allowing us to rec-
ognize it, our method can also be helpful for actor tracking as well as actor deanonymi-
zation tasks. The embedding of taint flows from different actors is a promising feature 
for downstream tasks in machine learning models to classify the role of actors (Jourdan 
et al. 2018; Zola et al. 2019) or predict illegal transaction activities in the Bitcoin block-
chain (Weber et al. 2019).

Contributions

In a first conference article (Tovanich and Cazabet 2023), we have shown that taint flows 
indeed varies from actor to actor, and can thus be used as fingerprints of their source. 
We demonstrated the potential of our approach on a particular type of entities (i.e., min-
ing pools).

In this article, we focus on proposing effective methods to use those taint flows in 
order to recognize if two flows are from the same actor. 

(1) We applied our taint flow embedding dataset to two more datasets, focusing not 
only on mining pools, but on different kinds of entities, i.e., (1) ransomware and (2) 
various well-known Bitcoin entities from WalletExplorer database.

(2) We selected a larger number of entities for each dataset and sampled a larger num-
ber of taint flows for each entity.

(3) We proposed different configurations to train representation learning models and 
evaluated which method provides the best performance on the entity classification 
task.

(4) We studied the role of walk lengths on the taint flows and evaluated which maxi-
mum length to choose to optimize the results to differentiate entities.

Context: Bitcoin transaction network
All Bitcoin transactions are stored in a blockchain, i.e., a public, decentralized digital 
ledger that stores transactions by time order. In practice, each block of this blockchain 
contains a set of transactions marked by a common timestamp. Each bitcoin transaction 
corresponds to a transfer of Bitcoin but cannot be interpreted precisely as a usual money 
transaction between individuals as we are all used to. Indeed, some aspects of these 
transactions arise from the cryptographic constraints and the peculiarities of the Bitcoin 
protocol. In particular, Bitcoin uses the unspent transaction output (UTXO) transaction 
model (Nakamoto 2008). According to it, transactions do not transfer money from one 
account to another; instead, each output—each UTXO—of a transaction represents an 
amount of coin belonging to a known Bitcoin address—a cryptographic public key. The 
rightful owner of the UTXO can use the corresponding private key to claim the money. 
The owner can spend the UTXO(s) by signing them as input(s) in a new transaction and 
sending new UTXO output(s) to recipients’ addresses.
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A Bitcoin transaction network can be modeled as a chain of UTXOs as depicted in 
Fig. 1. A transaction (tx) can be represented as a node. A directed edge represents a 
transfer of UTXO(s) from one transaction to another. We will refer to the in-edge and 
out-edge of tx as input(s) ( txin ) and output(s) ( txout ), respectively. Each UTXO edge 
(e) is characterized by the amount (value) of Bitcoin (v(e)) and the owner’s address of 
that UTXO ( eowner ). It also contains references to the receiving ( ereceive ) and spending 
transaction nodes ( espend ). The total value of a transaction, i.e., the sum of its outputs, 
is noted (v(tx)). The time of the transaction is noted as (t(tx)).

A consequence of this mechanism is that Bitcoin’s users do not possess, in general, 
a single account number as in a retail bank, in the form of a unique public address. 
Instead, a typical Bitcoin user will have a collection of cryptographic key pairs—a 
public key and its associated private key—in their wallet at any given time. These keys 
allow the user to control (in other words, spend) the corresponding UTXO. Since 
creating these new keys can be done at no cost and immediately, it is recommended 
for actors that care about their privacy to generate a new public key every time one 
receives a new transaction (Nakamoto 2008). Nowadays, this is done automatically by 
most public wallet applications and services.

Related works
As the oldest cryptocurrency, still having the highest market capitalization (CoinMar-
ketCap 2023), Bitcoin has been widely studied as a representative example of Unspent 
Transaction Output (UTXO) blockchains. Its transaction network has been largely 
studied to understand the collective behavioral patterns of its users (e.g., Lischke and 
Fabian 2016; Nerurkar et al. 2021; Reid and Harrigan 2013; Kondor et al. 2014; Maesa 
et al. 2019).

Our work more precisely build on two types of contributions: on the one hand, 
methods working on entity identification did not consider the transaction flows. On 
the other hand, methods that use some form of transaction flows still need to address 
the problem of entity identification. Our work is thus the first to use transaction flow 
for entity identification tasks.

Fig. 1 Bitcoin transaction network model
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Entity identification

The data found in the blockchain do not allow analyzing Bitcoin entities (i.e., users) 
directly because a single entity can control many Bitcoin addresses, and blockchain data 
only contains address activity. The first task required for any entity-level analysis thus 
consists in doing entity identification, which consists in finding groups of addresses 
belonging to the same entity. The most common approach, address clustering, consists 
of directly searching for groups of addresses in the blockchain that are likely to belong to 
the same entity. Although nothing in the protocol allows to know whether two addresses 
belong to the same entity, an efficient method called the common input heuristic  (Har-
rigan and Fretter 2016) exists to solve the problem partially. This heuristic relies on the 
fact that entities, when they control several UTXOs of small amounts, have practical 
and economic incentives to join them in the inputs of the same transaction. An obvious 
example is when an actor needs to make a payment of x Bitcoins but controls only two 
outputs of value < x . Furthermore, there is generally no reason for two distinct actors 
to make a common transaction, i.e., a transaction having as input UTXOs controlled by 
different entities. Consequently, the first preprocessing approach of most Bitcoin analy-
sis works consists of addressing clustering by leveraging the common input heuristic, 
which can be done efficiently. In this work, we used clustering heuristics implemented 
in BlockSci (Kalodner et al. 2020), having the advantage of also considering some excep-
tions to this heuristic known as CoinJoin (Goldfeder et al. 2017).

The limit of the common input heuristic is that it misses many address associations. 
Several works have proposed to improve this heuristic by using change detection. The 
principle is simple: when an actor needs to make a payment of an amount x, but controls 
an UTXO—or a combination of UTXO—whose sum is y > x , then it needs to send back 
the difference, y− x , to itself in an UTXO. This type of UTXO is called a change output, 
and many methods have been proposed to identify them, based on heuristics (Meikle-
john et  al. (2016)) or machine learning approaches (see Ramos Tubino et  al. (2022); 
Möser and Narayanan (2022) for recent articles on the topic). The machine learning 
approaches can be unsupervised and consider the transaction network as a whole (Caza-
bet et al. 2018), or be supervised and consists in describing each UTXO using features 
such as its amount, the number of decimals in its value, the number of times it has been 
used before, etc.

Once a change transaction detection has been achieved, the result can be used for a 
second-level entity identification: (1) the common input heuristic is used to find address 
clusters, and (2) change transactions are used to assign multiple address clusters to the 
same entity.

However, this approach has some limits: (1) It can lead to dramatic incorrect entity 
merging, because any UTXO wrongly identified as a change address can have a cata-
strophic consequence if it leads to wrongly merging two large clusters; (2) These meth-
ods are unable to solve the problem of entities keeping separate wallets. To understand 
this second problem, consider the case of a large company having hundreds or thousands 
of clients. If they manage a single pool of addresses, it is possible that their whole activity 
can be tracked using the common input heuristic and change detection. But instead, the 
company might choose to create, for instance, subgroups of 100 or 1000 clients—a large 
enough group to benefit from the economic and technical advantages—and manage 
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them in isolation so that one cannot track its whole activity. Although we have yet to 
know how actual companies manage their address pools, they are likely to use such 
strategies, as websites tracking well-known entities such as WalletExplorer (Janda 2023) 
often manually identify several address clusters for the same company.

Therefore, no common input and change detection methods can match those subclus-
ters. On the contrary, the method we propose in this article can, in principle, achieve 
this objective or at least give us hints about such possible matches. By assigning activ-
ity-based fingerprints to entities, two different pools of addresses belonging to the same 
entity should have a similar fingerprint. Those addresses from different pools could be 
matched, even if they never interacted directly.

Methods leveraging transaction flow

Entity identification is one of many tasks on the Bitcoin transaction network. Other 
popular tasks include (1) Prediction of entity roles or categories (e.g., mining pools, wal-
let, exchange, and marketplace) and (2) Detection of illegal or suspect entities/transac-
tions (e.g., scam, ransomware, and dark nets). Both of those popular tasks can be tackled 
with various approaches. Most works use a summary of the entity’s activity by comput-
ing descriptive features (e.g.,  frequency and amount of transactions, centralities) (Liu 
et al. 2021; Bartoletti et al. 2018; Harlev et al. 2018; Akcora et al. 2020; Lin et al. 2019; 
Goldsmith et al. 2020; Michalski et al. 2020; Gomez et al. 2022; Xiang et al. 2022). Other 
approaches, however, leverage not only the actor’s activity but also its neighbors’ activi-
ties and the relation between them. Indeed, such approaches are much harder to fool by 
an entity searching to avoid tracking: it is simple for an entity to control its own behavior 
by generating deceiving, dummy transactions or by altering its normal behavior to mis-
lead analysts. On the contrary, it is nearly impossible to control other actors’ behavior.

Graph motifs

Graph motifs have been used to extract features from the neighbors of the ego net-
work beyond the target node features. Graph motifs are a set of subgraphs describing 
the neighbors of a node and their connectivity patterns (Milo et  al. 2002). In Bitcoin 
transaction networks, graph motif has been used to extract the features from neigh-
bors (2-motif ) and neighbors of neighbors (3-motif ) of the address or entity flow net-
works. To classify entity types, Jourdan et al. (2018) extracted motif-based features (e.g., 
the total amount sent or received in an incoming/outgoing/loop motif ). They showed 
that these motifs improved the accuracy compared with using only the target node’s 
descriptive and centrality features. Zola et al. (2019) applied cascade machine learning 
to aggregate predictions of individual address classifiers and motif features to improve 
entity-level features. Nonetheless, these works do not use the identity of neighbors in 
the motifs but only numeric descriptions. Wu et  al. (2022) propose a temporal motif 
approach to extract transaction patterns and use positive and unlabeled learning to 
detect mixing services.

Graph representation learning

Graph representation learning is a neural network-based approach that learns rep-
resentation features from the entire graph. A few works have applied this approach 
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to embed addresses or entities in the Bitcoin transaction network and used them for 
downstream tasks. In Michalski et  al. (2020), the authors searched to classify enti-
ties into exchange and miners. They encoded the entity position in the transaction 
network using node2vec, but later found that this information did not improve clas-
sification performance. However, Hu et al. (2019) showed that node2vec embeddings 
outperform statistical and network features to classify money laundering entities. 
Weber et al. (2019) applied EvolveGCN, which extends Graph Convolutional Networks 
(GCN) to include the temporal information to predict illegal transactions in the Ellip-
tic dataset. Label-GCN was proposed by  Bellei et  al. (2021) to propagate the labels 
of neighbor transactions in GCN, applying to the same Elliptic dataset. Both models 
perform better than non-temporal GCN and are comparable to curated features from 
the dataset with a margin of less than 1%. These results show that adding temporal 
information can improve the model’s accuracy. A recent work by Huang et al. (2022) 
used Graph Feature Network (GFN) to learn graph representations from address sub-
graphs and use those features to predict the address role. The authors showed that 
their model provided a very high accuracy on both tasks.

Our work applies graph representation learning techniques to identify money flows 
likely to belong to a same entity. This task is new in the literature and has never been 
addressed. Compared to the previously mentioned works that extract features from 
the entire graph, we use the money flow that tracks the transaction graph from the 
sources of interest. Moreover, our proposed method relies not on summarized activ-
ity features or only direct neighbors of a source node, but on the temporal network 
describing the whole flow of coins from each entity.

Methodology
Our taint flow representation learning pipeline consists of three steps as depicted in 
Fig.  2. First, we extract taint flows from an entity of interest, i.e., flows originating 
from an entity on a particular day. Second, we use random walk approaches on the 
extracted taint flow to generate inputs for the representation learning model. Third, 
we apply the representation learning method to assign a fingerprint vector summariz-
ing its flow for each entity of interest. Lastly, the embedding results are subsequently 
utilized in downstream tasks. In this study, we leverage the fingerprint associated 
with each taint flow to classify distinct entities and cluster those with similar finger-
print patterns.

Fig. 2 Taint flow representation learning pipeline
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Taint flow extraction

Our objective is to characterize an entity by its money flow. To define a flow, we first 
select an entity and a time period, short enough to consider that the entity behavior has 
not changed between the beginning and the end of that period—in this paper, a single 
day. To construct the money flow, we first select the transactions of the chosen entity 
during the chosen time period. Coins sent in these transactions are considered tainted. 
The entity receiving those coins will later use them to make a payment in a transac-
tion, that we thus include in our taint flow. The process continues recursively until we 
consider that the taint is dissolved. Indeed, we can consider that the destination of our 
tainted coins is relevant to characterize the source entity only until a certain distance 
from the source. Furthermore, small amounts need to be combined with coins from 
other sources to be spent. We consider that each such event dissolves the taint, and we 
stop tracking tainted coins when the taint strength is below a threshold.

More formally, we defined taint flow as the directed acyclic graph (DAG) composed 
of all transactions involving tainted coins until dissolution. The dissolution is computed 
using the purity measure ( ρ ) (Di Battista et al. 2015), defined for a given UTXO as the 
percentage of its value that is tainted:

The purity of a root transaction is 1 by definition. In this study, we set a purity threshold 
ρmin = 0.001 , meaning that a coin is considered dissolved when it is spent in a transac-
tion with 1,000 times the amount of un-tainted coins. Therefore, the taint amount of 
the edge, annotated as vtaint(e) , is calculated as vtaint(e) = v(e)× ρ(tx) . Furthermore, we 
incorporate a criterion to halt the tracking of the flow when a transaction is separated by 
more than 1 year from the source transactions (denoted as tmax = 1 year). This criterion 
effectively prevents the algorithm from tracing the money flow beyond a certain tempo-
ral distance from its origin.

Algorithm 1 describes the process of retrieving transaction outputs and adding them 
to the taint flow graph. Our algorithm applies haircut tainting, which assumes that the 
tainted money is divided equally to all output transactions in proportion to their value 
(Ahmed et al. (2019); Tironsakkul et al. (2019)). Since the entity of interest can have mul-
tiple transactions during the period of interest, we compute a taint flow from each out-
put of each transaction and then combine them together in a single DAG, such as there 
is a single root node root, with outgoing edge to each of the individual flows correspond-
ing to each transaction done by the entity during the period. It is this global flow that we 
synthesize in a fingerprint. 

(1)ρ(tx) =
e∈txin

ρ(ereceive) · v(e)

e∈txin
v(e)
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Input : τo = {tx0, tx1, ..., txn} is a set of transactions as a seeding node of the taint flow.
Input : ρmin is a minimum purity threshold.
Input : tmax is a maximum time threshold.
Output: E is the edge list of the payout flow.
Q ← FIFO(τo) ; // the tx queue to check the purity
E ← LIST () ; // the edge list of the taint flow
while Q �= ∅ do

tx ← Q.pop() ; // Get a tx in the queue to check its purity
if ρ(tx) ≥ ρmin and t(tx) ≤ tmax then

for e in txout do
vtaint(e) ← v(e)× ρ(tx) ; // Calculate the taint amount of the out edge
E.append(e) ; // Add the out edge to the taint flow
Q.append(espend) ; // Add the spent tx of this out edge to the queue

end
end

end
Algorithm 1: Extract a taint flow graph from source transactions. FIFO is
a First In First Out data structure, and LIST is a standard ordered list data
structure

Taint flow representation learning

Our objective is to identify that two taint flows—i.e., two directed acyclic temporal 
graphs—are similar and thus likely to have the same source. Our approach consists in 
synthesizing each taint flow into a fingerprint vector, capturing various aspects: its topol-
ogy, temporal aspects, and labels of encountered nodes.

Graph embedding is a well-adapted approach to deal with this problem. However, 
because our graphs are DAGs, we cannot use off-the-shelf methods such as graph-
2vec (Narayanan et al. 2017) or anonymous walk embedding (Ivanov and Burnaev 2018). 
Instead, we define an adapted way to do random walks and then apply a mechanism sim-
ilar to graph2vec to encode the representative feature of graphs into vectors. Another 
difficulty in applying graph embedding to our setting is that one needs to define how 
encountered nodes are recorded in the random walk, e.g., by their identity or by one of 
their property.

Generate the walk sequences from the taint flow

For each taint flow graph, we generate 10,000 random walks from the source to disso-
lution in order to extract the substructure pattern. We experimented with (1) different 
random walks on the taint flows and (2) pruning strategies to represent the walk in the 
representation model.

Taint flow walk methods In our previous work (Tovanich and Cazabet 2023), we gener-
ated the walks on taint flows using the shortest path and random walk strategies.

• Shortest path walk We randomly choose leaf nodes (i.e., the transaction before the 
flow is dissolved) and calculate the shortest path from the source to the leaf node.

• Random walk We randomly walk from the source node to the next payout transac-
tion without considering the weight until we encounter a dissolved node.

In this work, we test several variants of random walks:
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• Biased random walk We bias the walk probability using the node2vec 
approach  (Grover and Leskovec 2016). In practice, we consider the graph as undi-
rected and start the walks from the source. We set the parameters p = 2 and q = 0.5 , 
which respectively define the inverse of the bias to go back and to move forward. 
Compared with previous strategies, this method allows the walk to go back in time 
and explore in a more Breadth-first search approach.

• Weighted random walk The probability of moving to the next payout transaction is 
proportional to its amount. Let E be the list of out edges ( txout ) from a transaction 
node tx, we define the probability that the walk from tx will follow the edge e as: 

• Continuous-time dynamic network embeddings (CTDNE) based approaches  (Qu 
et al. 2020) bias the random walk based on the time difference between transactions. 
The temporal walk is more likely to select edges of shorter time distance.

– Linear CTDNE the out edges txout of a transaction tx, are first sorted according to 
their spending time t(espend) and assigned a rank from first to last UTXO spent. 
We assign a higher rank to the first UTXO spent and the lowest rank to the last 
one. The probability for an out edge i of being selected in the next step of the 
walk is calculated as: 

– Exponential CTDNE We use the exponential of the time difference between the 
transaction t(tx) and each out edge spent time t(espend) . The probability of the 
out edge being picked in the walk exponentially decays from the first to the last 
UTXO spent from the transaction. We calculate the probability that the walk will 
move from a transaction tx to the next edge i as: 

Walk pruning strategies Graph embedding methods rely on the probability of encounter-
ing a given code in a walk. To work efficiently, codes need to be frequent enough. Using 
cluster ids directly as codes is not appropriate due to the large number of clusters seen 
only once or a few times. We thus prune walks to keep only information about some 
of the clusters encountered. We compare two pruning strategies, using either frequent 
clusters or known entities of clusters from an external data source.

• Frequent clusters We count the number of occurrences of clusters in all flows and 
keep only, respectively, the 1%, 5%, 10%, and 20% most frequent ones.

• Known entities We extracted the list of clusters of known entities from the Wal-
letExplorer dataset and pruned the walk to preserve only known entity names. 

(2)P(i) =
v(i)

∑
j∈E v(j)

(3)P(i) =
rank(t(tx)− t(ispend))

∑
j∈E rank(t(tx)− t(jspend))

(4)P(i) =
exp(t(tx)− t(ispend))

∑
j∈E exp(t(tx)− t(jspend))
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Another variant consists in using as code the category of the entity instead of its 
name (i.e., exchange, gambling, market, mining pools, mixer, service, and wallet).

For each walk, any occurrence of the source cluster are replaced with a "black" label to 
prevent the model from learning the embedding from it.

Sequence and temporal patterns We tested two ways of encoding the succession of 
events—sequential and temporal—to input into the representation model.

• Sequential pattern We collect the sequence of clusters from the source until dis-
solution, keeping the sequence but ignoring time. For example: root → black → 
107752768 → 103850367 → 104514539 → 106936169 → 98856802 → black → 
107752768 → 106936169 → 100364814 → dissolved

• Temporal pattern We incorporate the time difference into the code. As the trans-
action activities tend to be in the early days after the source, we use the Fibonacci 
sequence to group days into bins (i.e., 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 
377). For example: root → (0, 1] black → (0, 1] 107752768 → (0, 1] 103850367 → 
(1, 2] 104514539 → (1, 2] 106936169 → (1, 2] 98856802 → (1, 2] black → (1, 2] 
107752768 → (1, 2] 106936169 → (1, 2] 100364814 → (3, 5] dissolved

Training the representation learning model

As with other graph embedding methods, the walks we extract from a taint flow can 
be understood as a sentence in a text document. Instead of a sequence of words, the 
walk sentence consists of a sequence of node codes, from the source until dissolution. 
For each taint flow, we concatenate all walk sentences into a document and tag them 
with the original source (i.e., entity and starting date) of the flow. With this repre-
sentation, we can feed documents as inputs to the representation learning model to 
extract the embedding vector for each flow.

In this work, we chose the Distributed Memory Model of Paragraph Vectors (PV-DM) 
to train the embedding of taint flows. It is one of the two variants of the document 
embedding model in the doc2vec article (Le and Mikolov 2014). We chose the PV-DM 
model because it preserves the order sequence of the walk rather than predicting a bag 
of words in a sentence in the PV-DBOW model. The objective of the PV-DM model is to 
train the neural network to predict the middle word (in our case, cluster) with the con-
text words within a specific window size. The average/concatenate layer can be used to 
derive the representation vector of the document (in our case, taint flow).

In the PV-DM model, we initially set the window size to 5 and represented each 
taint flow with a 256-dimensional embedding vector. These representations can be 
used for exploratory analysis and downstream tasks.

The graph embedding approach thus yields one 256-dimensional vector for each 
taint flow, capturing its structure, that we use as the fingerprint of that taint flow. 
In this study, we explore the applicability of employing these fingerprints for down-
stream machine learning tasks, specifically for the classification of distinct entities 
and the clustering of entities that exhibit similar taint flow patterns.
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Entity classification task

Deanonymizing entities is one of the main research challenges in the Bitcoin block-
chain. Most of the past work focused on the classification of illegal transactions or the 
role of entities (i.e., entity type). In this work, we introduce a new entity classification 
task to identify if the taint flow originated from different pseudonymous addresses or 
clusters belonging to the same entity. We use the representation vectors from taint 
flows as the feature to train the entity classification task.

We compare three classification models: k-nearest neighbors (k-NN), support vec-
tor machine (SVM), and random forest (RF) on the taint flow fingerprints with differ-
ent configurations. To evaluate the performance of the models, we performed k-fold 
cross-validation, in which k is the maximum number of flows we sampled for each 
entity in the dataset. For each test set in the cross-validation, we left at least one flow 
for each entity to evaluate the classification accuracy. This strategy is similar to the 
leave one out approach but keeps one flow of each entity in each fold.

Cluster analysis task

To characterize different taint flow patterns, we adopt k-means cluster analysis to 
form groups of taint flows as part of an unsupervised learning approach. The k-means 
algorithm groups the taint flow embeddings into k clusters, aiming to minimize the 
embedding distance between flows within the same cluster while maximizing the dis-
tance between clusters. Consequently, the resulting clusters should represent groups 
of taint flows sharing similar fingerprint characteristics.

We execute a k-means algorithm with the number of clusters k from 1 to 100 and 
evaluate the clustering assignments to their true entities. To measure the quality of 
clusters, we rely on three clustering performance metrics: Normalized Mutual Infor-
mation (NMI), Adjusted Rand Index (ARI), and Adjusted Mutual Information (AMI). 
The higher value for each metric (with a maximum value of 1) indicates that the clus-
ters are identical to their true entities.

Results
We applied our fingerprint approach to three address-entity tagging datasets to eval-
uate entity classification and clustering tasks.

Datasets

We extracted taint flows from three address-entity tagging datasets representing 
different types of entities in Bitcoin: mining pools, ransomware families, and well-
known Bitcoin entities. 

(1) Mining pools are the consortium of miners competing to verify transactions in the 
blockchain and sharing monetary rewards among miners (Tovanich et  al. 2022). 
We extracted 50 taint flows from the top-15 mining pools between 2013 and 2016. 
For each mining pool, we randomly selected 50 random dates, spanned equally 
across four years, and obtained all rewards (i.e., coinbase transactions) from the 
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blockchain on that day as the seeding transactions. As a result, we obtained 750 
flows from 15 mining pools.

(2) BitcoinHeist dataset contains a list of addresses associated with 24 ransomware 
families (Akcora et al. 2020). We selected the top 14 more active ransomwares, plus 
one non-ransomware from the original dataset (white addresses). We randomly 
sampled 50 address-date pairs from each to construct taint flows, appart from 3 
of the ransomwares that have less than 50 flows (34, 32, and 27, respectively). We 
obtained a total of 693 flows from 15 entities (14 ransomware families and 1 group 
of white addresses).

(3) WalletExplorer is a public address tagging dataset of well-known entities in the Bit-
coin network updated until 2016 (Janda 2023). We selected the top-6 entities with 
the highest number of addresses for each entity type: service, exchange, gambling, 
wallet, and marketplaces, together with three mixing services. For each selected 
entity, we built 100 taint flows from different addresses and starting dates. We have 
in total of 3,300 flows from 33 entities.

Entity classification task

For each dataset, we apply our fingerprint embedding method and assess the perfor-
mance of the classification models in distinguishing unique entities. First, we system-
atically compared our approach with two baseline models on classification models 
(Experiment 1). We also investigate the effectiveness of different pruning strategies 
tailored to our approach (Experiment 2). Additionally, we assess the performance of 
various walk-based techniques in terms of classification accuracy (Experiment 3). 
Finally, we conduct experiments to determine whether the window size setting in the 
PV-DM model (Experiment 4) and the maximum path length in the taint flows have 
an impact on model accuracy (Experiment 5).

Definition of baseline models

We define two baseline models to compare with our taint flow representation learn-
ing on the entity classification task. 

(1) Graph2Vec learns the whole-graph representation from the structure of the graph 
(Narayanan et al. 2017). The method builds graph kernels from Weisfeiler-Lehman 
Hashing and then employs the skip-gram model to generate the graph embedding. 
We built the static entity network from the taint flow and applied graph2vec to 
study the relevance of graph structure in classifying taint flows from different enti-
ties.

(2) Singular value decomposition (SVD) is a matrix factorization technique that decom-
poses a matrix into three metrics that minimize the reconstruction error. We built 
the matrix recording the frequent clusters encountered in the taint flow without 
considering the sequence of clusters in the flow. We applied SVD to extract a low-
dimensional representation of the frequent cluster matrix for each flow.
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We apply these baseline models only with the top 1% frequent clusters due to scalability 
issues given the size of the data. Results show that these methods are clearly outper-
formed, and thus we did not work on scaling them on larger experiments.

Experiment 1: evaluation of baseline models and walk pruning strategies

First, we fix the embedding parameters and compare the classification results to the 
baseline methods with the simplest walk strategy, the random walk approach. We com-
pare all three classification approaches (k-NN, SVM, and Random Forest) and all prun-
ing strategies. Results are shown in Table 1 and graphically in Fig. 3 with 95% confidence 
intervals.

Among the three classification models, SVM consistently provides the best result 
compared to k-NN and random forest for random walk approaches. Random Forests 
yield the best results for the SVD baseline. Our representation learning method outper-
forms all baseline models on the same top 1% frequent clusters, showing 20%, 11%, and 
23% accuracy improvement for each dataset.

Experiment 2: filtering clusters with pruning strategies

Following that, we evaluate the effectiveness of various pruning strategies aimed at opti-
mizing classification accuracy. As shown in Table 1 and Fig. 3, our results highlight that 
the top 5% frequent clusters provide the best accuracy on BitcoinHeist and WalletEx-
plorer, while the top 1% offers the best result for the Mining Pools dataset. Pruning the 
walks with known entities and types gives inferior results to filters with frequent clus-
ters. For different thresholds of top clusters pruning (i.e., the top 1%, 5%, 10%, and 20% 
frequent clusters), Fig. 3 shows that the accuracy scores are often not statistically differ-
ent considering the 95% confident intervals.

Overall, using our proposed representation learning method on taint flows, we reached 
the best accuracy scores of 96% for Mining Pools, 70% for Bitcoin Heist, and 62% for 
WalletExplorer. These scores can be considered high, given that the task is not binary. 
Each dataset has respectively 15, 15, and 33 classes, and thus the outcome expected by a 
random classifier would be respectively (approximately) 6.6%, 6.6%, and 3%.

Fig. 3 The average test accuracy of classification models for baseline models and different walk pruning 
methods on random walks with 95% bootstrap confidence intervals
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Experiment 3: evaluation of taint flow walk methods

Based on the previous experiments, we fixed the best settings overall—5% most fre-
quent clusters and SVM classification—and varied the walk strategies. We report 
accuracy, F1-measure, and AUROC score for each walk and dataset in Table  2. In 
addition, Fig. 4 depicts the average accuracy for each walk with the 95% confidence 
intervals.

The result shows that the random walk approach consistently provides the best 
result to extract walks from taint flow in all datasets. It outperforms the shortest path 
walk and other variants of random walks (i.e., weighted and biased random walks). 
Surprisingly, continuous-time temporal walks like linear and exponential CTDNEs 
cannot achieve a better score than random walks but still provide better evaluation 
metrics than the rest in BitcoinHeist and WalletExplorer datasets. Linear CTDNE 
tends to give better accuracy than exponential CTDNE, which can be due to the Fibo-
nacci time-encoding strategy.

When comparing labels including or not temporal information (Sequence VS Tem-
poral), the results show that adding the temporal feature slightly increases the accu-
racy in Mining Pools and WalletExplorer datasets. The same effect also applies to 
most of the walks. Nonetheless, we found a more significant improvement in accuracy 
for the shortest path and biased random walks. Overall, adding the temporal informa-
tion does not significantly improve nor impair the results when considering the best 
approach (random walk).

Experiment 4: effect of window sizes on representation learning

We further fine-tuned the PV-DM representation model by varying its window sizes 
from 3 to 9. The window size indicates how many surrounding contexts in the walk 
they consider to train the concatenate layer in the PV-DM model. Figure 5 reports the 
accuracy of entity classification models for each window size. Our experiment shows 
that the accuracy is indifferent when we increase or decrease the window size for all 
datasets. Nonetheless, in these additional experiments, we see a slight advantage of 
adding temporal information across window sizes, particularly on the WalletExplorer 
dataset.

Fig. 4 The average test accuracy of SVM classifiers for different walk and patterns on the top 5% frequent 
clusters with 95% bootstrap confidence intervals



Page 15 of 22Tovanich and Cazabet  Applied Network Science            (2023) 8:63  

Experiment 5: effect of taint flow sizes on model accuracy

Finally, we analyze whether the size of taint flows affects the entity classification model 
accuracy. Figure  6 shows the distributions of path lengths on random walks for each 
dataset. The path lengths from the source until the dissolution is mostly short, with long 
tails observed. The average path lengths are 5.76, 6.47, and 5.30, while the medians are 5, 
5, and 4, respectively, for Mining Pools, BitcoinHeist, and WalletExplorer datasets.

We varied the maximum path length from 1 to 16. Based on the random walks, we 
filtered the full walk up to the maximum path length for each flow and pruned the walk 
with the top 5% frequent clusters. For each maximum path length, we trained the SVM 

Fig. 5 The average test accuracy of SVM classifiers for different patterns on the top 5% frequent clusters with 
different window sizes

Fig. 6 Distributions of path length for random walks in each dataset

Fig. 7 The average test accuracy of SVM classifiers for the top 5% frequent clusters on random walks with 
different maximum path lengths
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model and reported the accuracy to determine which maximum path length yielded the 
best result, as depicted in Fig. 7.

Results show that we can accurately predict the source of the flow with only a short 
path length. For all datasets, the accuracy sharply increases from length 1 to length 2, 
then remains the same or slowly decreases at longer lengths. The result implies that, 
although considering only direct neighbors of the entity is not enough to deanonymize 
them, tracking flows beyond the second neighbors is not a rewarding strategy. Moreover, 
when using short taint flows, the temporal approach seems more valuable than when 
using the full flows, particularly for the WalletExplorer dataset.

Overall, the result informs us that walking only two or three steps from the source is 
sufficient to identify the entity of the flow with high accuracy. It explains why the past 
works produced decent classification results—although on different tasks—using only 
graph motif features at length two. We suspect that the full walks of taint flows may 
include the flow of clusters from longer path lengths beyond relevant information to 
classify entities. In our taint flow extraction algorithm, the dissolution criteria to stop 
crawling the taint flow is quite generous (purity < 1/1000 and > 1 year apart from the 
source). The appropriate parameters to crawl the taint flow should be an interesting 
question to study in future work.

Visualization of taint flow embeddings

We explore the embedding results of taint flows for each dataset with the best accu-
racy model, i.e., temporal pattern with length 3 for Mining Pools, sequence pattern with 
length 2 for BitcoinHeist, and temporal pattern with length 2 for WalletExplorer. We use 
t-distributed stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton 2008) 
to project the embedding result into 2-dimension to display on scatter plots.

Figure 8 shows the t-SNE projection of mining pools. Most mining pools (in differ-
ent colors) look clearly separate from each other and form their own clusters, prob-
ably because mining pools have a pattern of sharing rewards with their members 

Fig. 8 T-SNE visualization of Mining Pools dataset on the temporal pattern with the maximum length of 3 
embedding
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regularly. We also observe the shift of t-SNE projection within the pool cluster on the 
payout flows over the years (in different shapes). This result indicates that the flow of 
mining pools could be regularly changed from new miners joining the pool or current 
miners changing to newer pools to increase their reward.

The t-SNE projection of Bitcoin heist datasets in Fig. 9 shows more overlap among 
ransomware families. Some ransomware families are clearly separable from the rest 
(e.g., CryptoLocker, CryptoTorLocker2015, CroptoWall, and Wannacry), while oth-
ers are more overlapped with each other (e.g., CryptXXX, Cerber, and Locky). We 
also observe the same tendency of temporally close sources to be close in the embed-
ding. We suspect that the representation learning model probably learns from the 
common clusters and group taint flows originated from the same year closer in the 
embeddings.

Fig. 9 T-SNE visualization of BitcoinHeist dataset on the sequential pattern with the maximum length of 2 
embedding

Fig. 10 T-SNE Visualization of WalletExplorer dataset on the temporal pattern with the maximum length of 2 
embedding
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For the WalletExplorer dataset, we randomly sample 30% of the flows for each entity 
to show in Fig. 10. We use the color to encode entity types and the shape to distinguish 
entities in that type. The t-SNE projection shows more overlapping of flow embeddings, 
but we can observe that taint flows from the same entity are more likely to be closer. 
This result indicates that the same entity tends to have the same money flow pattern. We 
observe that some entity types, like Exchange entities, tend to be in the same projection 
region. In contrast, Market and Wallet entities are more scattered and mixed with other 
flows from other entity types in the visualization. Note that the 2-dimensional projec-
tion provided by t-SNE necessarily loses information compared with original taint flow 
fingerprints; thus, these representations are only included to facilitate the interpretation 
of the embedding results.

Cluster analysis task

Another Bitcoin fingerprint task is to characterize the flows sharing identical fin-
gerprint patterns. To achieve this, we employ k-means clustering and subsequently 
evaluate the results by comparing them against the actual entities using three distinct 

Fig. 11 Performance evaluation of k-means clustering on taint flow embeddings with k from 1 to 100

Table 1 Entity classification accuracy for baseline models and different pruning methods on 
random walks on three classification models: k-nearest neighbors (k-NN), support vector machine 
(SVM), and random forest (RF)

Bold highlights the highest score overall, and itatic highlights the highest baseline score for each dataset

Mining Pools BitcoinHeist WalletExplorer

k-NN SVM RF k-NN SVM RF k-NN SVM RF

Baseline (Freq. 1% Clusters)

Graph2Vec 0.1480 0.2693 0.2200 0.3497 0.4124 0.4813 0.2494 0.3779 0.3264

SVD 0.6040 0.6253 0.7613 0.4977 0.3191 0.5846 0.3924 0.3536 0.3933

Random Walk

Freq. 1% clusters 0.6467 0.9613 0.8547 0.5627 0.6921 0.5766 0.1900 0.5948 0.3958

Freq. 5% clusters 0.7520 0.9493 0.8373 0.5941 0.7023 0.5766 0.2252 0.6282 0.4121

Freq. 10% clusters 0.7800 0.9493 0.8147 0.4555 0.6992 0.5773 0.2236 0.6148 0.3985

Freq. 20% clusters 0.7987 0.9467 0.8267 0.5420 0.6676 0.5752 0.2373 0.5967 0.3955

Known entity name 0.6947 0.8187 0.6720 0.4210 0.5178 0.5126 0.3591 0.5370 0.4006

Known entity type 0.6360 0.6893 0.6933 0.3173 0.3664 0.3926 0.4606 0.5285 0.4433



Page 19 of 22Tovanich and Cazabet  Applied Network Science            (2023) 8:63  

measures. Figure  11 depicts The clustering performance metrics (NMI, ARI, and 
AMI) for varying values of k, ranging from 1 to 100 clusters.

The Mining Pools dataset scores higher for all measures, followed by BitcoinHeist. 
WalletExplorer clustering has the lowest score across the range of k clusters in all 
measures, probably because a cluster may include many entities that are overlapped 
to the embedding space. The clustering metrics align with the result from classifica-
tion accuracy and t-SNE visualizations. Mining Pools have a clear taint flow pattern to 
distinguish mining pools, while the pattern of entities may not be apparent or unique 
in other datasets.

For all three datasets, NMI and AMI scores tend to increase rapidly from 1 to 
around 20–30 clusters before becoming more stable at the higher k clusters. The ARI, 
for all datasets, tends to provide lower scores than other metrics and decreases with 
a higher number of clusters. The number of clusters that maximize the ARI score is 
27, 14, and 30 for Mining Pools, BitcoinHeist, and WalletExplorer, respectively. The 
number is close to the number of entities we have for each dataset, except for min-
ing pools, which are closer to two times the number of entities. According to these 
results, cluster analysis can be a good indicator of the number of entities present in 
a set of taint flow sources. However, the lower scores in some datasets imply that the 
cluster of flows may not be a reliable approach to deanonymize entities based only on 
their taint flow fingerprints.

Table 2 Entity classification accuracy, F1-measure, and AUROC of SVM models for the top 5% 
frequent cluster embeddings with different walks and patterns

Bold highlights the highest score overall for each pattern and dataset. Baseline results are provided for reference in which 
the italic indicates the highest baseline score

Mining Pools BitcoinHeist WalletExplorer

Accuracy F1 AUROC Accuracy F1 AUROC Accuracy F1 AUROC

Baseline (Freq. 1% Clusters)

Graph2Vec 0.2693 0.2168 0.8011 0.4124 0.3364 0.8931 0.3779 0.3054 0.8968

SVD 0.6253 0.5576 0.9556 0.3191 0.2706 0.8163 0.3536 0.2785 0.8992

Sequential Pattern (Freq. 5% Clusters)

Shortest Path Walk 0.8800 0.8506 0.9894 0.6346 0.5909 0.9399 0.4903 0.4171 0.9293

Random Walk 0.9493 0.9372 0.9967 0.7023 0.6652 0.9541 0.6282 0.5632 0.9583
Biased Random 
Walk

0.6373 0.5769 0.9501 0.5945 0.5604 0.9283 0.4424 0.3671 0.9094

Weighted Random 
Walk

0.8600 0.8289 0.9855 0.5681 0.5230 0.9128 0.4882 0.4154 0.9213

Linear CTDNE 0.9227 0.9012 0.9942 0.5852 0.5356 0.9342 0.5833 0.5149 0.9506

Exponential CTDNE 0.7320 0.6752 0.9620 0.4900 0.4463 0.8889 0.5700 0.4997 0.9375

Temporal Pattern (Freq. 5% Clusters)

Shortest Path Walk 0.9147 0.8929 0.9918 0.6433 0.5980 0.9460 0.5352 0.4624 0.9423

Random Walk 0.9627 0.9521 0.9974 0.7009 0.6687 0.9659 0.6209 0.5535 0.9611
Biased Random 
Walk

0.7080 0.6537 0.9632 0.6046 0.5733 0.9365 0.4688 0.3957 0.9245

Weighted Random 
Walk

0.8560 0.8225 0.9815 0.5598 0.5138 0.9209 0.5176 0.4463 0.9312

Linear CTDNE 0.9173 0.8970 0.9907 0.5742 0.5263 0.9205 0.5867 0.5196 0.9516

Exponential CTDNE 0.7467 0.6826 0.9707 0.5193 0.4736 0.8973 0.5448 0.4728 0.9350
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Conclusion
In this article, we proposed a method to fingerprint Bitcoin entities using taint flow 
embedding. Our assumption is that an entity, even though it uses multiple clusters of 
addresses, has a unique fingerprint on how it spends the money and how the money 
flows from the source transactions. In contrast to previous works that focused on classi-
fying the entity’s role or deciding whether the transaction is illegal or not, we introduced 
an entity classification task to deanonymize entities from their taint flow fingerprints.

Using the PV-DM representation learning model, we extracted the embedding features 
from taint flows of different entities in different time periods. We extracted the substruc-
ture patterns of the flow and experimented with different graph walking methods and 
cluster pruning strategies. We tested our approach on three known entities datasets. The 
classification accuracy is highest for the Mining Pools dataset, followed by BitcoinHeist 
and WalletExplorer. The evaluation shows that random walk patterns on taint flows with 
the top 5% of frequent cluster pruning provide the best classification accuracy among 
different substructure pattern configurations. In addition, adding temporal information 
to the embedding model can help improve accuracy, especially on the WalletExplorer 
dataset.

Furthermore, we investigated the effect of taint flow size on the model performance. 
To our surprise, using only two steps from the source transactions can provide a high, 
even better, accuracy than the full taint flows. The possible explanation is that our cri-
teria for the dissolution are too generous and allow non-relevant clusters to be included 
in the taint flow graph. This finding opens a new research question on which criteria we 
should use to extract the meaningful taint flow graph to identify entities.

Our work provides evidence that using taint flows to fingerprint Bitcoin entities 
is a relevant approach. We think, however, that the results could be further enhanced 
by extracting taint flows using more appropriate stopping criteria so that no noise is 
included in it. In some cases, it might be relevant to track money flow over long dis-
tances—for instance, if the money stays in a close circle of contacts from the original 
source—, while sometimes the flow should stop early—for instance, when the entity 
sends money to mixers or exchange platforms, that will spend those coins irrespective of 
where it comes from. Another source of improvement would be to take into account the 
evolution of the Bitcoin ecosystem over time. As seen in t-SNE embeddings, our finger-
prints simultaneously capture the source entity and the time period. Removing this time 
component from the fingerprints, in principle, could increase further the accuracy of the 
entity recognition task.

Abbreviations
AMI  Adjusted mutual information
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AUROC  Area under the receiver operating characteristic
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k-NN  K-nearest neighbors
NMI  Normalized mutual information
PV-DM  Distributed memory model of paragraph vectors
RF  Random forest
SVD  Singular value decomposition
SVM  Support vector machine
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