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Abstract 

It is often of interest to sample vertices from a graph with a bias towards higher-degree 
vertices. One well-known method, which we call random neighbor or RN, involves 
taking a vertex at random and exchanging it for one of its neighbors. Loosely inspired 
by the friendship paradox, the method is predicated on the fact that the expected 
degree of the neighbor is greater than or equal to the expected degree of the initial 
vertex. Another method that is actually perfectly analogous to the friendship paradox 
is random edge, or RE, where an edge is sampled at random, and then one of the two 
endpoint vertices is selected at random. Obviously, random sampling is only required 
when full knowledge of the graph is unattainable. But, while it is true in most cases 
that knowledge of all vertices’ degrees cannot be obtained, it is often trivial to learn 
the degree of specific vertices that have already been isolated. In light of this, we sug‑
gest a tweak to both RN and RE, inclusive random sampling. In inclusive random neigh‑
bor (IRN) the initial vertex and the selected neighbor are considered, in inclusive ran‑
dom edge (IRE) the two endpoint vertices are, and in both cases, we learn the degree 
of each and select the vertex of higher degree. This paper explores inclusive random 
sampling through theoretical analysis and experimentation. We establish meaning‑
ful bounds on IRN and IRE’s performances, in particular in comparison to each other 
and to their exclusive counterparts. Our analyses highlight differences of the original, 
exclusive versions as well. The results provide practical insight for strategizing a random 
sampling method, and also highlight graph characteristics that impact the question 
of which methods will perform strongly in which graphs.

Keywords:  Inclusive random sampling, Random neighbor, Random edge

Introduction
Finding high-degree vertices in a graph is an important goal in many endeavors. A few 
examples include network immunization (Cohen et al. 2003), early detection of network 
phenomena (Christakis and Fowler 2010), and locating network influencers (Malliaros 
et al. 2016) among many others. Naïvely sampling a random vertex, a method we call 
RV, will return a vertex whose expected degree is the mean degree of a graph. Because 
total knowledge of the graph is usually impossible to obtain, there is typically no way 
to target high-degree vertices directly. One well-known sampling method that is effec-
tive for finding high-degree vertices is random neighbor, or RN (Cohen et al. 2003) (see 
also Momeni and Rabbat 2018). Like RV, a vertex is sampled at random, but then it is 

*Correspondence:   
ynovick@gradcenter.cuny.edu; 
yitzchak.novick@touro.edu

1 CUNY Graduate Center, New 
York, NY 10016, USA
2 Touro University, New York, NY 
10018, USA
3 Brooklyn College, Brooklyn, NY 
11210, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00579-y&domain=pdf
http://orcid.org/0000-0003-2280-2111


Page 2 of 17Novick and Bar‑Noy ﻿Applied Network Science            (2023) 8:56 

exchanged for one of its neighbors. The expected degree of this selected neighbor is 
higher than that of the first vertex, in concert with the message of Scott Feld’s friendship 
paradox (Feld 1991) that, on average, friends have a mean-degree greater than or equal 
to individuals. A lesser-known method is random edge (RE) (Leskovec and Faloutsos 
2006; Pal et al. 2019), which also returns a vertex whose expected degree is greater than 
or equal to the mean degree of the graph. In RE, an edge is sampled at random from the 
edges of the graph and one of the two endpoint vertices is then selected.

Our research proposes a novel tweak to both of these methods. While is it true that 
learning the degree of all vertices in a graph is typically not possible, learning the degrees 
of a few selected vertices is often not only possible, but trivial. In both RN and RE, two 
vertices are isolated before one is ultimately selected. If we learn the degrees of the two 
vertices, we can select the one of higher degree, thereby correcting for specific limita-
tions in the sampling methods. We call these methods “inclusive random sampling”, spe-
cifically “inclusive random neighbor” or IRN, and “inclusive random edge” or IRE.

This paper extends our previously published introduction of this topic (Novick and 
Bar-Noy 2020). In this paper, we offer an extensive exploration of all four methods 
under discussion, RN, RE, IRN, and IRE. We compare and contrast all of these meth-
ods using both theoretical and experimental analyses and establish important bounds 
on some of the main comparisons. We include a number of results that are either new, 
or were omitted from the previous paper for brevity, such as the upper bound on E[IRN ]

E[RN ]  , 
and an experimental analysis of the role of the power-law exponent in predicting the 
strengths of the methods. A number of new equations are included and the full proofs 
of the unbounded nature of the E[IRN ]

E[IRE]  and E[IRE]
E[IRN ] ratios are presented as well. This full 

exploration of inclusive random sampling elucidates many of the theoretical aspects of 
the sampling methods and suggests practical ideas for strategizing a sampling approach 
when certain graph characteristics are known.

Background
This section summarizes the RN and RE sampling methods and presents some of the 
existing research which is fundamental to our findings.

RN

The random neighbor sampling method was introduced by Cohen et al. (2003). The sug-
gestion is that a neighbor of a vertex will have the higher expected degree, so an initially 
sampled vertex is exchanged for one of its neighbors that is selected at random. The 
superiority of the sampling method is often attributed to Scott Feld’s friendship paradox 
(Feld 1991), the network phenomenon that the collection of “friends” in a network have 
a mean degree greater than or equal to the mean degree of the graph. This explanation is 
erroneous though, and this is demonstrated by Kumar et al. (2018) with a simple coun-
terexample. Construct a graph comprised of a clique of four vertices, and an additional 
two vertices connected to each other by a single edge, see Fig.  1. There is a variance 
of degree in the graph, so the FP holds. Yet, by symmetry, we know that the expected 
degree of a vertex returned by RN is equal to the expected degree of a vertex returned by 
RV, which we denote as E[RN ] = E[RV ] . It is always true though that E[RN ] ≥ E[RV ] , 
and furthermore that E[RN ] > E[RV ] in all graphs with at least one edge that connects 
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two vertices of different degree (Kumar et al. 2018; Novick and Bar-Noy 2022; Strogatz 
2012).

We can calculate the expected degree of a vertex sampled by RN as

where V is the set of vertices in the graph, n is the number of vertices in V  , dv and du are 
the degrees of v and u respectively, and N (v) is the set of neighbors of vertex v.

It is worth noting that the contribution of every edge e(u, v) to the outer summation 
is du

dv
+ dv

du
 and therefore E[RN ] can also be expressed as a summation over E , the set of 

edges in the graph.

RE

In (Kumar et al. 2018), Kumar et al. distinguish between two types of “means of neigh-
bor’s degrees” in a graph. The mean they call the “local mean” is precisely analogous to 
the expected degree of RN. The second mean they define is the “global mean” of the 
graph, which is the mean degree of the collection of all edge endpoints. Note that a ver-
tex can appear multiple times in this collection, specifically it appears as many times 
as its degree. We note that the global mean is exactly equal to the expected degree of a 
vertex sampled by a lesser-known sampling method, random edge or RE (Leskovec and 
Faloutsos 2006; Pal et  al. 2019). An edge is sampled at random from the collection of 
edges in the graph, and one of its two vertex endpoints is selected with uniform prob-
ability. The collection of edge endpoints is exactly analogous to a graph’s collection of 
friends that is the basis of the FP, so the FP suffices to prove that E[RE] ≥ E[RV ] and 
E[RE] > E[RV ] in all graphs except a regular graph. Of course, as a practical sampling 
method, RE is often impossible because edges are typically not tracked as an independ-
ent collection. Our research is academic in nature, so we analyze results and ignore 
the practicality of the methods’ implementations. Still, it is worth noting that RE is not 
impossible. Obviously, any online graph has the option to track edges if it would be 
advantageous to do so. Also, the probabilistic method suggested in Kumar et al. (2018) is 
another way of achieving RE, even without an independent collection of edges.

(1)E[RN ] =
1

n
v∈V u∈N (v)

du

dv

(2)E[RN ] =
1

n

∑

e(u,v)∈E

(

du

dv
+

dv

du

)

Fig. 1  A graph where the FP holds, yet RN reduces to RV
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We can express the expected degree of a vertex sampled by RE as

where m is the number of edges in the graph.

RN Versus RE

Kumar et al. (2018) prove that either of their two means can be greater than the other, so by 
direct extension, both E[RN ] > E[RE] and E[RE] > E[RN ] are possible in different graphs.

A specific focus of our research is the ratios between the different sampling methods, 
so we establish the equations of the two ratios that relate the exclusive methods.

And the inverse

Theorem 1  E[RN ]
E[RE] ≤ 2m

n
.

Proof  Every edge contributes a value in the form of a
b
+ b

a
 to the numerator of the sec-

ond term in Eq. 4, and a value in the form of a+ b to the denominator.

� □

Corollary 1  E[RN ]
E[RE] < 2m

n  in all graphs with a single vertex v with dv > 1.

Proof  There exists at least one edge (u, v) with du > 1 . If a > 1 and b ≥ 1 then.

� □

Inclusive random sampling
We are proposing a tweak to both RN and RE where an informed decision is made that assures 
the higher-degree vertex of the two vertices being considered is the one that is selected.

Inclusive RN (IRN)

Recall that in RN we sample a vertex at random, then sample a neighbor from among 
its neighbors and select it instead. In IRN, we learn the degree of both the initially 

(3)E[RE] =
1

m

∑

e(u,v)∈E

du + dv

2

(4)E[RN ]
E[RE]

=
2m

n

∑

e(u,v)∈E

(

du
dv

+ dv
du

)

∑

e(u,v)∈E (du + dv)

E[RE]
E[RN ]

=
n

2m

∑

e(u,v)∈E (du + dv)
∑

e(u,v)∈E

(

du
dv

+ dv
du

)

a

b
+

b

a
=

a2 + b2

ab
≤

a2b+ b2a

ab
= a+ b

a2 + b2 < a2b+ b2a
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sampled vertex and the sampled neighbor, and we retain the vertex of higher degree. 
This is essentially a correction for the outlying cases where the initial vertex has a 
higher degree than the selected neighbor, in other words the individual samplings 
where RV would have been superior to RN.

To calculate the expected degree, we can rewrite Eq. 1 as

We can also rewrite Eq. 2 as

To make the notation simpler, we stipulate that an edge expressed as e(u, v) always 
places the endpoint vertices in descending order of degree, in other words du ≥ dv . 
This allows us to rewrite Eq. 5 more simply as

IRN versus RN

Clearly E[IRN ] ≥ E[RN ] and the two values are only equal in a perfectly assortative 
graph. Equations 6 and 2 can be used to establish the difference between IRN and RN 
as E[IRN ] ≤ E[RN ] + m(n−2)

n(n−1)
.

We next examine the ratio between the two.

Theorem 2  E[IRN ]
E[RN ] ≤

√
2+1
2

.

Proof  Using Eqs. 6 and 2 we can express the ratio as

We seek to maximize an expression in the form of

Differentiating the function gives

E[IRN ] =
1

n

∑

v∈V

∑

u∈Nv

max(du, dv)

dv

(5)E[IRN ] =
1

n

∑

e(u,v)∈E

max(du, dv)

dv
+

max(du, dv)

du

(6)E[IRN ] =
1

n

∑

e(u,v)∈E

(

du

dv
+ 1

)

E[IRN ]
E[RN ]

=

∑

e(u,v)∈E

(

du
dv

+ 1

)

∑

e(u,v)∈E

(

du
dv

+ dv
du

)

x
y + 1

x
y +

y
x

, x ≥ y

d

dx
=

(

x2 + y2
)(

2x + y
)

− 2x(x2 + xy)
(

x2 + y2
)2
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And setting this expression to 0 gives two extremal points at x = y(1±
√
2) . Because 

x ≥ y , we only consider x = y
(

1+
√
2

)

 , and the sign of the second derivative at this 

point confirms that this is a maximal value. We can therefore maximize the ratio as

� □

Theorem 2 is a tight upper bound. Consider a complete bipartite graph with k vertices 
on one side and ∼ k(

√
2+ 1) vertices on the other. The ratio approximates

Inclusive RE (IRE)

Recall that RE involves selecting an edge at random from the edges of a graph and then 
selecting one of the two endpoints at random. In IRE, we learn the degree of both end-
points and select the one of higher degree. In RN, inclusive sampling is a correction for 
outlying cases, blindly selecting the neighbor does give a higher expected degree. In RE, 
on the other hand, selecting the lower-degree vertex is not an outlying case, it occurs 
with equal probability. The correction of inclusive sampling, therefore, is intuitively 
stronger.

We can rewrite Eq. 3 as

IRE versus RE

As with RN, it is obvious that inclusivity only increases the expected degree, 
E[IRE] ≥ E[RE] , and the values are only equal in a perfectly assortative graph. We again 
consider the improvement both in terms of the maximum difference between the two 
expected degrees and the maximum ratio between the two. Using Eqs. 7 and 3, it is not 
difficult to establish the difference as:

It is interesting to note that the star graph of n vertices maximizes the difference over 
all graphs of n vertices because every edge achieves the maximum amount.

We next establish the ratio between IRE and RE as follows:

max

(

E[IRN ]

E[RN ]

)

=
√
2+ 1+ 1

√
2+ 1+ 1√

2+1

=
√
2+ 1

2

E[IRN ]

E[RN ]
∼=

∑

e(u,v)∈E
k
(√

2+1

)

k
+ 1

∑

e(u,v)∈E
k
(√

2+1

)

k
+ k

k
(√

2+1

)

=
2+

√
2

√
2+ 1+ 1√

2+1

=
√
2+ 1

2

(7)E[IRE] =
1

m

∑

e(u,v)∈E
du

E[IRE] ≤ E[RE] +
n

2
− 1
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Theorem 3  E[IRE]
E[RE] < 2.

Proof  Using Eqs. 6 and 3

The ratio for any edge is

And clearly 2du < 2(du + dv).

� □

Here the star graph demonstrates that the bound is tight because it minimizes dv 
for every edge, and E[IRE]

E[RE]  approaches the maximum possible value of 2 as n increases.
It is interesting to note that the E[IRN ]

E[RN ]  ratio for the star graph approaches 1 as n 
increases. This stark contrast again draws attention to the difference in the natures of 
the corrections achieved by IRN and IRE. As noted, IRN corrects for an outlying case, 
in the star graph the case of initially selecting the center which occurs with probabil-
ity 1n . However, IRE corrects more broadly for the case of selecting the lower-degree 
endpoint of any edge, which in the star graph translates to a .5 probability of selecting 
a leaf vertex.

IRN versus IRE

We now perform a direct comparison between the two inclusive methods themselves. 
We first establish that either ratio can grow without bound and then consider possible 
bounds on the number of vertices required to achieve a desired ratio. It is important 
to note that Theorems 2 and 3 establish that the improvement of inclusive sampling 
over exclusive sampling in both IRN and IRE is bound by a constant factor. Therefore, 
in order to prove that either ratio can grow without bound, it suffices to prove that 
the exclusive ratios E[RN ]

E[RE]  and E[RE]
E[RN ] can both grow without bound.

In order to do this, we construct pathological graphs that accentuate the strengths 
of each method vis-à-vis the other.

The E[RN]
E[RE]

 and E[IRN]
E[IRE]

 ratios are unbounded

In order to strengthen RN vis-à-vis RE, we construct a graph comprised of two separate 
subgraphs. One subgraph is a clique of c vertices and the second is a star of s vertices, 
see Fig. 2. We select values for c and s so that the star has more vertices than the clique, 
but the clique has more edges than the star. The degree of the center of the star is high-
est degree of the graph, and RN is more likely to select this vertex because the majority 
of vertices in the graph are the leaves of the star that connect to this center vertex. RE, 

E[IRE]
E[RE]

=
1
m

∑

e(u,v)∈E du
1
m

∑

e(u,v)∈E
du+dv

2

du
du+dv

2

=
2du

du + dv
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on the other hand, is more likely to select one of the vertices in the clique, which are of 
lower degree than the center of the star, because the majority of edges are in the clique.

In this construction, the ratio E[RN ]
E[RE]  is unbounded. We can calculate E[RN ] as

And E[RE] as

Therefore, the ratio is

Set c = x2 and s = x3 . As x increases, the expression approaches

And this expression can clearly be made arbitrarily large by increasing x.

Bounding E[RN]
E[RE]

 as a function of n

Having established that the ratio is unbounded, an interesting question to explore is 
how many vertices would be required to achieve a desired value. As one possibility, 
we offer a simple bound for this construction of E[RN ]

E[RE] = �

(

n
1
3

)

.

We have set c = x2 and s = x3 which means n = x3 + x2 . If Eq.  8 is rewritten in 
terms of x , it is easy to prove that E[RN ] > (x2 + 1)(x − 1) . If Eq.  9 is rewritten in 
terms of x , it is easy to prove that E[RE] < 2(x2 − 1) . We can therefore say that

(8)E[RN ] =
c(c − 1)+ (s − 1)2 + 1

c + s

(9)E[RE] =
c(c − 1)2 + s(s − 1)

c(c − 1)+ 2(s − 1)

E[RN ]
E[RE]

=

(

c(c − 1)+ (s − 1)2 + 1

c + s

)

(

c(c − 1)+ 2(s − 1)

c(c − 1)2 + s(s − 1)

)

E[RN ]
E[RE]

=
(

x6

x3

)(

x4

x6

)

E[RN ]
E[RE]

>

(

x2 + 1
)

(x − 1)

2
(

x2 − 1
) >

x + 1

2
− 1

Fig. 2  A graph where RN outperforms RE
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Because n = c + s = x3 + x2 , x + 1 > n
1
3 , so we can conclude E[RN ]

E[RE] = �

(

n
1
3

)

.

As we have noted, because E[IRN ] ≥ E[RN ] and E[IRE]
E[RE] < 2 , the results apply to E[IRN ]

E[IRE]  

as well, that is E[IRN ]
E[IRE]  can grow without bound and has a possible lower bound of �

(

n
1
3

)

.

The E[RE]
E[RN]

 and E[IRE]
E[IRN]

 ratios are unbounded

We now take the opposite approach and provide a construction that strengthens RE 
vis-à-vis RN. The first subgraph is again a clique of size c . The second subgraph is a 
set of s degree-1 vertices joined by s

2
 edges. We once again put the majority of edges in 

the clique, and the majority of vertices in the set of edges, see Fig. 3.
Once again, RE is more likely to select a vertex from the clique while RN is more 

likely to select a vertex from the collection of edges. However, in this construction, 
the vertices in the clique are the max-degree vertices in the graph, while the vertices 
in the other subgraph are all degree-1 so E[RE] > E[RN ].

In this construction the ratio E[RE]
E[RN ] is unbounded. We can calculate E[RE] as follows

And the value of E[RN ] is

And therefore

This expression expands to

For any fixed s , increasing c increases the ratio, so values of s and c can be selected 
to achieve any ratio.

E[RE] =
c(c − 1)2 + s

c(c − 1)+ s

E[RN ] =
c(c − 1)+ s

c + s

(10)
E[RE]
E[RN ]

=
(

c(c − 1)2 + s
)

(c + s)

(c(c − 1)+ s)2

s2 +
(

c3 − 2c2 + 2c
)

s + c4 − 2c3 + c2

s2 +
(

2c2 − 2c
)

s + c4 − 2c3 + c2

Fig. 3  A graph that favors RE over RN
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Bounding E[RE]
E[RN]

 as a function of n

Here we can propose a simple lower bound on n as follows. Set s = c(c − 1) , so 
n = c + c(c − 1) = c2 . Rewriting Eq. 10 in terms of c gives

In this construction, extending the results to inclusive sampling is even easier because 
the graph is perfectly assortative. Therefore E[IRE] = E[RE] and E[IRN ] = E[RN ] so 
E[IRE]
E[IRN ] is also unbounded and has a possible lower bound of �

(

n
1
2

)

.

E[IRN]
E[RE]

 and E[IRE]
E[RN]

We note two obvious corollaries regarding the ratios between the inclusive methods as 
bounded by their exclusive counterparts. The corollaries are derived from Theorems 2 
and 3.

Corollary 2  E[RN ]
2E[RE] <

E[IRN ]
E[IRE] ≤

(√
2+1

)

E[RN ]
E[RE]

Corollary 3  E[RE]
(
√
2+1)E[RN ]

≤ E[IRE]
E[IRN ] <

2E[RE]
E[RN ]

Random sampling in trees
Trees present an interesting challenge for analyzing these sampling methods. The ratio 
E[RN ]
E[RE]  is not unbounded in trees, a strict bound of 2 is easily proven. If the goal is to 
maximize E[RE]

E[RN ] , recall that the pathological examples of the previous section included 
subgraphs that were cliques in order to increase the likelihood of RE selecting one of the 
vertices of the subgraph. In trees of course, it is impossible to saturate any part of the 
graph with edges.

E[RN]

E[RE]
 and E[IRN]

E[IRE]

We first establish a simple bound on the E[RN ]
E[RE]  ratio in trees. Replacing m with n− 1 in 

Corollary 1 gives:

Corollary 4  In all trees, E[RN ]
E[RE] <

2(n−1)
n  , so E[RN ]

E[RE] < 2.

Note that the bound is strict, because it is only possible to use Theorem 1 in a tree of 
two vertices where E[RN ]

E[RE] = 1.
It is interesting to note that E[RN ]

E[RE]  in the star graph has the same upper bound, so again 
the bound is tight and it suggests that the star graph of size n maximizes the ratio E[RN ]

E[RE]  
over all trees of size n.

We can easily prove the same bound for E[IRN ]
E[IRE]  . We can express E[IRN ]

E[IRE]  in trees as

(

c(c − 1)2 + c(c − 1)
)

(c + c(c − 1))

(c(c − 1)+ c(c − 1))2
=

c2

4(c − 1)
= �

(

n
1
2

)

E[IRN ]
E[IRE]

=
n− 1

n

∑

e(u,v)∈E
du
dv

+ 1
∑

e(u,v)∈E du
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For any edge e(u, v) , the term 
du
dv

+1

du
≤ 2 , so the numerator cannot be more than twice 

the denominator and the inequality is strict because of the first term n−1
n .

However here, the star graph fails to achieve the value of the bound because in 
the star graph E[IRN ] = E[IRE] . In fact, it is not simple to prove the possibility of 
E[IRN ] > E[IRE] in trees because of the aforementioned inability to strengthen RE with 
additional edges. But it is possible as we demonstrate with the example in Fig. 4.

Start with two stars of size c and add a single edge connecting one leaf from each.

E[RE]

E[RN]
 and E[IRE]

E[IRN]
 are unbounded in trees

While the E[IRN ]
E[IRE]  ratio is bounded in trees, E[IRE]

E[IRN ] is still unbounded. We present a con-
struction here that proves E[RE]

E[RN ] and E[IRE]
E[IRN ] are unbounded even in trees.

Attach c children to a root vertex. For each of the c children, attach s − 1 children that 
are leaves, so that the degrees of the internal vertices are s , see Fig. 5.

E[IRN ] =
2c2 + c + 2

2c + 2

E[IRE] =
2c2 + 2

2c + 1

E[IRN ]

E[IRE]
=

(

2c2 + c + 2

2c + 2

)(

2c + 1

2c2 + 2

)

=
4c3 + 4c2 + 5c + 2

4c3 + 4c2 + 4c + 4

E[RE] =
c + s2 + s − 1

2s

Fig. 4  A graph tree where E[IRN] > E[IRE]

Fig. 5  A construction where E[RE]
E[RN]

 is unbounded
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For a fixed s , set c ≫ s . E[ RE] approaches c
2s and E[ RN] approaches c

s2
 . So we can say

Which grows without bound as s increases.

Bounding E[RE]
E[RN]

 as a function of n

We again offer a simple possible bound based on our construction. An obvious lower 
bound on E[RE] is E[RE] > c

2s . We can express an upper bound of E[RN ] < c
s2
+ s if 

we assume c > 1 and subtract 1 from the denominator. If we assume s3 < c , then 
E[RN ] < 2c

s2
 and therefore

The number of vertices is n = cs + 1 , and we are assuming s3 < c , so we can approxi-

mate a bound of E[RE]
E[RN ] = �

(

n
1
4

)

.

Experimental analysis
We now present some results of experimentation in synthetic graphs and the graphs 
of real-world networks. For synthetic graphs we use the well-known Erdős Réyni (ER) 
(Erdős and Rényi 1959) and Barabási Abert (BA) (Barabási and Albert 1999) models, and 
we examined the graphs of real-world networks from the Koblenz Network Collection 
(Kunegis 2013).

Synthetic graphs

In both ER and BA graphs an interesting trend emerges. In both types, as would be 
expected, E[RN ] > E[RV ] and E[RE] > E[RV ] as the graphs will almost certainly con-
tain an edge between two vertices of different degree. The gains for both methods over 
RV are modest in ER graphs but significant in BA graphs. In ER graphs, RN is always 
minimally better than RE. In BA graphs this is almost always true as well, but when the 
edge count is very high RE outperforms RN. This is seemingly consistent with our analy-
sis of the pathological example in Fig. 2. The increase in edge count likely increases sub-
structures that resembles cliques instead of stars and this boosts the performance of RE. 
RN’s strong performance in BA graphs is likely linked to the traits of the power-law dis-
tribution and assortativity. As we discuss in subsequent sections, the power-law distri-
bution typically causes some amount of disassortativity, and this in turn strengthens RN.

Inclusive sampling in synthetic graphs

The inclusive sampling reveals an interesting result which is consistent with the theoreti-
cal bounds we have established. Unsurprisingly, the assumptions E[IRN ] > E[RN ] and 

E[RN ] =
1
s c

2 +
(

s2 − s + 1− 1
s c
)

+ s

sc + 1

E[RE]
E[RN ]

≈
( c

2s

)

(

s2

c

)

=
s

2

E[RE]
E[RN ]

>

( c

2s

)

(

s2

2c

)

=
s

4
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E[IRE] > E[RE] hold. While it is almost always true that E[RN ] > E[RE] , it is always 
true that E[IRE] > E[IRN ] . This again seems to reflect on the more corrective nature of 
IRE, and it also follows naturally from the greater potential indicated by the bound of 2 
in Theorem 3 versus the smaller bound of ∼ 1.21 of Theorem 2. The results are summa-
rized in Table 1 below.

Real‑world networks
We examined 1072 networks from the Koblenz Network Collection (Kunegis 2013) 
to see the effects of the four sampling methods. We find that E[RN ] > E[RE] in 93% 
of the networks, yet E[IRE] > E[IRN ] in 43%. The average gain of IRN versus RN is 

Table 1  Sampling method results for ER/BA Graphs, n = 6000

RV Erdős Rényi Graphs, n = 6000 Barabási Albert Graphs, n = 6000

RN RE IRN IRE RN RE IRN IRE

6 6.9952 6.9946 7.9227 8.361 19.54 17.68 21.34 29.63

10 10.9883 10.9882 12.3023 12.755 27.87 26.18 30.7 42.76

16 16.973 16.9714 18.7509 19.2119 38.9 37.43 43.24 59.46

30 30.922 30.9212 33.525 33.9967 63.89 62.75 71.64 96.63

60 60.6866 60.6864 64.5381 65.0121 113.3 112.55 128.18 167.78

129 129.5657 129.565 135.4022 135.8766 216.32 216.42 246.99 310.69

Table 2  Method comparisons in real-world networks by category

Category Pct RN > RE (%) Pct IRN > IRE (%) IRN/RN IRE/RE

Affiliation 100 17 1.05 1.68

Animal 75 0 1.09 1.13

Authorship 99 67 1.01 1.94

Citation 50 0 1.08 1.58

Cocitation 0 0 1.1 1.47

Communication 83 25 1.04 1.7

Computer 64 0 1.07 1.60

Feature 83 50 1.02 1.88

Human Contact 86 14 1.12 1.31

Human Social 55 0 1.12 1.21

Hyperlink 71 14 1.02 1.84

Infrastructure 48 0 1.1 1.2

Interaction 81 62 1.04 1.71

Lexical 67 33 1.08 1.66

Metabolic 75 0 1.07 1.59

Misc 67 0 1.08 1.55

Neural 100 0 1.11 1.45

Online Contact 75 13 1.03 1.69

Rating 100 57 1.02 1.87

Social 71 31 1.03 1.76

Software 100 67 1.003 1.98

Text 83 0 1.04 1.58

Trophic 100 0 1.14 1.33
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102.3%, while the average gain of IRE versus RE is a staggering 186%. This is especially 
significant in light of the bound of 2 in Theorem 3.

We also calculate these results for the different network categories of the collection. 
The results are summarized in Table 2. E[RN ] > E[RE] in the majority of networks in 
all but three categories, and the mean percent over all categories where this is true is 
72.8%. E[IRE] > E[IRN ] in a majority of networks in all but three categories (note that 
these are not the same three categories where E[RE] > E[RN ] ), and the mean percent 
over all categories where this is true is 82.2%. The modest gains of IRN over RN are 
roughly consistent over all categories, while the gain of IRE over RE ranges from 1.13 
to 1.98.

The influence of degree‑homophily and the power‑law
In Novick and Bar-Noy (2021, 2022) we outlined an analysis of how the power-law dis-
tribution that defines BA graphs and is a common trait of many real-world graphs (Bara-
bási and Albert 1999) typically implies an amount of disassortativity, and this in turn 
strengthens RN. The relatively low count of high-degree vertices cannot satisfy their 
total edge endpoints without connecting to some of the low-degree vertices, and this 
disassortativity strengthens RN because the vertex initially sampled, which is likely of 
low-degree, has some significant likelihood of being connected to a high-degree vertex 
that may be selected by RN. This is a significant difference between ER and BA graphs. 
Both are known to be non-assortative (Newman 2002), but research has shown that 
in ER graphs this non-assortative nature is more homogeneous, while in BA graphs it 
results from an aggregate measure of two sharply contrasting types of connections, some 
assortative and some disassortative (Bertotti and Modanese 1806).

This phenomenon was explored by Kumar et al. (2018) as well. The authors introduced 
a new measure, ‘inversity’, and showed how its sign perfectly predicts which of RN and 
RE would have the higher expected degree. While this is not true of assortativity, the 
correlation between inversity and assortativity is very high, and our purpose is only 
to demonstrate the effect of degree-homophily in general, so we based our results on 
assortativity. Here we extend those results and examine their application on inclusive 
sampling.

Power‑law distribution

Our first experiment checks the effect of the power-law on all sampling methods. Recall 
the equation used in the Barabási Albert algorithm (Barabási and Albert 1999) for deter-
mining the vertices to which a new vertex connects

This motivates the preferential attachment that causes the power-law distribution, the 
probability of a vertex being selected is directly proportional to its degree.

It is possible to generalize the equation with a parameter α as follows

p(vi) =
dvi

∑

v∈V dv

p(vi) =
dαvi

∑

v∈V dv
α
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The original equation has α = 1 . It is possible to weaken the preferential attachments 
by setting α < 1 and to strengthen it by setting α > 1.

We generated BA graphs with varying values of α and tracked the results on the sam-
pling methods. As demonstrated in Fig. 6, the increase in α decreases degree-homoph-
ily as measured by assortativity. This decrease increases the values of all four sampling 
methods. It interesting to note that RE outperforms RN for smaller values of α , but as α 
reaches the original value of 1 and surpasses it, RN becomes the superior method. How-
ever, we again see the phenomenon that inclusive sampling corrects RE so much more 
than RN and IRE is the stronger method of the two inclusive sampling methods.

Rewiring for assortativity

Our final experiment examines the effects of assortativity more directly. Using the tech-
nique presented in Mieghem et  al. (2010), Xulvi-Brunet and Sokolov (2004) among 
others, we take ER and BA graphs, and rewire them to both decrease and increase assor-
tativity, tracking the expected degree of the four sampling methods. The results are 
shown in Fig. 7.

It is important to note that rewiring preserves the degree sequence of a graph even 
while it changes characteristics such as degree-homophily. This is a contrast to the previ-
ous experiment where tweaking the power-law distribution actually changes the degree 
sequence.

Fig. 6  Assortativity and sampling expectations for tweaked BA graphs

Fig. 7  Sampling expectations for rewired ER and BA graphs
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RE is purely a function of the degree sequence and, as such, the results do not change. 
RN, on the other hand, increases markedly with disassortativity. It is also interesting to 
note that the two intersect near the value of perfect non-assortativity. Although assor-
tativity is not as precise as inversity, this result is still in line with the results of Kumar 
et al., as 0 inversity and 0 assortativity will be very close due to the strong correlation 
between the two values.

The results on inclusive sampling are telling. Firstly, the superiority of the inclusive 
methods is evident. Secondly, we see again that IRE is superior to IRN. And lastly, we 
see that although increasing assortativity diminishes the strengths of both inclusive 
methods, it seems to weaken IRN more significantly than IRE, another point in favor 
of IRE as a sampling method.

Conclusion and future research directions
This paper has introduced the idea of inclusive random sampling and applied it to 
the well-known random neighbor sampling method as well as the less-known ran-
dom edge sampling method. We studied both the original, exclusive versions of these 
methods along with the new, inclusive ones. We have proven that either version’s ratio 
to the other can grow without bound and provided additional interesting bounds on 
the methods’ performances vis-à-vis each other and their exclusive counterparts. We 
also conducted a study in the specific case of trees, noting which general results apply 
equally to trees and which do not.

Through experimentation on synthetic and real-world graphs, we established the 
usefulness of inclusive sampling as a practical method. We have many findings to 
reflect on this practical application of our research, most prominent among them the 
fact that IRE is often superior to IRN, even when RN is superior to RE. This suggests 
a potential value in tracking edges of a graph when high-degree random sampling is 
important.

We have also shown the relationship between preferential attachment and degree-
homophily on one hand and inclusive sampling on the other. These findings can aid 
in the analysis of a particular graph to determine which sampling method is likely to 
yield the highest expectation of degree. Of course, there are other graph traits and 
phenomena that may be linked to the performance of these sampling methods. We 
believe there is a lot of potential to explore what other graph types and structures 
could influence these outcomes. In addition, there could be other factors that influ-
ence the decision, such as the cost of tracking edges, that could be taken into account. 
We hope to explore these concepts further and continue to contribute to the under-
standing of how these sampling techniques work and how best to utilize them.
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