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Abstract 

Tobacco use is the leading cause of preventable deaths in developed countries. Many 
interventions and policies have been implemented to reduce the levels of smoking 
but these policies rarely rely on models that capture the full complexity of the phe-
nomenon. For instance, one feature usually neglected is the long-term effect of social 
contagion, although empirical research shows that this is a key driver of both tobacco 
initiation and cessation. One reason why social contagion is often dismissed 
is that existing models of smoking dynamics tend to be based on ordinary differential 
equation (ODE), which are not fit to study the impact of network effects on smoking 
dynamics. These models are also not flexible enough to consider all the interactions 
between individuals that may lead to initiation or cessation. To address this issue, we 
develop an agent-based model (ABM) that captures the complexity of social conta-
gion in smoking dynamics. We validate our model with real-world data on historical 
prevalence of tobacco use in the US and UK. Importantly, our ABM follows empiri-
cal evidence and allows for both initiation and cessation to be either spontaneous 
or a consequence of social contagion. Additionally, we explore in detail the effect 
of the underlying network topology on smoking dynamics. We achieve this by testing 
our ABM on six different networks, both synthetic and real-world, including a fully-
connected network to mimic ODE models. Our results suggest that a fully-connected 
network is not well-suited to replicate real data, highlighting the need for network 
models of smoking dynamics. Moreover, we show that when a real network is not avail-
able, good alternatives are networks generated by the Lancichinetti–Fortunato–Radic-
chi and Erdős–Rényi algorithms. Finally, we argue that, in light of these results, our ABM 
can be used to better study the long-term effects of tobacco control policies.

Keywords: Agent-based model, Smoking dynamics, Social contagion, Tobacco model, 
Networks

Introduction
Smoking is one of the leading preventable causes of death, disability and disease across 
the world (US Department of Health and Human Services and others 2014, 2020; Office 
for National Statistics 2019) and it is one of the most significant avoidable hazard factors 
for cancer (Banks et al. 2015) and respiratory diseases (Ferkol and Schraufnagel 2014). 
Not only is smoking a global health burden, but it is also an economic burden, which 
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significantly outweighs the economic benefits from tobacco production and sales (Drope 
et al. 2018).

Acknowledging the need for active efforts on tobacco control, in 2005 182 coun-
tries ratified the first international public health treaty, the WHO Framework Conven-
tion on Tobacco Control (FCTC) (World Health Organization and others 2004). This 
involved cigarette taxation, smoke-free zones, public media campaigns (Vallone et  al. 
2009), restrictions on advertisement for cigarettes (Gilpin and Pierce 1997; Rose et al. 
2013), health warnings, cessation support (Brown et al. 2014) and control on access to 
tobacco products (Millett et al. 2011; Schneider et al. 2011). Effective implementation of 
such tobacco control policies has decreased deaths, extended both the lifespan and life 
expectancy of the population (van Meijgaard and Fielding 2012; Holford et al. 2014), and 
is also associated with a predicted decrease in healthcare expenditure (Lightwood and 
Glantz 2016). However, despite the success of these tobacco control policies, the rate of 
decline of smoking prevalence has slowed down, and the world’s economies still spend 
more than one trillion USD per year on smoking-related health expenditures and loss of 
productivity (Acharya et al. 2016; Goodchild et al. 2018).

An important factor that is commonly overlooked by tobacco-control policy making 
is the long-term effect of social contagion on both smoking levels and socio-economic 
inequalities, especially given that the latter can be unexpectedly exacerbated by policies 
that only optimise short-term effects (Caryl et al. 2021).

In fact, despite the large body of evidence that suggests that tobacco initiation and ces-
sation largely depend on social ties (Christakis and Fowler 2008; Blok et al. 2017; Ennett 
et al. 2008; Go et al. 2010; Mercken et al. 2009), there is currently no model that fully 
captures the complexity of social contagion in smoking dynamics.

Consequently, such a model is crucially needed to develop policies that not only accu-
rately take into account long-term effects, but also exploit social contagion to enhance 
tobacco control.

This is not to say models of social contagion for smoking dynamics do not exist. In 
fact, many models have been proposed in which smoking is compared to a disease 
spreading in a population due to its contagion-like behaviour (Sharomi and Gumel 2008; 
Zaman 2011a, b; Zaman et  al. 2017). This similarity allows the use of tools from epi-
demiology to model the propagation of smoking behaviour, leading most models to be 
variations of compartmental models such as SIR and SIER that use ordinary differential 
equations (ODEs) to describe the smoking dynamics. However, epidemiology has suc-
cessfully moved on to the more flexible agent-based models (ABM) (Thurner et al. 2020; 
Aleta et  al. 2022; Hunter et  al. 2018), but tobacco control has not. Therefore, existing 
models of social contagion for tobacco control cannot accurately reproduce the empiri-
cally observed complexity of this phenomenon, due to the following reasons.

First, most of these models do not account for the topology of the social ties. When 
modelling any type of social contagion, it is known that the social interaction between 
individuals plays an important role (Hodas and Lerman 2014; Shin 2022). Therefore 
such models can only be accurate if they account for the underlying social network of 
the population. Even though compartmental models try to incorporate social inter-
actions between groups of individuals, there is no network structure involved. To 
reduce the complexity and analytical tractability, these models ignore the structure 



Page 3 of 21Prabhakaran et al. Applied Network Science            (2023) 8:54  

of the social ties and instead assume a homogeneous well-mixed population, which 
means that any individual can infect others in the system (Anderson et al. 1992; Ker-
mack and McKendrick 1927, 1932, 1933). This means that vital information from the 
actual social network is not taken into consideration (Moore and Newman 2000).

Second, when these models do consider network structure, they arbitrarily fix the 
structure. The models of smoking behaviour which consider the structure of these 
social ties are agent-based models (Chao et  al. 2015; Schaefer et  al. 2012, 2013). In 
these cases, the topology is usually arbitrarily fixed as a scale-free network or on small 
scale school-network. Since real-world social contact networks of adults can be very 
different from synthetic and school networks, there is a need for careful characterisa-
tion of the smoking behaviour of these models on different network topologies.

Finally, even though empirical research shows that smoking initiation and cessa-
tion largely depend on social ties (Christakis and Fowler 2008), not all of these inter-
actions have been considered for modelling the spread of smoking. Although one of 
the first theoretical studies which modelled smoking cessation advocated the use of 
interactions between smokers and quitters (Castillo-Garsow et al. 1997), interactions 
which lead to smoking cessation and relapse are still not used (Schaefer et al. 2013). 
Consequently, in these models smoking cessation and relapse are usually determined 
only by spontaneous terms, which causes an underestimation of social contagion 
effects (Sharomi and Gumel 2008; Zaman 2011a, b; Zaman et al. 2017). As previously 
discussed, this underestimation can lead to unintended consequences of tobacco con-
trol policies such as an increase in socio-economic inequalities.

A closely related field to the spread of smoking behaviour is opinion dynam-
ics, wherein mathematical and computational models are used to study the spread 
of opinions in a population by considering social influence. Like opinions, smok-
ing behaviour can be influenced by the attitudes and behaviours of others, such as 
peers, family members, and by external influences like media (Mueller and Tan 2018; 
Colaiori and Castellano 2015). However, unlike opinions, smoking is a health hazard. 
This makes the spread of the smoking behaviour also similar to that of an infectious 
disease where instead of the infection, smoking behaviour is the contagion. Therefore, 
modelling smoking behaviour can be seen through a hybrid lens of epidemiology and 
opinion dynamics. Such an approach will help us combine the opinion dynamics per-
spective which considers the social and psychological factors that influence the adop-
tion and maintenance of smoking behaviour (such as peer pressure, familial attitude 
towards towards smoking, etc.) and the epidemiological perspective capturing the 
mechanisms contributing to the spread of smoking-related health hazards.

Over the years, the effect of social networks on individual and population behaviour 
have been studied in both opinion dynamics and epidemiology (Rahmandad and Ster-
man 2008). Multiple approaches have been designed to study the spread of diseases 
and opinion according to the situation and amount of information available. More 
recently, these models have been used to study a variety of social contagions includ-
ing obesity (Hill et al. 2010a), emotions (Hill et al. 2010b), alcoholism (Lee et al. 2010; 
Sharma and Samanta 2015), substance abuse (White and Comiskey 2007), behaviour 
change (Badham et al. 2021), and information spreading (Zhou et al. 2020), to name 
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a few. Due to the similarity of the spread of smoking behaviour to other social conta-
gions, we can use insights from these fields to develop models.

To address these issues with existing smoking dynamics models, we develop an agent-
based model (ABM). ABMs are a class of computational techniques which rely on 
dynamical interactions between autonomous agents to understand the emerging prop-
erties of a complex system due to these local interactions. We use ABMs for the follow-
ing reasons:

First, unlike the ODE models, ABMs can easily be extended to multiple theoretical 
and real-world networks. This versatile nature allows ABMs to be applied to different 
population structures and more realistic models of the system. Therefore, the effect 
of network structure on the smoking dynamics can easily be studied by changing the 
underlying network topology. Consequently, we can characterise the dynamics of smok-
ing behaviour in multiple different network topologies.

Second, interactions between agents can easily be incorporated into ABMs without 
significantly increasing the complexity of the model. Conversely, when multiple interac-
tions are considered in an ODE model, the model becomes too complex to be solved 
analytically. By constructing ODE models which are not solvable (or ones in which the 
solutions are too complex and lengthy), it becomes difficult to validate and analyse the 
nature of the solutions analytically. Instead, such ODE systems must be solved using 
numerical methods to approximate the solutions.

In our ABM for smoking, we include three state change processes: smoking initiation, 
cessation and relapse. Each of these processes can occur due to both interactions and 
spontaneously. This accounts for the multiple possible interactions which can lead to a 
change in smoking behaviour.

Finally, ABMs are flexible enough to become effective test-beds for developing new 
policies. One of the main applications of studying contagion (both infectious diseases 
and social contagion) is to develop strategies to contain them. Effective strategies and 
interventions may prevent smoking initiation, motivate smokers to quit, and stop for-
mer smokers from relapsing. Due to the socially contagious nature of smoking, we can 
potentially use network-based strategies developed from studies on infectious diseases 
and other social contagions.

First, we develop an agent-based model, which considers multiple possible interac-
tions along with spontaneous terms to study the spread of smoking. Our model can be 
used to develop network-based intervention strategies and policies for tobacco control. 
Furthermore, we show the robustness of our ABMs by comparing the dynamics against a 
traditional ODE model and as expected, our results suggest that our ABM on a fully con-
nected network and the equivalent ODE model provide the same results. Additionally, 
we show that ABMs on fully connected networks and ODE models should not be used 
to model smoking behaviour as they replicate the real-world data with poor accuracy 
compared to the other networks.

Next, we explore the effect of the underlying network topology on smoking dynam-
ics. We find that the underlying network structure affects smoking dynamics consider-
ably. However, synthetic networks with the same average degree reproduced the historic 
data and showed similar characteristics as that of the real-world networks. Specifically, 
we show that Lancichinetti–Fortunato–Radicchi benchmark networks and random 
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networks can be used to develop intervention strategies when complete information on 
the underlying network topology of a local population is not available.

Methods
This section describes the model structure, data, and the networks used, along with the 
modelling choices involved in developing the ABM for smoking behaviour.

We highlighted the need for a tobacco control model to incorporate both spontaneous 
and interaction terms, as well as to consider appropriate network topologies. To achieve 
this, we use a synthetic population of n (please note the use of small case n, since N will 
be used to denote never-smokers) agents in an undirected and unweighted network G. 
To show the effects of the network topology, we make the agents interact on six different 
networks (described later in the section) and compare the observed dynamics.

Description of the agent‑based model

In our model, each agent can be in one of the following smoking states: never-smoker 
(N), smoker (S) or quitter (Q). An agent is a never-smoker if they have never smoked 
before, while an agent who smokes any tobacco product daily, or occasionally, falls into 
the smoker state. Finally, if a smoker quits smoking even temporarily, they are labelled a 
quitter. We initiate the agents into each of the above states randomly. For a visual repre-
sentation of the model, please refer to Fig. 1.

To make models more realistic over long time periods, epidemiological models usually 
include vital dynamics. Traditionally, this is done by including constant mortality and 
birth rates in the equations. In network-based models, a constant birth rate and mortal-
ity rate can lead to older agents having a higher number of social contacts, thus increas-
ing their influence on other agents. However, in reality, the number of social connections 

Fig. 1 The figure shows the schematic representation of the state change processes involved in the ABM. 
The interaction parameters are represented by the red arrows, while the black arrows show the spontaneous 
terms in the schematic. All three state-change processes are shown in the figure. First, an N-agent can initiate 
smoking spontaneously ( δN→S ) or due to the interaction with an S-agent ( βN,S→S,S ). Similarly, an S-agent 
can quit spontaneously ( δS→Q ) or due to interaction with other non-smoker agents (Q-agent: βS,Q→Q,Q or 
N-agent: βS,N→Q,N ). Like the other processes, Q-agents relapse into smoking spontaneously ( δQ→S ) or due to 
interaction ( βQ,S→S,S ) with an S-agent
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does not increase with age but instead peaks in the mid-twenties and then decreases 
with age (Bhattacharya et al. 2016). However, tackling these problems would significantly 
increase the complexity of the model since the model will have to include age-dependent 
mortality and birth rates, and the network generation process will have to be adapted to 
ensure that the network retains its properties while adding and removing agents. Hence, 
we do not include vital dynamics in the model and run our experiments in time frames 
where the vital dynamics can be ignored. We calibrate and validate our model in time 
periods of less than 30 years to minimise the effect of vital dynamics.

State change processes

We incorporate three main processes into the model: smoking initiation, smoking ces-
sation and relapse into smoking. The three state change processes involve interaction-
based state changes as well as spontaneous state transitions. We assume that each 
exposure to an agent with a different smoking status is independent of the previous 
exposure. We then use a binomial approximation to compound the effect of multiple 
independent interactions on one agent simultaneously to calculate the probability of 
state change. In Additional file 1: section S1 Appendix, we provide a detailed description 
and derivation of the expressions used.

Smoking initiation
First and foremost, we define the transition of a never-smoker into a smoker as smok-

ing initiation. In the model, an N-agent can initiate smoking in two ways. First, through 
a random probability δN→S depicting various external influences like advertisements, 
movies, and the presence of tobacco shops influencing an N-agent to pick up smoking. 
Second, through interactions with other S-agents in its network neighbourhood with a 
probability βN ,S→S,S . We use the binomial approximation mentioned before to calculate 
the expression in (1), which gives the probability of smoking initiation due to interaction.

Smoking cessation
Following smoking initiation, we define the process of an S-agent quitting smoking as 

smoking cessation. Similar to smoking initiation, smoking cessation can also happen in 
two ways. First, due to various external influences like mass-media campaigns, manda-
tory warning labels on cigarette boxes, and higher taxes. This external influence is incor-
porated into the model through the spontaneous term δS→Q . Second, due to interactions 
with non-smokers. However, both Q-agents as well as N-agents fall under the non-
smoker category. Therefore unlike the other state change processes, interactions with 
both the other states can lead to smoking cessation. βS,N→Q,N represents the probability 
of cessation of an S-agent due to N-agents in its network neighbourhood. At the same 
time, the probability of cessation due to other Q-agents in its network neighbourhood is 
given by βS,Q→Q,Q . Subsequently, the probability of smoking cessation due to interaction 
of an S-agent with multiple Q-agents is given by (2) while (3) gives the same probability 
but due to interaction with multiple N-agents.

(1)PN ,S→S,S =
nS

n
(1− (1− βN ,S→S,S)

nS )
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Smoking relapse
Finally, we define picking up smoking after a period of abstinence as a smoking relapse. 

Smoking relapse is similar to smoking initiation, except that the Q-agent gets influenced 
instead of an N-agent. Similar to the other two cases, smoking relapse can happen in 
two ways. δQ→S represents the probability of a Q-agent relapse into smoking due to 
external influence. Additionally, βQ,S→S,S represents the probability of Q-agent relapsing 
into smoking due to interaction with its immediate network-neighbour S-agents. Here, 
like the smoking initiation, only interactions with other S-agents can cause a Q-agent 
to relapse into smoking. The probability of Q-agent relapsing due to its interaction with 
multiple S-agents is shown in (4).

Experiment settings

We run simulations with a total population of n = 1000 agents. These agents are con-
nected with each other based on the pre-defined network structure. To understand 
how this pre-defined network structure affects smoking behaviour, we vary the net-
work structure and study the smoking dynamics observed in each network. This pro-
cess involves comparing the model on each network with the empirically observed data. 
Along with this comparison, we also identify the combination of parameter values that 
best fit observed data and how this combination changes with the underlying network. 
In addition, we also compare the results of the ABM on different networks with the ODE 
analogue (described in Additional file 1: section S2 Appendix) of the ABM.

In the ABM, each time step corresponds to a year in the real world. At every timestep, 
agents follow a three-step procedure sequentially to avoid cascading agent states. First, 
each agent identifies a potential new state it can transition to based on the agent’s state 
at that time step. Next, each agent calculates the probability of transitioning into the 
identified new state. Finally, each agent simultaneously transitions into the new state 
based on the calculated probability. The sequential procedure above removes the chance 
of cascading agent states in a single step. That is, an N-agent can never change into an 
S-agent and then a Q-agent in the same time step.

Due to the stochastic nature of ABMs, we iterate each simulation multiple times. We 
iterate each simulation ten times during the parameter sweeps for calibrating the model 
due to limits on computational resources. However, we iterate the best-fit combina-
tion of parameters 1000 times to validate the model, thus including possibilities of rare 
events.

For every simulation, a new network is generated, that is, each simulation has a dif-
ferent realisation of the network structure. We then initiate s0% and q0% (based on the 

(2)PS,Q→Q,Q =
nQ

n
(1− (1− βS,Q→Q,Q)

nQ)

(3)PS,N→Q,N =
nN

n
(1− (1− βS,N→Q,N )

nN )

(4)PQ,S→S,S =
nS

n
(1− (1− βQ,S→S,S)

nS )
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first data-point in the empirical data) of the total 1000 agents randomly as S-agents and 
Q-agents, respectively, on the generated network.

The model was built using the modular framework Mesa in Python (Kazil et al. 2020).
Networks
We have run simulations of our ABM on six different network topologies: fully-con-

nected, scale-free (Barabási and Albert 1999), random (Erdős et al. 1960), small world 
(Watts and Strogatz 1998), Lancichinetti–Fortunato–Radicchi benchmark (Lancichi-
netti et al. 2008) and a real-world network from the Framingham heart study (FHS) 
data (Hill et al. 2010a). These networks were chosen due to their unique properties or 
ubiquitous nature in literature. The scale-free network, random network and small-
world networks are standard network topologies in network sciences that are used for 
spreading phenomenons; hence, we test our model on these networks too. Details of 
each of the networks used are mentioned below. 

1. Fully-connected: The fully-connected network (FC) assumes that every agent is con-
nected to every other agent in the system. This is to replicate the mean-field or per-
fect-mixing approximation seen in ODE models. However, real-world networks are 
sparse and seldom fully-connected. Therefore, we generate and explore other net-
work topologies.

2. Random network: Similar to the FC network, every node in a random network tries 
to form an edge with every other node, but with a probability per . The situation when 
per = 1 corresponds to a FC network. We use the Erdős–Rényi (ER) model (Erdős 
et al. 1960) to generate random networks for our experiments.

3. Scale-free network: These are networks where the degree distribution follows a 
power law. Many real-world networks have been reported to follow the power-law 
distribution (Gamermann et al. 2019; Albert et al. 1999). To model this we use the 
Barabási–Albert (BA) network model (Barabási and Albert 1999).

4. Small-world network (SW): This is a network which is highly clustered with small 
average shortest paths. These networks are known for local cliques and random 
long-ranged connections. We use the Watts–Strogatz model to generate the network 
(Watts and Strogatz 1998).

5. Lancichinetti–Fortunato–Radicchi (LFR) benchmark network: The LFR network 
encompasses properties of a real-world network like a heterogeneous distribution of 
degrees and size of communities (Lancichinetti et al. 2008). We use an LFR network 
due to its unique property of communities embedded into it during the network gen-
erations process.

6. Framingham Heart Study (FHS) network: We have also used a real-world network 
based on the Framingham heart study (FHS) (Dawber 2013) data along with the 
synthetic networks above. The FHS was a a longitudinal cohort-based study aimed 
explicitly at studying cardiovascular diseases and identifying the associated factors. 
However, due to the wide range of documented associated factors, it has become 
a one-of-a-kind data set on which even detailed network analysis has been carried 
out. We used a configuration model to generate synthetic networks with the same 
degree distribution observed in the FHS (Hill et al. 2010a). Unlike the SF and LFR 
networks, the configuration model allows an arbitrary distribution of degrees and is 
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therefore not restricted to the power-law distribution (Newman 2003). We estimate 
two parameters for our model based on the results from the FHS data-related net-
work analysis (Christakis and Fowler 2008).

Each of the networks mentioned above has multiple parameters associated with its gen-
eration. We chose these parameters involved in the network generation process such 
that their average degree is close to the empirically observed one. Another study which 
does an extensive network analysis using the FHS and tries to model a similar social con-
tagion points out the range of observed average degrees over multiple studies (Hill et al. 
2010a). The indicated values of average degree over different years were in the range 
between 2.8 and 5.3.

Other studies on the composition of social networks in other countries have observed 
an average degree of 4.45 (Chao et al. 2015). However, the network involved in the spread 
of smoking behaviour mainly consists of close family members and friends (Christakis 
and Fowler 2008). Therefore, the number of individuals potentially influencing such 
behaviour will be less than the average degree of a standard social network. For this rea-
son, we choose the average degree from exam 6 of FHS, �k� = 3 for the generation of 
networks in our model. When we are not able to use the value of �k� = 3 due to algorith-
mic restrictions (like in the case of small-world network) we use the value of �k� = 4.

The parameter values for each network and the average expected degree are shown in 
Table 1 in Additional file 1: S4 Appendix.

Data

To calibrate and validate the model, we use publicly available smoker and quitter preva-
lence data from the US and UK. The UK data-set (Office for National Statistics 2019) has 
normalised smoker population and quit ratio (defined as the proportion of smokers who 
have quit smoking) from 1974 to 2019. Bi-yearly data points are available until 2000, and 
yearly data from then on. We estimate the quitter population from the quit ratio and use 
it to calibrate the model.

In the case of the US, we used the data available in the official Surgeon General’s 
report on tobacco (Office of United States Public Health Service and others 2020). This 
document reports the prevalence of smokers (male and female separately) and quitters 
(again, male and female separately) between the years 1965 and 2015 (data points every 
five years).

Additionally, we impose the values of two parameters ( βN ,S→S,S and βS,Q→Q,Q ) of 
the model by estimating them from empirical research (Christakis and Fowler 2008). 
The Additional file  1: section S3 Appendix describes the steps taken to estimate the 
parameters.

Calibration and validation

To calibrate and validate the model, we use a four-step process. To limit the effects of not 
including vital dynamics, we calibrate and validate the model on time frames of 25–30 
years. Then, we split the time-stamped data into calibration and validation segments in 
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UK and US scenarios. We use data from 1974 to 2002 (16 data points) in the calibration 
segment and the remaining in the validation segment in the UK data. Similarly, in the 
US, we use the data from 1965 to 1990 to calibrate the model and the regaining to vali-
date it.

Step 1: coarse-grained calibration
To identify the combinations of parameter values which best mimic the empirical 

prevalence data, we run a coarse-grained parameter sweep on all the uncertain param-
eters of the ABM. In this case, this parameter sweep was carried out for each parameter 
for ten logarithmically split values between 0 and 1. Further, we iterated each parameter 
combination ten times to reduce the effects of randomness. We then use these simula-
tion results to identify the range of parameters best fitting the calibration data (top 100 
best-fit parameter combinations). Since we have the population sizes time-series data, 
we use the sum of the Mean Square Error (MSE) of both the S and Q trends to identify 
the best fitting parameters.

Step 2: sensitivity analysis
After identifying the set of parameters that minimise the MSE, we perform a sensitiv-

ity analysis on these values to determine the relative influence of each model param-
eter on the smoking dynamics. This involves individually varying each parameter across 
its range while holding other parameters constant and evaluating their impacts on the 
simulated smoker and quitter prevalence curves over time. Parameters that do not sig-
nificantly alter the dynamics are identified as potential candidates for removal, pending 
further testing. The sensitivity analysis aids in interpreting the effects of each parameter 
and determining options for simplifying the model were supported by the numerical 
experiments. Details on the sensitivity analysis results, including plots of varying each 
parameter and discussion of their relative impacts on prevalence, are available in Addi-
tional file 1: Section S7 Appendix.

Step 3: fine-grained calibration
To improve the estimated parameters, we re-calibrate the model through a finer 

grained parameter sweep on each parameter. In this case, this parameter sweep was car-
ried out for each parameter for five equally split values between the range of values iden-
tified in step 1. Just as in step 1, we iterate each of the simulations ten times. We use the 
range of values identified for each parameter from the coarse-grained calibration to run 
the fine-grained parameter sweep.

Step 4: validation
We validate the calibrated model by comparing the simulated results with the valida-

tion data for both US and the UK. Since we used the sum of MSE of the smokers and 
quitters for calibrating the model, we also use the same sum of MSEs for validation. 
Along with the MSEs, we also use the unique crossover point of the historical trends of 
the smoker and quitters populations to improve the validation process.

Results
In this section, we study the ABM for smoking and show its characteristics. First, we 
compare the ABM with all possible interactions on different networks. Through this 
comparison, we demonstrate the importance of networks for modelling the spread of 
smoking behaviour. We further demonstrate the ease with which networks can be 



Page 11 of 21Prabhakaran et al. Applied Network Science            (2023) 8:54  

incorporated into ABMs and therefore advocate using them for modelling such a spread-
ing phenomenon. Next, we compare the ABM with an ODE analogue to demonstrate 
the equivalence of the ABM on an FC network and a traditional ODE model. Finally, 
we calibrate and validate the model on empirical data observed in the US and the UK. 
Through the calibration and validation process, we emphasise the need to incorporate 
networks into such models, which can potentially be used to develop policies. Next, we 
show that the real-world network (FHS) replicates the empirical data observed in the US 
and the UK. In addition, we show that in practical situations, when complete informa-
tion on the actual underlying network is not available, synthetic networks with similar 
average degrees can be used to develop models. On the other hand, we show that ABMs 
on FC networks and, therefore, ODE models should not be used for modelling smoking 
and similar behavioural contagion.

We examine the evolution of total prevalence of smokers (S) and quitters (Q) for each 
simulation setup. To compare and quantify the temporal dynamics of the populations, 
we calculate the sum of MSE of the S and Q curves. Since the S and Q curves cross each 
other in both the UK and US data, we study the unique crossover time-point for the 
ABM and compare it to the one from empirical data.

Population dynamics in ABMs on networks and its ODE analogue

Figure  2 shows the population dynamics observed from simulations of the ABM for 
smoking (on all six network topologies) and an ODE analogue (described in Additional 
file 1: section S2 Appendix) with the same parameter values. We run the ABM and ODE 
models to simulate a period of 30 years. This time frame is similar to what we used to 
calibrate the models on US and UK data. We use this observed population dynamics to 
compare the ABM between different networks and the ABM on these networks with the 
ODE model.

Our results suggest that the network structure affects the population dynamics of 
smokers and quitters for the same experimental conditions. Specifically, when the net-
work structure is changed from FC to any other network, the dynamics observed change 
drastically. In addition, when the average degree of the networks (other than in the FC 
network) is kept at similar values (close to �K � = 3 ), we observe that the deviation in 

Fig. 2 Dynamics of the S and Q populations from the ODE model and ABM on networks (FC, BA, ER, FHS, 
LFR and SW networks). We used the best-fit parameters from the coarse-grained parameter sweep of the FHS 
network ( βQ,S→S,S ,βS,N→Q,N , δN→S , δS→Q , δQ→S = 0.01334, 0.05623, 1e-05, 4e-05, 1e-05) for these simulations. 
The black dotted lines in both the plots represent the ODE model results for the respective population for the 
same parameters mentioned above. The ODE model and ABM on FC show similar temporal dynamics, while 
the dynamics change drastically when the network structure moves away from FC
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the observed population dynamics is minor between different networks. This devia-
tion being minor suggests that the average degree is vital in the dynamics of smoking 
behaviour.

The ABM on a fully-connected network follows the same qualitative trajectory as the 
ODE model. Statistical equivalence of a differential equation model, which uses a mean-
field approximation to an ABM on a fully-connected network, has been shown before, 
and our model is consistent with this result (Rahmandad and Sterman 2008). This sug-
gests that a simple traditional ODE model can be used to model smoking behaviour 
and other similar social contagions only when the local population under study follows 
a fully-connected network topology. However, real-world networks are sparse and not 
fully-connected. So ABM on FC, and by extension ODE models, should not be used to 
model smoking behaviour and other similar behavioural contagion processes.

Validation

When the parameters that best captured the historical trend for the ABM on each net-
work were observed, the variation in the MSE values was small. Therefore to make the 
parameter selection process more robust, we chose 100 combinations that gave the min-
imum MSE values instead of choosing only the minimum MSE parameter combination. 
Additionally, we imposed a condition that each independent parameter in this combina-
tion had to fall between the first and third quartile of its values observed in the mini-
mum 100 (the values which fall inside the box in Fig. 5). We then sample this new set of 
parameters 1000 times to validate the model.

To validate the calibrated model, we compare the evolution of simulated population 
sizes with the historical data. Since we calibrate the model using the MSE values of S 
and Q curves, we also use the same for validation. For validation, we use periods of the 
empirical data, which were not used to calibrate the model (validation data, periods: 
2003–2019 for the UK and 1995–2015 for the USA).

Case 1: UK

Figure  3 shows the distribution of MSE values, crossover points and the population 
dynamics of 1000 iterations of the simulations using the best-fit parameters for each net-
work in the UK. To compare each of these MSE distributions, independent two-sample 
t-tests were carried out. Specifically, we carried out t-tests between the MSE distribu-
tions for every pair of networks. The results demonstrate that the fully-connected (FC) 
network is significantly different from all other networks, with p values of 0 versus the 
alternatives. This aligns with the poor performance of FC observed during validation. 
On the other hand, the MSE values for the empirical FHS network and ER network are 
the most similar, with a p value of 0.049. The BA network showed no significant dif-
ference compared to LFR and SW networks, with p values of 0.3 and 0.5 respectively. 
However, all other pairs of networks exhibit highly significant differences in their MSE 
distributions, with p values of 0.

The distributions of crossover points in Figs. 3 and 4 (row 2) show the time steps at 
which the simulated smoker and quitter curves intersect over the 1000 runs (if there 
is a crossover) for each network topology. The width of these distributions illustrates 
the variability in when the crossover occurs between different iterations of the model 
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parameters. The range of crossover points observed in the distribution always contains 
the actual crossover point observed in the historic trend. However, the number of times 
the crossover happens are very different when the underlying network is changed. The 
S and Q curves cross over 485, 822, 915, 912, 802, 836 times for FC, BA, ER, FHS, LFR 
and SW respectively. The FC network both gives a higher variability in the crossover 
point distributions and a lower number of successful crossovers, while the ER gives the 
highest number of successful crossovers. The third row in Fig. 3 shows the mean simu-
lated population curves over time for smokers and quitters, along with the 95% confi-
dence interval (CI) bounds. The CI illustrates the range of dynamics observed across the 
1000 iterations of the best-fit model parameters for each network. Additionally, the lines 
with the ’+’ marker depict the actual historical smoking prevalence data from the UK for 
comparison to the model results. From the difference in MSE values and the variability 
in the crossover-points we can conclude that the network structure does matter when 
modelling the smoking behaviour. The real-world FHS network and the ER network rep-
licate the historic trend observed very well and also has the highest number of successful 
crossovers.

Fig. 3 The figure shows simulated characteristics and population plots from 1000 runs of the ABM for the 
best-fit parameters on each network for the UK. The bars in the first row represent the MSE value (sum of S 
and Q) of the ABM with the validation data, the bars in the second row show the crossover point between 
the smoker and quitter populations, and the third row shows the mean population value with a 95% 
confidence interval (CI) around the curve, obtained from 1000 simulation runs. The green crosseson the 
second row on the x-axis represent the actual crossover point in the empirical data. The black bars show 
the number of times the S and Q curves do not cross each other. The third row shows the mean simulated 
population curves over time for smokers (S) and quitters (Q) from 1000 runs, with the shaded areas indicating 
the 95% CI. The lines with the marker + indicate the actual historical prevalence data. The grey dotted line, 
dividing the plot indicates the time-step till which the model was calibrated. Among the six networks, 
we see that ER (MSE mean = 0.01984, SD = 0.00069) and the FHS (MSE mean = 0.01998, SD = 0.00071) 
network reproduces the data most accurately. The BA (MSE mean = 0.02076, SD = 0.00104), SW (MSE mean 
= 0.02081, SD = 0.00135) and LFR (MSE mean = 0.02082, SD = 0.00114) are very similar to each other in 
terms how good they replicate the data. While the ABM on FC network (MSE mean = 0.02617, SD = 0.00226) 
provides the worst fit for the validation data
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For the spread of smoking behaviour, the influence of other individuals is only sub-
stantial when they are a close family member or a close friend (Christakis and Fowler 
2008). This limits the average degree of the required network for the spread of smoking 

Fig. 4 The figure shows simulated characteristics and population plots from 1000 runs of the ABM for the 
best-fit parameters on each network for the US. The bars in the first row represent the MSE value (sum of S 
and Q) of ABM with the validation data, the bars in the second row show the crossover point, and the third 
row shows the mean population plot with a 95% CI. The green crosses on the second row on the x-axis 
represent the actual crossover point in the empirical data. The black bars show the number of times the S and 
Q curves did not cross each other. The third row shows the mean simulated population curves over time for 
smokers (S) and quitters (Q) from 1000 runs, with the shaded areas indicating the 95% CI. The lines with the 
marker + indicate the actual historical prevalence data. The grey dotted line, dividing the plot indicates the 
time-step till which the model was calibrated. Amongst the six networks, we see that the ABM on the FHS 
network reproduces the data most accurately (MSE mean = 0.01048, SD = 0.00053). The LFR (MSE mean = 
0.01102, SD = 0.00091), BA (MSE mean = 0.0114, SD = 0.0013) and SW (MSE mean = 0.01151, SD = 0.0007) 
are again very similar to each other in terms how good it replicates the data. The ER network (MSE mean = 
0.0124, SD = 0.00175) closely follows all the networks except FC. While the ABM on FC network provides the 
worst fit for the validation data FC (MSE mean = 0.01878, SD = 0.00622)

Fig. 5 Box plots representing the range of values for each parameter in the 100 simulations that best fit the 
calibration data for each network. The green crosses in each box show the mean value of the parameters. 
From left to right, we have the FC (red), BA (light blue), ER (yellow), FHS (dark blue), LFR (purple) and SW 
(orange) networks for each plot
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behaviour. This network will have a much lower average degree than a standard social 
network. In such situations, the degree distribution of the ER network can approximate 
real-world ones, such as that of the FHS network. This can be seen in our results, the ER 
and FHS network best replicate the validation data out of the six networks. The LFR and 
SW networks also generate low MSEs. This trend is seen in the number of successful 
crossovers as well. Following the MSE distributions, the FHS and ER also gives very high 
successful crossovers, while BA, LFR and SW give similar values of successful crosso-
vers. Additionally, the ABM on FC networks gives the worst fit to the validation data and 
the least number of successful crossovers showing that the ABM on FC networks and, by 
extension, ODE models should not be used to model smoking and similar behavioural 
contagion. We can conclude that ABM on the ER network can be potentially used to 
model smoking behaviour when information on real-world network is not available.

Additional file 1: section S6 Appendix gives a detailed analysis of the networks used 
for the simulations.

Case 2: US

Figure  4 shows the distribution of MSE values, crossover points and the population 
dynamics for the ABM over 1000 iterations using the best-fit parameters calibrated 
with the US data. As in the case of the UK, we also carried out independent two-sample 
t-tests for MSE distributions between each network in the US. However, there was a sig-
nificant difference between the ABM on FHS and all other networks.

Even though the distribution of MSE values were significantly different, the average 
MSE values of the ABM on each of the networks were lower than that of the ABM on FC 
and very close to each other. The third row in Fig. 4 shows the mean simulated popula-
tion curves over time for smokers and quitters, along with the 95% confidence interval 
(CI) bounds. We find that the ABM calibrated on the FHS network provides the overall 
best fit to the empirical smoking data for both the US. However, the models using the 
LFR, BA, ER, and SW networks also match the historic trends. We find that the FHS 
network fits the real-world data the best in the case of the US, followed by the LFR net-
work. As opposed to the others, the LFR network has a unique property of community 
structure embedded in the network generation process. This suggests that communities 
play a role in the spread of smoking behaviour.

Analysis of best‑fit parameters

Figure 5 shows a box plot of values seen in the 100 best-fit parameters for each network 
on both US and UK data. When the 100 best parameter combinations that fit the data 
best were compared, the FC network consistently gave significantly different parameter 
combinations in both US and UK data sets. In both US and UK, at the 5% significance 
level, the values of at least 80% of the parameter values found from calibration on the FC 
network were significantly different from the other networks. Moreover, 100% of them 
were significantly different from the FHS network. On the other hand, all other networks 
return parameter values in which at least 20% of them are not significantly different from 
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that of the FHS. The only exception is the SW network in the case of the US, where all 
parameters values returned were significantly different.

The ER and BA networks perform well in the case of the UK (almost 60% of the param-
eters are not significantly different from the FHS network), but in the case of the US, 
similarity of the parameters drops (only 40% are not significantly different). However, the 
LFR network performs decently in the UK data set (60% are not significantly different) 
and very well in the US case (none of the parameters is significantly different).

Our results thus indicate that when the average degree is kept constant, the parameter 
values found for the FHS network are somewhat similar to that of the LFR, ER and BA 
networks.

By comparing the ABM calibrated on different networks between the US and the UK, 
we see that in the LFR, SW, and FHS networks, 20% of the parameters were not signifi-
cantly different between the US and UK. While in the ER network, 40% of the param-
eters were not significantly different. However, moving from the UK to the US in the 
BA and FC network, all the parameter values found from the calibration process signifi-
cantly differed. This shows that the ABM on FHS, ER, SW and LFR networks are robust 
despite geographic variations. However, this is not true for the FC and BA networks.

Implications to policy
When the underlying network structure is changed, the parameters best replicating 

the empirical data also change. Therefore, when models are used to develop policies, 
parameter estimation becomes very important to predict the outcome of potential new 
policies. If the wrong network structure is used for the model, the calibrated parameters 
will also be different, which would lead to inaccurate strategies being developed. How-
ever, our results (robustness of the FHS, ER, SW and LFR networks to changes in geo-
graphic regions and the similarity of parameters of LFR, ER and BA within each region) 
suggest that when the real-world network structure is not available, the LFR and ER net-
works provide a satisfactory approximation. Thus, LFR or ER networks could potentially 
be used to develop strategies for controlling smoking behaviour when the local popula-
tion’s underlying network structure is unavailable.

Discussions
Using our ABM, we study the effect of network topology on the dynamics of the spread 
of smoking and see that the network structure affects it. The effect of network topol-
ogy can be clearly seen when comparing results from an FC network to those obtained 
on other networks. However, the difference is minor within other networks when the 
average degree is similar. This suggests that, in addition to the network structure, the 
average degree of the underlying network might also play a role in the spread of smoking 
behaviour.

Our UK and US results suggest that ER and LFR networks replicate the empirical data 
better than the other synthetic networks (that is, excluding the FHS network). Apart 
from this, by analysing the parameter values found during calibration, we observe that 
only ER and LFR networks are robust to changes in the geographic region and also 
return a combination of parameters of which at least 40% are not significantly differ-
ent from those obtained by calibrating the model on the FHS network. Upon closer 
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observation of the network characteristics of LFR, ER and FHS networks (Fig. 7 in Addi-
tional file 1), we see that all three of the networks have very similar average degrees and 
thus also form a similar number of edges. At the same time, the BA and SW have the 
same average degree as each other, which is a bit higher than the other networks. This 
suggests that the average degree might play a crucial role in the dynamics of smoking 
behaviour and possibly, any synthetic network with an average degree similar to that of 
the real-world network can be used to model smoking behaviour.

We have showed the ABM on networks can be used to reliably model social conta-
gion trends in tobacco use dynamics. Even with the wrong network, these models can 
predict the trajectory of the populations qualitatively, albeit with a lower accuracy. 
Nevertheless, when a network changes, the parameter values returned on calibration 
also change. The differences in the model and its best-fit parameters become impor-
tant when policymakers use the predictions to develop strategies to curb smoking. 
Incorrect approximation of network structure and thus the model parameters can 
potentially lead to the development of ineffective policies.

However, our results suggest that in cases where the real-world network informa-
tion is not entirely available due to practical constraints, policymakers can use LFR 
networks and ER networks to approximate the real-world network topology, as our 
social contagion process on these networks replicates the empirical data with good 
accuracy and, during calibration, returns parameter values which are not significantly 
different from the real-world network. This potentially opens the way to population-
wide tobacco control interventions that exploit social contagion and will require min-
imal knowledge of real-world parameters, such as average number of close contacts.

ABM is a good technique for incorporating network structure and interactions 
between individuals to study the macroscopic outcome. Our model shows that the 
network structure of the population is essential while modelling smoking, which 
should be taken into consideration while developing policies. However, some limita-
tions due to modelling choices to preserve the model’s simplicity should be noted.

First, we have assumed that every individual behaves in the same way within a 
group. However, this is not the case in a real-world setting. Additionally, many 
social ties manifest asymmetrically, whereas we only consider undirected networks. 
Incorporating directionality could improve accuracy. Exploring simplicial complex 
frameworks constitutes a promising avenue for enhancement. Such higher-order 
representations can capture empirical group social contagion effects (Iacopini et  al. 
2019).

Second, we have not considered vital dynamics in the model and the age-dependent 
nature of reaction to influence. Usually, a constant mortality rate and birth rate are 
incorporated to model vital dynamics. However, in network models, there is a risk of 
older agents gaining more centrality just because of the implementation of network 
growth. A careful understanding of age-dependent mortality rates and social ties 
should be incorporated into the model to circumvent this problem. However, this is 
beyond the scope of this paper and will be explored in future work. Therefore, to limit 
the effects of not including vital dynamics into the model, we calibrate and validate 
the model in time-periods of 25–30 years.
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Third, the degree of influence on smoking behaviour changes with the social tie 
you have with the other person (Christakis and Fowler 2008). As a starting point in 
modelling influence on smoking behaviour, we have assumed that every kind of rela-
tionship affects the smoking behaviour similarly. Further, many social ties can be one-
directional (as perceived by one individual in a social tie). However, as mentioned 
above, we have not considered any directed graphs in the model.

Since our model assumes that the total population is constant, N = 1− Q − S , no 
new N-agents are being introduced to the system. Additionally, the S curve is cali-
brated against a decreasing trend observed in the empirical data, which explains the 
absence of variation never-smoker population.

Additionally, in a real world setting, smokers tend to be show interesting group behav-
iours, wherein they are part of smaller subgroups than non-smokers, and groups of 
smokers tend quit smoking together (Christakis and Fowler 2008). However, due to limi-
tations on data, we have only studied the effect of random initiation of smokers in the 
model. We leave this task for the future with a hope for more detailed network data on 
smoking.

Conclusions
We have developed an agent-based model for smoking dynamics that considers the con-
tagious nature of smoking behaviour by including network effects. This model can act 
as a test-bed for network based policies and strategies to control the spread of smoking 
behaviour.

Our results suggest that, when interactions between individuals are used to model 
population-level smoking dynamics, the underlying network of the local population 
becomes very important. By changing the network topology from a fully-connected net-
work to other theoretical networks and, finally, a real-world network, we show that the 
dynamics deviate drastically from those of a traditional ODE model.

We show that our model is robust and consistent with the historical trends observed in 
two countries—US and UK. In both countries, the network based on a real-world local 
population best replicates the trends observed.

Moreover, our results suggest that the network topology, the average number of close 
social ties, and the presence of communities in the population improve the accuracy of 
the model.

Importantly, given the difficulties in collecting data on offline social networks, we find 
that the LFR and ER network replicates the empirical data with accuracy and also their 
calibrated parameter values are not significantly different from those of the FHS net-
work, suggesting that the LFR and ER networks can be used for social contagion models 
of tobacco use.
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