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Abstract 

Network science offers valuable tools for planning and managing public transporta-
tion systems, with measures such as network centralities proposed as complementary 
predictors of ridership. This paper explores the relationship between different cases 
of passenger flows at metro stations and network centralities within both metro 
and alternative public transport (substitute) networks; such an association can be 
useful for managing metro system operations when disruptions occur. For that pur-
pose, linear regression and non-parametric machine learning models are developed 
and compared. The Athens metro system is used as a testbed for developing the pro-
posed methodology. The findings of this study can be used for deriving medium-term 
ridership estimates in cases of metro disruptions, as the proposed methodology can 
support contingency plans for both platform and rail track disruptions.
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Introduction
Metro systems are crucial in metropolitan areas since they offer fast, convenient, and 
reliable transportation services. Information on ridership (often represented by passen-
ger flows between metro stations) is essential for efficient planning and management of 
metro operations, such as the development of timetables, the allocation of resources, 
and so on. For that purpose, several econometric and machine/deep learning models 
have been developed for predicting passenger flows in metro systems (Han et al. 2021). 
The associated problem of estimating metro passenger flows is usually approached from 
a spatial–temporal perspective, while the temporal component is treated as a time-series 
(Ou et  al. 2020). Econometric time-series models are usually based on autoregressive 
integrated moving average (ARIMA) and seasonal autoregressive integrated moving 
average (SARIMA) (Zheng et al. 2020), while machine learning and deep learning-based 
efforts mainly include neural networks and support vector machine models (Sun et al. 
2015; Guo et al. 2019; Li et al. 2019; Yang et al. 2021). Machine learning techniques have 
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also been applied to long-term passenger flow estimates (Toqué et al. 2017) and to rider-
ship predictions of new stations and lines (Gong et al. 2020; Wang et al. 2022a, b).

Complex network theory (CNT) has been used for the analysis of traveler flows, 
including passenger flows in public transportation systems (Zhang et  al. 2022). Since 
there exist correlations between topological properties and human activities, CNT can 
be effectively used for that purpose (Leung et al. 2011). Indeed, network properties can 
be useful passenger flow predictors, and network-based models can provide fast and effi-
cient decision models for that purpose (Luo et al. 2020). In this context, complex net-
work characteristics of road networks were recognized by the literature as determinants 
of traffic flow: their degree of association depends on network structure (Zhao and Zhao 
2016), topological and angular distance-based centralities seem to be more appropriate 
for predictions than metric distance-based ones (Omer and Jiang 2015), and multiple 
centralities can demonstrate better performance than single-variable ones (Pun et  al. 
2019). Betweenness is the most frequently used centrality for traffic flow predictions, 
but most researchers agree that it is not sufficient in its conventional form (Kazerani and 
Winter 2009b; Leung et al. 2011; Gao et al. 2013; Ye et al. 2016). As such, several modi-
fications of betweenness centrality have been proposed (Kazerani and Winter 2009a; 
Galafassi and Bazzan 2013; Puzis et al. 2013; Henry et al. 2019; Zhang and Chen 2020; 
Cogoni et al. 2023). Additional centralities used as traffic flow predictors include close-
ness (Jayasinghe and Sano 2017), degree, PageRank (Zhao et al. 2017), and stress (Lowry 
2014). Similarly, conventional or modified betweenness is the most common centrality 
used as a flow predictor in the cases of cycling (Cooper 2017; Chan and Cooper 2019; 
Hochmair et al. 2019) and pedestrian flows (Agryzkov et al. 2019; Cooper et al. 2021; 
Sevtsuk 2021).

In public transportation, the association between network properties and passenger 
flows has been investigated, along with the possibility of using the former as efficient 
passenger flow predictors. Jayasinghe and Munshi (2014) used closeness, straightness, 
and betweenness centralities and developed linear regression models to estimate board-
ings and alightings at public transport stops. Senousi et  al. (2022) explored the asso-
ciation between conventional and modified centralities with passenger flows in public 
transport networks, concluding that centralities can be used as passenger flow predic-
tors only when specific network representations are concerned. Wang et al. (2022a, b) 
explored factors affecting bus ridership considering spatial autocorrelation and found 
that betweenness centralities within bus and road networks can be significant deter-
minants of bus ridership on specific days and timeslots. Dai et al. (2022) used degree, 
betweenness, and closeness centralities to investigate the spatial relationship between 
bus line and temporal bus flow networks and found some time-dependent differences 
among them. Liu et al. (2022) used machine learning models to explore the transfer rid-
ership between bus and metro, with network density and closeness centrality being the 
most influential factors. When it comes to metro systems, He et  al. (2019) suggested 
that network properties such as degree and betweenness centralities are associated 
with ridership at metro stations. Luo et al. (2020) showed that both infrastructure and 
service level-based network centralities can be exclusively used to estimate passenger 
flows in public transport systems. In this direction, Kopsidas et  al. (2023) identified 
passenger flow predictors not only among the centralities within the network of metro 
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infrastructures but also in their substitute network, which is the network of alternative 
public transport options that connect metro stations.

Although CNT-based models can incorporate nontrivial and dynamic properties of 
transportation networks and thus bring crucial information to light (Zhang et al. 2022), 
their usage for predictions is still limited. Their accuracy, albeit increasing, is still ques-
tionable, and the most efficient predictors are yet to be found. This is because the num-
ber of measures that can be used is vast since there are endless capabilities in metro 
network specifications. Physical, traffic, or service networks can be formed with stations, 
lines, intersections, etc. as nodes, any form of possible interaction like direct or indirect 
connections as edges, attributes such as passenger flows and travel times as weights, as 
well as different network representations (L-space, P-space, etc.) (Lin and Ban 2013). At 
the same time, although CNT measures have been incorporated into predictive mod-
els, they are still complementary elements. Only recently has the potential of exclusively 
network-based models been investigated.

In this direction, this study aims to further explore CNT-based predictors of passenger 
flows in metro systems, with focus on fast and reliable estimations in cases of metro dis-
ruptions. For this purpose, econometric and machine learning models are developed to 
associate network centralities with passenger flows at metro stations. Both the options 
of total flows and origin–destination (OD) flows are investigated since the information 
extracted from each case is uniquely valuable for disruption management. OD flows 
account for passenger departures and arrivals from/to metro stations and are mostly 
related to platform disruptions. Total flows are the sum of OD flows plus passthroughs, 
i.e., passengers who pass through a metro station without alighting, and are mostly 
related to rail track disruptions. Indeed, disruptions of the rail track infrastructure near a 
metro station would affect all passengers at that station, who would either board, alight, 
or pass through. On the other hand, disruptions of the station platform would affect only 
the passengers who were willing to board or alight the metro system, but not the ones 
passing through the station. On this occasion, the disruption could be bypassed by uti-
lizing the closest metro station, but on the occasion of rail track disruptions, it would 
lead to network segmentation.

The contribution of this work is that it extends the concept of extracting passenger 
flow predictors from network characteristics by making a clear distinction between total 
passenger flows and OD flows. To the authors’ knowledge, although the association 
of the former with metro and substitute network centralities was already explored by 
Kopsidas et  al. (2023), it is the first time that metro/substitute network-based predic-
tors of the latter are explored in this paper. The structure of this paper is as follows: the 
methodology is given in the next section. The results emerging from the application of 
the methodology to a real-world metro network (the one in Athens, Greece) are subse-
quently presented, followed by a discussion on them. Last, the conclusions of the study 
are offered in the final section.

Methodology
Overview

The factors associated with passenger flows are selected among network centralities 
within the metro and substitute networks. The graph of the metro network G is an 
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unweighted, directed, L-space representation of the metro infrastructure, with sta-
tions as nodes and connections between any two consecutive stations of the same 
line as edges. The graph of the substitute network Gs, as defined by Kopsidas and 
Kepaptsoglou (2022), is a weighted, directed P-space representation of the alternative 
options (usually bus routes) connecting any two metro stations outside the metro sys-
tem. The nodes of the substitute network also correspond to stations, while the edges 
are alternative public transport travel options between them, weighted by their per-
formance in terms of time. Alternative option performance is estimated as the recip-
rocal of the difference between the trip duration of the best alternative option and the 
duration needed for the same trip within the metro system. The idea behind explor-
ing the correlation between centralities within the substitute network and passenger 
flows is based on the assumption of a two-way causality vector: (i) more passengers 
can reach a metro station to make a transfer between bus and metro when more effi-
cient alternative bus services reach this station; (ii) more alternative services depart-
ing from a metro station can be an incentive for passengers to use the metro as a first 
mode for reaching their destination. On both occasions, passenger flows at metro sta-
tions are expected to increase.

Centrality measures

The centrality measures used in this study are unweighted degree, closeness, and 
betweenness, as well as weighted degree (also called strength) and weighted between-
ness. The degree of a node i in unweighted graphs measures the number of edges that 
i belongs to, and it is calculated by Eq. (1):

where eij denotes the edge formed by the nodes i and j , and n is the total number of 
nodes in the network. As degree is highly influenced by the size of the network, it is usu-
ally normalized by dividing by n − 1. In directed graphs, node degree is also equal to the 
sum of node indegree and outdegree. In weighted graphs, weighted degree or strength is 
calculated as the sum of the weights of the edges i belongs to, and it is given by Eq. (2):

where wij denotes the weight of an edge eij.
Closeness centrality indicates the proximity of a node to all the other nodes of a 

network, and it is calculated by Eq. (3):

where dij is the distance from any other node j to node i.
In addition, betweenness centrality expresses the proportion of the total shortest 

paths of the network that pass through a node i , and it is given by Eq. (4):

(1)CD
i =

n

j

eij

(2)Si =
n∑
j

wij

(3)CC
i = n−1∑

i �=j∈N dij
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where σst is the number of shortest paths between any nodes s and t , and σ i
st is the num-

ber of the shortest paths passing through node i . In weighted graphs, the calculation of 
shortest paths takes into account the weight and not the number of network edges.

Models

Two linear regression models are developed to explore the potential of network centrali-
ties as predictors of total passenger flows and OD flows, respectively. It is noted that 
in both cases, the share of each station in the total flows is considered, not the respec-
tive absolute values. That is, the passenger flows of a station are divided by the sum of 
the respective flows of all stations. This way, the proposed methodology can be applied 
to metro systems with different exogenous ridership determinants (e.g., population) by 
multiplying the estimated shares with the total passenger flows of each system. Hence-
forth, passenger flows will correspond to the share of a station with respect to total pas-
senger flows.

The dependent variable of the first model is total passenger flows (TPF), that is, the 
sum of inflows and outflows of a metro station. All boardings, alightings, and pass-
throughs are incorporated into this measure. The degree, betweenness and close-
ness of the nodes in the metro network are used as independent variables, along with 
the strength of the nodes in the substitute network and a dummy variable I of station 
importance.

The model specification is presented in Eq. (5):

where TPFi is the total passenger flows of station i, CD
i  , CB

i  , and CC
i  are the degree, 

betweenness, and closeness centralities, respectively, of station i within the metro net-
work, Si is the strength of the same station within the substitute network, Ii denotes sta-
tion importance, εi is the error of the estimation i , β0 is the intercept of the model, and 
β1−5 are the coefficients of the independent variables.

When it comes to the OD flow model, the sum of only boardings and alightings consti-
tutes the model’s dependent variable (ODF). Node strength and weighted betweenness 
centrality within the substitute network, along with the dummy variable of importance, 
are used as covariates. The specification of the second model is presented in Eq. (6):

where ODFi is the OD flows of station i, Si and CWB
i  denote the strength and weighted 

betweenness centrality, respectively, of station i within the substitute network, Ii rep-
resents the station’s importance, β ′

0−3
 are the intercept and covariate coefficients of the 

second model, and ε′
i
 is the estimation error.

It is noted that a different variation of the substitute network is used for calculating 
node weighted betweenness centrality because, when calculating shortest paths, the 
higher the weight of an edge, the longer the path. As such, options of higher perfor-
mance would be misleadingly related to longer paths. For this reason, the edge weights 
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within the substitute network denote travel times (or inverse route performance) for the 
calculation of weighted betweenness. However, the conventional definition is used for 
the calculation of node strength.

Finally, on top of regression models, the same independent variables are fed to a 
machine learning model based on the Extreme Gradient Boosting algorithm (XGBoost) 
to investigate possible non-linearities and evaluate the relative performance of the linear 
models.

Evaluation metrics

The accuracy of the models is evaluated through appropriate statistical metrics, includ-
ing mean absolute error (MAE), mean absolute percentage error (MAPE), root mean 
square error (RMSE), and normalized root mean square error (NRMSE). The models are 
developed in training sets, consisting of 75% of the initial datasets. The evaluation pro-
cess takes place in test sets comprising 25% of the total data. The metrics are analytically 
given in Eqs. (7–10).

where yi denotes the observed passenger flows at station i , ŷi the predicted flows, and y 
the average of the observed values.

Results
Application

To test the applicability and performance of the above-described methodology, the Ath-
ens, Greece, metro system is used as a testbed. The Athens metro system (Fig. 1) consists 
of three lines that intersect at key transfer stations such as Syntagma, Omonia, Monas-
tiraki, and Attiki, enabling easy transfers between them. At the time of the analysis, the 
network consisted of 60 operational stations, serving thousands of daily commuters and 
tourists, and offering access to archaeological sites, universities, and commercial areas. 
Stations like Syntagma and Monastiraki, located at the heart of the city and near major 
attractions such as the Acropolis, experience increased passenger activity. In general, the 
metro system serves as a backbone for the city’s public transportation network since it 
is integrated with other public transport modes (e.g., buses, tram), and its stations often 
serve as transit hubs, promoting easy transfers between different modes of transporta-
tion. Furthermore, the system is operational from early morning until late evening with 

(7)MAE =
n∑
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headways of about 5–10 min, while higher frequencies reaching one train per 3 min are 
encountered during peak hours.

Fare collection data are used for the estimation of total daily passenger flows and OD 
flows, while travel times between stations are extracted from Google Maps. The data 
on passenger flows and the performance of the alternative (substitute) public transport 
options correspond to a working day, representative of the system’s activity. The graph 
of the Athens metro network G, consisting of 60 nodes and 122 edges, and the graph of 
the substitute network Gs, consisting of 60 nodes and 649 edges, are presented in Fig. 2. 
Moreover, trip data for the Athens metro system are presented in Table 1 and Fig. 3. In 
Table 1, both inter-line and intra-line daily ridership is reported, while Fig. 3 illustrates 
the five stations with the largest total passenger flows and OD flows.

Total flow model

The first linear regression model, presented in Table 2, explores the association between 
total passenger flows and different centrality measures within both networks. A posi-
tive correlation between all independent variables and total passenger flows is observed, 
while the level of statistical significance of the covariates is at least 0.05 (also 0.01 in 
most cases). In addition, the standardized coefficients suggest that betweenness central-
ity in the metro network and strength in the substitute network are the most influential 
predictors of total passenger flows. According to the model, stations of higher degree, 
betweenness and closeness in the network of metro infrastructure, higher strength in 

Fig. 1  The Athens metro system (www.​urban​rail.​net/​eu/​gr/​athens/​athens.​htm. Accessed 14 July 2022)

http://www.urbanrail.net/eu/gr/athens/athens.htm
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the substitute network, as well as important stations, are expected to carry more pas-
sengers in terms of boardings, alightings, and pass-throughs. For instance, important 
stations are related to a share of total passenger flows that is 0.4% higher than that of 
regular stations. It is noted that a station is considered important, and the dummy vari-
able takes the value of 1 when at least one of the following conditions is fulfilled (0 in any 
other case):

	 i.	 The station is a transfer station between the metro and other rail networks (tram, 
suburban rail, etc.).

	 ii.	 The station is in large commercial areas.
	iii.	 The station is located near academic institutions.

Fig. 2  Graphs of the metro (left) and substitute (right) networks

Table 1  Daily ridership data for the Athens metro system

Internal Transfers Total

Line 1 Line 2 Line 3 Lines 1–2 Lines 1–3 Lines 2–3

Stations 21 17 18 2 1 1 60

OD flows 99,950 97,908 89,833 28,961 34,061 52,789 403,502

Total flows 1,964,300 2,045,332 1,918,772 – – – 5,928,404

Table 2  Total passenger flow regression model

*0.01 level of statistical significance

Variable Attribute Coefficient (standardized) p-value VIF

Intercept − 0.012 0.001*

Degree Node degree centrality within the metro 
network

0.247 (0.229) 0.008* 2.946

Betweenness Node betweenness centrality within the metro 
network

0.027 (0.311) 0.001* 3.189

Closeness Node closeness centrality within the metro 
network

0.084 (0.200) 0.014 2.630

Sub_strength Node strength within the substitute network 0.347 (0.299) 0.000* 2.509

Important 1 if a station is important, 0 else 0.004 (0.148) 0.006* 1.128

R2 0.911 Durbin-Watson statistic 1.912
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When it comes to model fit, R2 is equal to 0.911, indicating that a large amount of total 
variance is explained by the model. As for the linear model assumptions, first, there is no 
evidence of strong multicollinearity since variable inflation factors (VIF) are relatively 
low and Pearson correlation coefficients do not exceed 0.80 (Fig. 4). Moreover, the Dur-
bin-Watson statistic (1.912) indicates that there is no strong evidence of autocorrelation 
(a value near 2 indicates no autocorrelation). Furthermore, the Breusch-Pagan test sug-
gests that there is no strong evidence of heteroscedasticity (p-value = 0.06 > 0.05). Last, 
the Shapiro–Wilk test (more appropriate for small samples) shows that the errors are 
normally distributed (p-value = 0.948 > 0.05). Therefore, a linear model is indeed appro-
priate for the association of total passenger flows with centrality measures within the 
metro and substitute networks as predictors.

In addition, an XGBoost machine learning model is also developed and fed with the 
same explanatory variables, so that valuable comparisons can be made about feature 
importance and model accuracy. Tree-based models, such as XGBoost, are accepted as 
state-of-the-art for analyzing tabular data, yielding sound predictions with low compu-
tational cost (Grinsztajn et  al. 2022). As such, the XGBoost algorithm can be utilized 
as a benchmark model based on which the performance of the regression model is 
assessed. The model’s hyperparameters are set after a Grid search k-fold cross valida-
tion hyperparameter tuning (k = 5) as follows: “colsample_bytree” = 0.2, “eta” = 0.0005, 
“max_depth” = 1, “n_estimators” = 1100, and “subsample” = 0.05. F-scores, and SHAP 
values (SHapley Additive exPlanations) are used to evaluate the feature importance in 

Fig. 3  The five stations with the largest total passenger flows (left) and OD flows (right) in the Athens metro 
system

Fig. 4  Pearson correlation matrix for total flow model variables
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the XGBoost model, as depicted in Fig. 5. These values are widely used for measuring 
feature importance. Technically, the former count how many times a variable is used for 
splitting a decision tree (Chen et al. 2019), and the latter indicate the impact of the fea-
tures on individual predictions (Spadon et al. 2019). Model F-scores suggest that node 
strength in the substitute network is the most important feature in this model, followed 
by closeness and betweenness in the metro network, while SHAP values suggest that 
node strength in the substitute network and betweenness in the metro network are the 
most influential factors. These findings are rather like those of the linear model since 
metro betweenness and substitute strength are validated as two of the most critical 
model components.

The evaluation metrics of the models are presented in Table  3. According to them, 
both models demonstrate very satisfying levels of accuracy, and therefore, they can also 
be used to make predictions of total passenger flows at stations. The accuracy of the lin-
ear model, albeit lower, is comparable to XGBoost’s, providing evidence that the linear 
models are appropriate for the purpose of this study.

OD flow model

The second model explores the association between OD passenger flows and central-
ity measures within both metro and substitute networks. In this case, only departures 
and arrivals from/to metro stations are concerned, i.e., boardings and alightings. The 
model is presented in Table  4. All the explanatory variables are again positively cor-
related with the dependent variable. This means that stations with higher centrality 
measures are expected to be the origin or destination for more passengers than stations 
with lower centralities. Interestingly, only centralities within the substitute network can 
be significant determinants of OD flows (considering at least a 0.05 level of statistical 

Fig. 5  F-score feature importance (left) and SHAP values (right) of the total flow XGBoost model

Table 3  Evaluation metrics for total flow models

MAE MAPE (%) RMSE NRMSE (%)

Regression 0.002422 28.18 0.003121 18.73

XGBoost 0.002469 15.74 0.003425 19.12
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significance), along with the dummy variable of station importance, per Table 4. On the 
contrary, centralities within the metro network cannot stand as significant covariates, 
highlighting the different underlying mechanisms of this kind of passenger flows. As for 
feature importance, the standardized beta coefficients suggest that weighted between-
ness in the substitute network is by far the most influential determinant of OD flows, 
followed by strength in the same network.

The fit of this model is quite lower than the previous model’s (R2 = 0.645), indicating 
that there are additional factors, other than centrality measures, that significantly con-
tribute to OD flow generation. The assumptions of the linear model can be validated 
as follows: Low VIF values and acceptable Pearson correlation coefficients (Fig.  6) 
validate the absence of strong multicollinearity. The Durbin-Watson statistic (1.884) 
lies in an acceptable range (between 1.5 and 2.5 as a rule of thumb). There is no sta-
tistically significant evidence of heteroscedasticity based on the Breusch-Pagan test 
(p-value = 0.107 > 0.05). Last, the errors are normally distributed according to the Sha-
piro–Wilk test (p-value = 0.117 > 0.05). It can thus be inferred that a linear model asso-
ciating network centralities with OD passenger flows can be valid, but its performance 
in terms of the amount of total variance explained is relatively low due to the existence 
of other significant determinants (probably non-network-based) omitted by the model.

The corresponding XGBoost model’s hyperparameters are: “colsample_bytree” = 0.2, 
“eta” = 0.0005, “max_depth” = 1, “n_estimators” = 150, and “subsample” = 0.095. F-scores 
and SHAP values are again used to evaluate feature importance (Fig. 7). Both F-scores 
and SHAP values suggest that the weighted betweenness centrality of the stations in 
the substitute network is the most important feature, followed by strength and station 
importance. The results are similar to those of the regression, and therefore, there is evi-
dence that centrality measures within the substitute network are significant explanatory 
variables of OD passenger flows.

Finally, the evaluation metrics for the OD flow models are presented in Table 5; both 
the linear and XGBoost models demonstrate decent accuracy but are not as satisfying as 
the ones of the total flow model. The XGBoost seems to provide more accurate predic-
tions, but the linear model’s accuracy is not far from it. Both models can thus be used to 
associate centralities within the substitute network with OD flows, but it would not be 
safe to use those models for predictions.

Table 4  OD passenger flow regression model

*0.01 level of statistical significance

Variable Attribute Coefficient (standardized) p-value VIF

Intercept 0.008 0.004*

Sub_strength Node strength within the substitute network 0.330 (0.303) 0.048 2.574

Sub_
weighted_
betweenness

Node weighted betweenness centrality 
within the substitute network

0.057 (0.481) 0.003* 2.588

Important 1 if a station is important, 0 else 0.005 (0.195) 0.046 1.038

R2 0.645 Durbin-Watson statistic 1.884
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Discussion
The models developed for associating passenger flows with the centralities within the 
metro network (network of infrastructure) and the substitute network (alternative pub-
lic transport options) validate the existence of high correlations among those measures 
and highlight the potential of network-based predictive models, as first suggested by 
Luo et al. (2020). Although causation is not implied, the existence of correlation can be 
valuable regarding fast, cost-efficient, and reliable predictions during the operation of a 
metro system. In particular, measures such as node degree, betweenness and closeness 
within the metro network, and node strength in the substitute network can be appropri-
ate predictors of total passenger flows at stations (all boardings, alightings, and pass-
throughs). Moreover, node centralities within the substitute network, such as strength 
and weighted betweenness, can be used as predictors of origin–destination passenger 
flows (only boardings and alightings). Interestingly, node centralities within the metro 
network do not seem to be adequate predictors of OD flows. This finding is in line with 
the literature suggesting that conventional centralities, such as betweenness, are not 
appropriate predictors of traffic flows (Kazerani and Winter 2009a, b; Gao et al. 2013; Ye 
et al. 2016). As such, further complex network formulations need to be considered when 
searching for centralities that can be used as OD flow predictors.

Fig. 6  Pearson correlation matrix for OD flow model variables

Fig. 7  F-score feature importance (left) and SHAP values (right) of the OD flow XGBoost model

Table 5  Evaluation metrics for OD models

MAE MAPE (%) RMSE NRMSE (%)

Regression 0.004415 55.82 0.005417 42.38

XGBoost 0.004446 45.21 0.005284 34.81
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However, the results emerging from model application suggest that the case is not the 
same for both types of passenger flows when it comes to model performance. The vari-
ance of total passenger flows among metro stations can be explained to a great extent by 
centralities within metro and substitute networks. At the same time, the evaluation met-
rics for model predictive accuracy are rather satisfying and thus indicate that network-
based models can be used for predictions of total passenger flows. On the other hand, 
the amount of variance of OD flows explained by the proposed centrality-based model is 
significantly less, and the evaluation metrics are not good enough to support a satisfying 
predictive accuracy. Evidently, there are additional significant factors that affect the dis-
tribution of OD flows rather than network structure. Demographic characteristics, such 
as place of residence, work area, place of education, etc. are essential factors affecting 
travelers’ origin and destination at a micro-level, as well as population and building den-
sity, land use, etc. affect total departures and arrivals from/to metro stations at a macro-
level. For instance, He et  al. (2019) suggested that, except for network structure, land 
use, socioeconomics, and intermodal transport accessibility are also significant deter-
minants of metro ridership. As such, centrality measures cannot be solely used for OD 
flow predictions at this point, but they must be combined with other appropriate socio-
economic variables instead.

But what are the most appropriate centralities to begin with? The findings of this study 
suggest that node strength and weighted betweenness centrality within the substitute 
network can be the most appropriate predictors of OD flows among centralities within 
the metro and substitute networks. In fact, the network of alternative public transport 
options, such as bus routes, can provide valuable insight about the volumes of depar-
tures and arrivals at metro stations due to a reverse engineering association. Since bus 
route design, in terms of frequency, capacity, and coverage, has already incorporated 
determinants of travel demand, the substitute network, which accounts for alternative 
route performance, succeeds in capturing information about metro OD flows related to 
the same socio-economic determinants. This finding is in line with the literature, high-
lighting the superiority of modified centrality measures over conventional ones (Ye et al. 
2016; Senousi et al. 2022). The same is also supported by the fact that it is weighted and 
not conventional betweenness, which is significantly correlated with OD flows.

On the contrary, the findings suggest that total passenger flows can be effectively 
described by centralities within metro and substitute networks. This measure is different 
because it also includes pass-throughs among metro stations. For a better comprehen-
sion of why these are highly correlated with network structure, one can imagine total 
passenger flows in a metro network as the equivalent of liquids in a system of tubes. It 
is reasonable that those flows are influenced by the exact structure of the network itself, 
just as the flows of liquids are influenced by the structure of tubes. Hence, the strong 
association between centrality measures within the metro network and total passenger 
flows can be justified in the same way. As for the node strength within the substitute 
network, not only is it related to total passenger flows, but it is also the most important 
predictor among the centralities. A similar reverse-engineering justification, like for OD 
flows, can be proposed to explain this association.

In this study, more complex machine learning models (XGBoost) are also developed 
along with regression models to evaluate the relative performance of the latter through 
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a constructive comparison. The results suggest that both models can be used for this 
reason as well as for making predictions when appropriate. Although the accuracy of the 
XGBoost models is higher, the difference is not big enough to exclude statistical models, 
which may be more appropriate for small datasets and more convenient for researchers. 
In fact, when small datasets are concerned, more complex machine learning models can-
not unfold their full potential, and thus, statistical models can be equally reliable. How-
ever, the proposed methodology can also be scalable through more complex machine 
learning techniques.

Total passenger flows and OD flows are treated separately in this study. According to 
the results, different explanatory variables are significant for each type, and different 
model fits are encountered. This suggests that there are different mechanisms behind 
the birth of each flow type. From a disruption management perspective, there are also 
distinct implications attached to each flow type. On the one hand, rail track disruptions 
at/near metro stations would create network segmentation. That is, both the upstream 
and downstream passenger flows would be entirely disrupted and each of the new seg-
ments could not be reached by the other. Practically, a trip would be violently terminated 
at the point of disruption. Evidently, all metro passengers at the disrupted station would 
be affected by this situation since they could not board, alight, or pass through that sta-
tion. On the other hand, station platform disruptions would affect only the exact station, 
that is, only a node of the network, but the rest of the network would remain unharmed. 
On such occasions, only passengers who would be willing to board or alight at this sta-
tion would be affected. The passengers passing through the station would continue their 
trip freely since the rail would operate normally. Total passenger flows would be affected 
in the first case, but only OD passenger flows would be affected in the second case. As 
such, the determinants of each flow type must be researched separately so that predic-
tions can be customized depending on the needs of the operator.

The policy implications of this study mainly focus on ridership estimations in cases of 
disruption. Through network theory, valuable information about metro system operation 
can be effectively captured. CNT-based models can be much faster and more economi-
cal for making reliable ridership estimations. Public transport operators are expected 
to be supported by such models during daily operations management, especially when 
disruptions occur. In cases of disruptions, ridership estimates are essential for assessing 
the potential impacts of them, as well as for designing, sizing, and budgeting mitiga-
tion and contingency plans. For instance, platform disruptions at metro stations could 
be addressed by enhancing the capacity of bus networks serving the nearest operational 
stations, or rail track disruptions could be faced by bus-bridging services connecting the 
segmented parts of the metro network. The different possibilities for handling disrup-
tions highlight the importance of treating different flow types separately.

As far as study limitations are concerned, the passenger flows considered in the analy-
sis are daily, representative of a workday. Their static nature constitutes a limitation of 
this work since time-dependent dynamic data on passenger flows would further enhance 
the analysis and be expected to provide more valuable insights. The size of the available 
dataset is also a limitation, since larger datasets (corresponding to longer time periods) 
would provide safer conclusions. Last, daily data are appropriate for medium-term esti-
mations, for example, when disruptions of 1–3 days are concerned. Narrowing down the 
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temporal horizon to smaller timeslots would increase the applicability of the method, 
including short-term estimations as well.

Conclusions
In this study, network theory-based determinants of metro ridership are explored among 
centralities within the network of infrastructure (metro network) and the network of 
alternative public transport options (substitute network). For this purpose, both linear 
regression and non-parametric machine learning models are developed. Regarding metro 
ridership, total passenger flows and origin–destination flows are treated separately since 
they exhibit distinct characteristics and have different implications. According to modeling 
results, a centrality-based model can be rather accurate for total passenger flow predic-
tion, but for OD flows, the accuracy is limited. Node degree, betweenness and closeness 
centralities within the metro network, node strength within the substitute network, as well 
as a dummy variable of station importance, are significant explanatory variables of total 
passenger flows. On the other hand, node strength and weighted betweenness centrality 
within the substitute network, along with station importance, are significant covariates 
regarding the OD flow models. Metrics of feature importance indicate that node strength 
and weighted betweenness centralities in the substitute network are the most influential 
predictors of total and OD passenger flows, respectively. Furthermore, according to the 
evaluation metrics, the performance of regression models can be like the XGBoost models 
for passenger flow estimation in metro systems. The fact that only centralities within the 
substitute network are significant OD flow predictors highlights the importance of utiliz-
ing the concept of the substitute network in similar modeling efforts. In addition, the fact 
that different variables are found to be significant for each passenger flow type indicates 
different patterns and validates the need for separate handling. The findings of this study 
can facilitate public transport operators when fast, cost-efficient, and reliable ridership 
estimations in metro systems are needed, especially in cases of disruptions. The proposed 
methodology is optimized for ridership estimations regarding both rail track and platform 
disruptions. For future research, the association between public transport ridership and 
additional network theory measures should be explored to discover the most appropriate 
network-based ridership predictors. Network-based predictive models are still at an early 
stage, and thus, further research in the field is necessary. Dynamic travel demand data, as 
well as data from different metro systems, should also be utilized for the calibration and 
enhancement of the proposed methodology.
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