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Abstract 

Self‑propagating malware (SPM) is responsible for large financial losses and major data 
breaches with devastating social impacts that cannot be understated. Well‑known 
campaigns such as WannaCry and Colonial Pipeline have been able to propagate 
rapidly on the Internet and cause widespread service disruptions. To date, the propa‑
gation behavior of SPM is still not well understood. As result, our ability to defend 
against these cyber threats is still limited. Here, we address this gap by performing 
a comprehensive analysis of a newly proposed epidemiological‑inspired model for SPM 
propagation, the Susceptible-Infected-Infected Dormant-Recovered (SIIDR) model. We 
perform a theoretical analysis of the SIIDR model by deriving its basic reproduction 
number and studying the stability of its disease‑free equilibrium points in a homoge‑
neous mixed system. We also characterize the SIIDR model on arbitrary graphs and dis‑
cuss the conditions for stability of disease‑free equilibrium points. We obtain access 
to 15 WannaCry attack traces generated under various conditions, derive the model’s 
transition rates, and show that SIIDR fits the real data well. We find that the SIIDR model 
outperforms more established compartmental models from epidemiology, such as SI, 
SIS, and SIR, at modeling SPM propagation.

Keywords: Self‑propagating malware, Compartmental models, Epidemiology, 
Modeling, Dynamical systems

Introduction
Self-propagating malware (SPM) is one of today’s most concerning cybersecurity threats. 
Over past years, SPM resulted in huge financial losses and data breaches with high eco-
nomic and societal impacts. For instance, the infamous WannaCry (Mike Azzara 2021) 
attack, first discovered in 2017 and still actively used by attackers nowadays, was esti-
mated to have affected more than 200, 000 computers across 150 countries worldwide, 
with economic damages ranging from hundreds of millions to billions of dollars. In May 
2021, the Colonial Pipeline (Wikipedia 2023a) cyber-attack caused the shut down of the 
entirety of the Colonial gasoline pipeline system for several days. It affected consumers 
and airlines along the East Coast of the United States and was deemed a national secu-
rity threat. Another remarkable worldwide SPM attack is Petya (Wikipedia 2023b), first 
discovered in 2016 when it started spreading through phishing emails. Petya represents 
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a family of various types of ransomware responsible for estimated economic damages of 
over 10 million dollars (Wikipedia 2023b).

Given the current cyber-crime landscape, with new threats emerging daily, tools 
designed for modeling SPM behavior become crucial. Indeed, a deep understanding of 
self-propagating malware characteristics provides us opportunities to identify threats, 
test control strategies, and design proactive defenses against attacks. A large body of 
research on the subject so far has been devoted to the design of methods to detect and 
mitigate self-propagating malware. Proposed techniques include network traffic sig-
natures (Kim and Karp 2004; Kumar and Lim 2020; Ongun et al. 2021; Newsome et al. 
2005) and host-level binary analysis (Chen and Bridges 2017; Ben Said et al. 2018) used 
to identify anomalous behavior, software-defined networking (SDN) for ransomware 
threat detection and mitigation (Akbanov et al. 2019; Alotaibi and Vassilakis 2021), as 
well as evasion-resilient methods for detecting adaptive worms  (Li and Stafford 2014; 
Newsome et al. 2005; Ongun et al. 2021). However, less attention was dedicated to com-
paring and finding the most suitable models to capture SPM behavior. Additionally, the 
majority of existing works on SPM modeling focus on theoretical analyses of infection 
spreading (Guillén et al. 2017; Guillén and del Rey 2018; Mishra and Saini 2007; Mar-
tínez Martínez et al. 2021), lacking a thorough real-world evaluation of these models.

In this paper, we model the behavior of a well-known SPM attack, WannaCry, based 
on real-world attack traces. The similarities between the behavior of biological and com-
puter viruses enable us to leverage compartmental models from epidemiology. We adopt 
a novel compartmental epidemic model called SIIDR (Chernikova et al. 2022), and con-
duct a thorough analysis to show that it can be used to accurately model SPM spreading 
dynamics.

First, we study the model assuming a homogeneous mixing of hosts and analytically 
derive its basic reproduction number R0 (Dietz 1993; Kephart and White 1993; Van den 
Driessche and Watmough 2008). R0 is the number of secondary cases generated by an 
infectious seed in a fully susceptible population. It describes the epidemic threshold, 
thus, the conditions necessary for a macroscopic outbreak ( R0 > 1) (Fraser et al. 2009; 
Van den Driessche and Watmough 2008). We also investigate equilibrium or fixed points 
of SIIDR as they provide insights on how to contain or suppress the spreading.

Additionally, computer networks are often represented as graphs, where nodes denote 
the hosts in the network and edges represent the communication links between them. In 
any static graph, the propagation of contagion processes depends not only on the transi-
tion rates of SPM but also on the spectral properties of the graph (Newman 2018). To 
discuss the important characteristics of SIIDR that illustrate the ability of SPM to suc-
cessfully propagate through the network in these settings, we represent SIIDR model 
as a Non-Linear Dynamical System (NLDS) and relaxing the homogeneous mixing 
assumption.

Finally, we reconstruct the dynamics of WannaCry spreading analysing real traf-
fic logs. We use the Akaike Information Criterion (AIC)  (Akaike 1974) to compare 
how different compartmental models fit the derived epidemic traces. We show that 
SIIDR captures malware spreading better than classical epidemic models such as SI, 
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SIS, SIR. Indeed, the investigation of real WannaCry attacks showed that consecutive 
infection attempts originating from the same host are delayed by a variable time inter-
val. This finding suggests the existence of “dormant” infected state, in which infected 
hosts temporarily cease to pass infection to their neighbors. Furthermore, calibrating 
the model to the real data via an Approximate Bayesian Computation technique we 
determine the transition rates (i.e., model parameters) that characterize WannaCry 
propagation.

To summarize, our contributions are the following:

• We derive the basic reproduction number of the SIIDR model  (Chernikova et  al. 
2022) and discuss the stability conditions of the disease-free equilibrium points of 
the system of ODEs that represents SIIDR under a homogeneous mixing assump-
tion.

• We derive the conditions for stability of the SIIDR disease-free equilibrium points on 
arbitrary graphs thus relaxing the homogeneous mixing assumption.

• We reconstruct the spreading dynamics of an actual SPM (WannaCry) using real-
world traces obtained by running a vulnerable version of Windows in a virtual envi-
ronment.

• We show that SIIDR outperforms several classical models in terms of capturing 
WannaCry behavior, and derive the model’s transition rates from actual attacks.

We organize the rest of the paper as follows: first, we provide background information 
about the WannaCry malware and the most common compartmental models of epi-
demiology. We also define the threat model and problem statement. Then we intro-
duce the SIIDR model, discuss the derivation of R0 and the stability of the disease-free 
equilibrium points. In addition, we present the experimental results that support the 
findings of the paper. Table 1 includes common terminology used in the paper.

Table 1 Terminology and abbreviations used in the paper

Notation Meaning

S Number of susceptible individuals

I Number of infected individuals

ID Number of infected dormant individuals

R Number of recovered individuals

SPM Self‑propagating malware

ODE Ordinary differential equation

AIC Akaike information criterion

ABC Approximate Bayesian computation

ABC‑SMC (SMC) Sequential Monte‑Carlo approach

ABC‑SMC‑MNN (SMC) SMC when covariance matrix is calculated

using M nearest neighbors of the particle

SI Susceptible‑infected model

SIS Susceptible‑infected‑susceptible model

SIR Susceptible‑infected‑recovered model

SEIR Susceptible‑exposed‑infected‑recovered model

SIIDR Susceptible‑infected‑infected dormant‑recovered model
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Background and problem statement
WannaCry malware

WannaCry is a self-propagating malware attack, which targets computers running the 
Microsoft Windows operating system by encrypting data and demanding ransom in Bit-
coins. It automatically spreads through the network and scans for vulnerable systems, 
using the EternalBlue exploit to gain access, and the DoublePulsar backdoor tool to 
install and execute a copy of itself. WannaCry malware has a ’kill-switch’ that appears 
to work like this: part of WannaCry’s infection routine involves sending a request that 
checks for a web domain. If its request returns showing that the domain is alive or 
online, it will activate the ’kill-switch’, prompting WannaCry to exit the system and no 
longer proceed with its propagation and encryption routines. Otherwise, if the malicious 
program can not connect to the domain, it encrypts the computer’s data, then attempts 
to exploit the vulnerability of Server Message Block protocol to spread out to random 
computers on the Internet, and laterally to computers on the same network (Wikipedia 
2023c).

Epidemiological models

Compartmental epidemiological models are used to model the spread of infectious dis-
eases (Brauer 2008; Keeling and Rohani 2008). This approach segments the population 
into groups (compartments) describing the various stages of infection. The compart-
mental structure varies according to the disease under study and the application of the 
model. Following disease evolution, individuals can transition at specific rates among 
compartments. Generally speaking, these transitions can be either spontaneous (e.g., 
recovery process) or resulting from interactions (e.g., infection process). In their sim-
plest formulation, compartmental models assume homogeneous mixing. Said differ-
ently, each individual is potentially in contact with everyone else (Vespignani 2012).

The most common compartmental models are the SI, SIS, SIR and SEIR models. 
In Appendix  1 we will briefly review the formulation of these models by neglecting 
demographic changes in the population (i.e., the number of individuals is assumed to 
be fixed). More in detail, we represent them as systems of Ordinary Differential Equa-
tions (ODEs). This is a common approach to model epidemics in continuous time, even 
though it approximates the number of individuals in different compartments as continu-
ous functions.

Problem statement and threat model

The objective of our work is to provide a rigorous mathematical analysis of realistic SPM 
attacks, and thus lay down the foundation of efficient defense strategies against these 
prevalent threats. Several works propose models to capture the behavior of SPM (Guillén 
et al. 2017; Guillén and del Rey 2018; Mishra and Saini 2007; Martínez Martínez et al. 
2021), however, the vast majority of them have only theoretical analysis and do not 
incorporate the information about real-world SPM traces. Thus, they lack validation in 
real-world scenarios. Additionally, it is hard to perform comparative analysis to other 
models without presenting their performance using real-world data. Existing work 
that uses actual malware traces for modeling SPM (Levy et al. 2020) leverages minimal 
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epidemiological models that, in their simplicity, fail to fully capture malware character-
istics. To this end, here we use a more advanced compartmental model (called SIIDR) to 
describe epidemics resulting from SPM and apply it to real-world attack traces from a 
well-known malware, WannaCry.

Besides studying different epidemiological models according to their suitability to 
describe WannaCry epidemics, our second goal is to infer the parameters of the SIIDR 
epidemic model for different malware variants. Parameter inference is crucial for ena-
bling attack simulations on real networks to measure the impact of the attack, as well 
as the effectiveness of defensive measures. Indeed, once the parameters of the attack 
are known, an analyst could estimate the basic reproduction number of the attack, 
and understand whether the attack might result in a macroscopic outbreak. Similarly, 
a defender might configure its network topology by performing edge or node harden-
ing (Le et al. 2015; Tong et al. 2012; Torres et al. 2021), minimizing the leading eigen-
value of the graph to prevent the damage from self-propagating malware attacks, or 
using anomaly detection methods to detect the malware propagation  (Ongun et  al. 
2021).

In this work, our focus is on modeling SPM propagation inside a local network (e.g., 
enterprise network, campus network) since we do not have global visibility on SPM 
propagation across different networks. We assume that the attacker gets a foothold 
inside the local network through a single initially infected host. From the ‘patient zero’ 
victim, the attack can propagate and infect other vulnerable machines in the subnet. We 
initially assume a homogeneous mixing model, meaning that every machine can con-
tact all others. This is a valid assumption because in a subnet every machine is able to 
scan every other internal IP within the same subnet. We are assuming that none of the 
machines is immune to the exploited vulnerability at the beginning of the attack, thus, 
all of them may become infected during SPM propagation. Infectious machines become 
recovered when the malware is successfully detected and an efficient recovery process 
removes it. We assume that these machines cannot be reinfected again. We then relax 
the homogeneous mixing assumption and characterize the behavior of the model on 
arbitrary graph, considering that a contact between any two nodes in a network does not 
occur randomly with equal probabilities, but each node communicates with the particu-
lar subset of nodes in the network.

Related work

Numerous works propose to simulate and model malware propagation on different 
levels of fidelity and scalability (Perumalla and Sundaragopalan 2004). The research on 
modeling malware and worms propagation includes hardware testbeds  (Vahdat et  al. 
2002; White et al. 2002), emulation systems (Durst et al. 1999; Wei et al. 2010), packet-
level simulations  (Riley et  al. 2004; Szymanski et  al. 2003), fully-virtualized environ-
ments (Perumalla and Sundaragopalan 2004), mixed abstraction simulations (Guo et al. 
2000; Kiddle et al. 2003), and epidemic models. In our work we focus on this last line of 
research. Similarly, Mishra and Jha (Mishra and Jha 2010) introduce the SEIQRS (Sus-
ceptible-Exposed-Infectious-Quarantined-Recovered-Susceptible) model for viruses 
and study the effect of the quarantined compartment on the number of recovered nodes. 
In their paper, the authors focus on the analysis of the threshold that determines the 
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outcome of the disease. Mishra and Pandey (2014) introduce the SEIS-V model for 
viruses with a vaccinated state, while  (Mishra and Saini 2007) study the SEIRS model 
to characterize the malicious objects’ free equilibrium, formulating the stability of the 
results in terms of the threshold parameter. Toutonji et  al. (2012) propose a VEISV 
(Vulnerable-Exposed-Infectious-Secured-Vulnerable) model and use the reproduction 
rate to derive global and local stability. With the help of simulation, they show the pos-
itive impact of increasing security countermeasures in the vulnerable state on worm-
exposed and infectious propagation waves. Guillén et  al. (2019) introduce a SCIRAS 
(Susceptible-Carrier-Infectious-Recovered-Attacked-Susceptible) model. Authors study 
the local and global stability of its equilibrium points and compute the basic reproduc-
tive number. Ojha et al. (2021) develop a new SEIQRV (Susceptible-Exposed-Infected-
Quarantined-Recovered-Vaccinated) model to capture the behavior of malware attacks 
in wireless sensor networks. In their work, authors obtain the equilibrium points of 
the proposed model, analyze the system stability under different conditions, and verify 
the performance of the model through simulations. Zheng et  al. (2020) introduce the 
SLBQR (Susceptible-Latent-Breaking out-Quarantined-Recovered) model consider-
ing vaccination strategies with temporary immunity as well as quarantined strategies. 
The authors study the stability of the model, investigate a strategy based on quarantines 
aimed at suppressing the spread of the virus, and discuss the effect of the vaccination on 
permanent immunity. In order to verify their findings, the authors simulate the model 
exploring a range of temporary immune times and quarantine rates.

Recently, several attempts have been made to enhance the realism of the epidemic 
models. For instance, Guillén et al. (2017) study the SEIRS model with an improved inci-
dence rate (i.e., new infected hosts per time unit). Additionally, the equilibrium points 
are computed and their local and global stability are studied. Finally, the authors derive 
the explicit expression of the basic reproductive number and propose efficient measures 
to control the epidemics. Martínez Martínez et al. (2021) introduce a dynamic version of 
SEIRS. The authors look at the performance of the model with different sets of param-
eters, propose optimal values, and discuss its applicability to model real-world malware. 
Gan et al. (2020) propose a dynamical SIP (Susceptible-Infected-Protected) model, find 
an equilibrium point, and discuss its local and global stability. Additionally, the authors 
perform the numerical simulations of the model to demonstrate the dependency on 
parameter values. Yao et  al. (2018) present a time-delayed worm propagation model 
with variable infection rate. They analyze the stability of equilibrium and the threshold 
of Hopf bifurcation. The authors carry out the numerical analysis and simulation of the 
model.

Some papers explore malware propagation on networks comprised of different types 
of devices. For instance, Guillén and del Rey (2018) considers the special class of carrier 
devices whose operative systems are not targeted by malware (for example, iOS devices 
for Android malware); the authors introduce a new compartment (Carrier) to account 
for these devices, and analyze efficient control measures based on the basic reproductive 
number. Zhu et al. (2012) take into consideration the ability of viruses to infect not only 
computers, but also many kinds of external removable devices; in their model, internal 
devices can be in Susceptible, Infected, and Recovered states, while removable devices 
can be in Susceptible and Infected states.
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None of these previous works perform model fitting to real-world malware scenarios, 
but only consider theoretical analyses of the proposed models. The closest to our work 
is Levy et al. (2020); the authors use real traces to fit malware propagation with SIR, a 
simplistic model that, as we have shown, performs poorly compared to SIIDR and fails 
to capture self-propagating malware dynamics.

Analysis of the SIIDR model
In this section, we introduce the main characteristics of WannaCry propagation dynam-
ics, the proposed modeling framework (the SIIDR model), we discuss its basic repro-
duction number and the stability of disease-free equilibrium points. Table  2 includes 
common terminology used in this section.

SPM modeling with the SIIDR model

A detailed analysis of the WannaCry traces (Chernikova et al. 2022) revealed the follow-
ing characteristics:

• The time interval �t between two consecutive malicious attempts from the same 
infected IP is not constant and has high variability. This intuition is supported by the 
results in Fig. 1 where we show the quartile coefficient of dispersion (QCoD) of these 
�t for different Wannacry variants. The QCoD is defined as (Q3 − Q1)/(Q3 + Q1) . 
As benchmark we show the hypothetical QCoD of exponentially distributed �t with 
the same mean observed in the data. We chose the exponential distribution since 
time intervals lapsing between Poisson-like events happening at constant rate follow 
this distribution. From the figure we see that the QCoD of �t obtained from the data 
is much higher ( ∼ 50% more across variants) than the one we would expect to see 
with constant frequency events.

Fig. 1 Quartile coefficient of dispersion of �t between two consecutive malicious attempts from the same 
infected IP and of exponential distribution with same mean for different WannaCry variants
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• The time interval �t between the last attack from an infected IP and the end of the 
collected trace is large. The average values of �t between two consecutive mali-
cious attempts and �t between the last attack attempt from an infected IP and the 
end of the epidemics are shown in Fig. 2. The mean value of the �t in the second 
case are much larger then the �t between two consecutive attack attempts.

Based on the first observation, an infected dormant state ID is included to cap-
ture the heterogeneous distribution of time windows between two malicious attack 
attempts. Therefore, an infected node can become dormant for some period of time 
and resume its malicious activity later. The second observation supports the presence 
of a Recovered state: once nodes recover, they will not become infectious or suscep-
tible again, at least within a certain observation period. The transition diagram cor-
responding to the SIIDR model is illustrated in Fig. 3. Interacting with the infectious, 
a susceptible node can become infected with rate β , and afterwards, it may either 

Fig. 2 Average �t between two consecutive malicious attempts from the same infected IP and Average �t 
from the last attack attempt to the end of epidemics for different WannaCry variants

Fig. 3 Schematic representation of the SIIDR model
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recover with rate µ , or move to the dormant state with rate γ1 . From the dormant 
state, it may become actively infectious again with rate γ2.

The evolution of the system can be modeled through the following ODEs system:

with N = S(t)+ I(t)+ ID(t)+ R(t) , where the total size of the population N is con-
stant. It is important to stress how the system of ODEs assumes an homogeneous mixing 
in the host population.

SIIDR equilibrium points

While modeling SPM we are interested in equilibrium states when the number of 
infected individuals equals to 0 and does not change over time (i.e., disease-free equi-
librium points). Thus, we need to derive the constant solutions of the ODE system 
corresponding to SIIDR model (Perko 2013).

(1)

dS

dt
= −βS

I

N
dI

dt
= βS

I

N
− µI − γ1I + γ2ID

dID

dt
= γ1I − γ2ID

dR

dt
= µI

Table 2 Terminology and abbreviations used for SIIDR analysis

Notation Meaning

β Infection rate

β̃ Infection probability

µ Recovery rate

γ1 Transition rate from infected to infected dormant compartment

γ2 Transition rate from infected dormant to infected compartment

ζi,t(I) The probability of node i of not getting infected at time step t

αXY The probability of a node to transition from state X to Y

αXX The probability of a node to stay in the state X

DFE Disease‑free equilibrium point

R0 The basic reproduction number

G Next‑generation matrix

X The vector of individual numbers in each compartment

E
∗ Equilibrium point for SIIDR as the system of ODEs

L Lyapunov function

P Each node’s vector of probabilities to be in each compartment

P
∗ Equilibrium point for SIIDR as the NLDS

g Matrix form of SIIDR represented as the NLDS

C Linear part of SIIDR as the NLDS Matrix Form

B Non‑Linear Part of SIIDR as the NLDS Matrix Form

A Graph adjacency matrix

�A The largest eigenvalue of the adjacency matrix A

d Degree of the d‑regular Graph
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Definition 1 An equilibrium point or fixed point of the system of ODEs ẋ = f (X) is 
a solution E∗ that does not change with time, i.e., f (E∗) = 0.

For the SIIDR model we can find the equilibrium points by solving the following 
system:

given that S + I + ID + R = N .
Thus, we find disease-free equilibrium points of the SIIDR model as E∗ = (S, 0, 0,R) 

where I = ID = 0 and S + R = N  . The particular case is the beginning of the propaga-
tion process when the number of recovered individuals is 0: R = 0 or E∗ = (N , 0, 0, 0) . 
Therefore, we perform further analyses of SIIDR model based on this equilibrium 
point. There exists no endemic equilibrium point when I  = 0 for SIIDR model. It is 
present only when µ = 0 (SIID model) and is equal to (0, I∗, γ1I

∗

γ2
, 0).

The basic reproduction number

The basic reproduction number R0 is the number of secondary cases generated by a 
single infectious seed in a fully susceptible population (Keeling and Rohani 2008). R0 
defines the epidemic threshold, that is the condition for a macroscopic outbreak. If 
R0 > 1 , on average, infected individuals are able to sustain the spreading. If R0 < 1 , on 
average, the disease will die out before any macroscopic outbreak.

One way to derive the basic reproduction number is to use the next-generation 
matrix approach  (Diekmann et  al. 1990, 2010; Blackwood and Childs 2018). This 
states that the basic reproduction number is the largest eigenvalue of the next-gen-
eration matrix. The method takes into consideration the dynamics of compartments 
linked to new infections. For example the number of infected individuals in compart-
ment i, i ∈ {1, . . . , k} , where k is the number of compartments with infected individu-
als, changes as follows:

where Fi(X) is the rate of appearance of new infections in compartment i by all other 
means, Vi(X) = [V−

i (X)− V+
i (X)] , V+

i (X) is the rate of transfer of individuals into com-
partment i and V−

i (X) represents the rate of transfer of individuals out of compartment. 
If E∗ is a disease-free equilibrium, then we can define a next-generation matrix:

where:

−βI
S

N
= 0

βI
S

N
− µI − γ1I + γ2ID = 0

γ1I − γ2ID = 0

µI = 0

dfi(X)

dt
= Fi(X)− Vi(X)

G = FV−1
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In the case of SIIDR model, the matrix G can be represented at one of the disease-free 
equilibrium points DFE = (N , 0, 0, 0) as follows:

Let �v be an eigenvector of the matrix G, and � its corresponding eigenvalue. The eigen-
value equation is (Bhatia 1997):

where �v is a nonzero vector, therefore det[�I − G] = 0 . Using G from equation  2, we 
obtain:

which results in: 1) � = 0 or 2) � = β/µ . According to the next-generation matrix 
method  (Diekmann et  al. 1990, 2010; Blackwood and Childs 2018), the reproduction 
number R0 is the largest eigenvalue of the next-generation matrix G, hence, R0 =

β
µ

 , 
which is the same definition of R0 of the SIR model. In other words, the introduction of 
the new compartment ID does not alter the conditions for a macroscopic outbreak. We 
note that, in general, the disease free equilibrium might contain individuals already 
immune to the disease, i.e., E∗ = (N − R, 0, 0,R) . This might be due to wave of infections 
caused by previous introductions of the virus. In this more general case we have: 
R0 =

β
µ

1− R
N  , where in parenthesis we have the fraction of the susceptible 

population.

Stability analysis of SIIDR equilibrium points

A particularly important characteristic of a disease-free equilibrium point is its stabil-
ity (Hirsch and Smale 1974), which indicates whether the system will be able to return 
to the equilibrium point after small perturbations. For example, a small perturbation can 
be a slight increase in the number of initially infected nodes.

Let us consider the system of ODEs that captures the dynamics of our SIIDR model 
(see Eqs. 1), governed by:

Let X = E∗ be a fixed point of f(X), that is, f (E∗) = 0 . Furthermore, let us assume that 
the system’s initial state at t = 0 is X = X0 . In this context, the stability of E∗ can be 
obtained answering to the following question: if the system starts near E∗ , how close will 
it remain to E∗ ? Beside this intuition, stability is more formally defined as follows (Hirsch 
and Smale 1974):

F =
∂Fi

∂xj
(E∗)

V =
∂Vi

∂xj
(E∗)

(2)G =

[

β 0

0 0

] [

µ+ γ1 − γ2
−γ1 γ2

]−1

=

[

β
µ

β
µ

0 0

]

G�v = ��v,

det[�I − G] = �

(

�−
β

µ

)

= 0,

ẋ = f (X),X ∈ Rn
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Definition 2 The equilibrium point E∗ is stable if for any ǫ > 0 , there exists a δ > 0 
such that: if the system’s initial state X0 lies in the ball of radius δ around E∗ (i.e., 
||X0 − E∗|| < δ ), then solutions Xt exist for all t > 0 , and they stay in the ball of radius ǫ 
around E∗ (i.e., ||Xt − E∗|| < ǫ).

In addition:

Definition 3 We say that E∗ is locally asymptotically stable if it is stable and the solu-
tions Xt with initial state X0 in the ball of radius δ converge to E∗ as t → ∞.

And:

Definition 4 We say that E∗ is stable in the sense of Lyapunov (i.e., Lyapunov sta-
ble) when there exists the continuously differentiable function L(X) such that:

If L̇(X) < 0 and L̇(X) = 0 only when X = E∗ , then E∗ is locally asymptotically stable.

We next analyze the stability of the SIIDR disease-free equilibrium points and show 
that they are Lyapunov stable, if the reproduction number R0 is smaller or equal to one. 
We formally state and prove it in the following theorem:

Theorem 1 If R0 ≤ 1 the disease-free equilibrium point E∗ of the SIIDR system of ODEs 
is Lyapunov stable.

Proof Let L(X) = I + ID , where L is the valid Lyapunov function as long as it is non-
negative continuously differentiable scalar function which equals 0 at the disease-free 
equilibrium point ( I = ID = 0 ). The time-derivative of L is the following:

where we used Eqs. 1 that describe the evolution of I and ID . Therefore, L̇ ≤ 0 (Eq. 4) 
when:

Given the basic reproduction number R0 =
βS
µN  , we obtain:

Eq.  5 holds when R0 ≤ 1 . Hence, L̇ ≤ 0 when R0 ≤ 1 . Furthermore, L̇(E∗) = 0 (since 
I = 0 when X = E∗ ), which concludes the proof that E∗ is a Lyapunov stable disease-free 
equilibrium point.

(3)L(X) ≥ 0, L(E∗) = 0

(4)L̇(X) =
d

dt
L(X) =

∑

i

dL

dxi
fi(X) ≤ 0, L̇(E∗) = 0

L̇ =
dL

dt
=

d(I + ID)

dt
= βS

I

N
− µI ,

I

(

βS

µN
− 1

)

≤ 0

(5)I(R0 − 1) ≤ 0
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Note that L̇(X) = 0 when I = 0 , even if X  = E∗ (for instance, if ID  = 0 ). Thus, E∗ is not 
locally asymptotically stable (see Definition 4). �

SIIDR analysis on arbitrary graphs

Our analysis in previous sections was performed under the homogeneous-mixing assump-
tion (Bansal et al. 2007; Vespignani 2012). In this limit, all hosts are well-mixed and poten-
tially in contact. The homogeneous approximation might be a good representation of the 
contact dynamics in a local subnet where each machine can contact anyone else. However, 
the contact patterns in larger networks are complex. Indeed, many real networks (includ-
ing the Internet) feature, among other properties, a heterogeneous connectivity distribu-
tion consisting of a few highly-connected ’hubs’, while the vast majority of nodes have much 
lower connectivity (Albert and Barabási 2002; Pastor-Satorras et al. 2015). In this section, 
we analyze the epidemiological dynamics of the SIIDR model on arbitrary graphs that cap-
ture heterogeneity in host contact patterns. In this case, the propagation of malware can 
be modeled with a discrete-time Non-Linear Dynamical System (Chakrabarti et al. 2008; 
Prakash et al. 2011).

A NLDS system is specified by the vector of probabilities at time step t + 1 as 
Pt+1 = g(Pt) , where g is non-linear continuous function operating on a vector Pt . We 
define the system equations based on the transition diagram of the model (Fig. 3).

First, we are computing the probability of node i of not getting infected at time step t: 
ζi,t(I) , which happens when: (1) none of its neighbors are in state I, or (2) a neighbor is 
in state I but fails to infect i with probability (1− β̃) , where β̃ is the attack transmission 
probability over a contact-link. We note how β̃ is generally different than the infection 
rate β introduced above. Indeed we can approximate β = β̃�k�t where 〈k〉t is the average 
contact rate per unit time. Hence:

Next, we develop the equations for probabilities P of node i to be in each of the pos-
sible states ( S, I , ID,R ) at time step t + 1.

For generality and clarity, we denote by αXY  the probability of a node to transition 
from state X to Y, while αXX is the probability of a node to remain in state X. With this 
notation, the probability equations for each state are as follows:

State S: A node i is in state S at time t + 1 if it was in state S at time t and it did not get 
infected:

State I: A node i is in state I at time t + 1 if either: 1) it was in state S at time t and was 
successfully infected, or 2) it was in state I at time t and it remained there (i.e., it did not 
transition to states R or ID ), or 3) it was in state ID at time t and transitioned to state I.

(6)ζi,t(I) =
∏

j∈Neigh(i)

[(1− PI ,j,t)+ PI ,j,t · (1− β̃)] =
∏

j∈1..N

(1− β̃Ai,jPI ,j,t)

(7)PS,i,t+1 = PS,i,t · ζi,t(I)

(8)PI ,i,t+1 = PS,i,t · (1− ζi,t(I))+ PI ,i,t · αII + PID ,i,t · αIDI
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State ID : A node i is in state ID at time t + 1 if either: 1) it was in state I at time t and tran-
sitioned to state ID , or 2) it was in state ID at time t and it remained there.

State R: We can compute PR,i,t using the relation:

Now we can write down the system of equations for SIIDR using Eqs. 7–10 to define Pt , 
the probability vector that completely describes the evolution of the system at any time 
step t:

Stability analysis

The next step in our analysis of the SIIDR propagation on complex networks represented 
as arbitrary graphs is to define the disease-free equilibrium points and analyze their 
stability.

Definition 5 An equilibrium point of NLDS is the probability vector P∗ that satisfies 
Pt+1 = Pt = P∗ for any t (Verhulst 2006).

Thus, for the SIIDR model we can define the disease-free equilibrium point as follows:

One way to analyze the stability of the equilibrium point of a non-linear dynamical sys-
tem is to approximate its dynamics at that point as a linear dynamical system (i.e., lin-
earization) (Sayama 2015). In this case, the system behavior in an infinitesimally small 
area about the equilibrium point is approximated with a Jacobian matrix.

The largest eigenvalue �J of the Jacobian matrix indicates whether the equilibrium 
point of the system is stable or not. Since we are considering the time as discrete, if 
|�J | < 1 , the equilibrium point is asymptotically stable; even if small perturbations occur, 
the system asymptotically goes back to the equilibrium point. If |�J | > 1 , the system is 
unstable and diverges away from the equilibrium point. If |�J | = 1 , then the system may 
either diverge from, or converge to the equilibrium point (Bof et al. 2018; Dahleh et al. 
2004; Haddad and Chellaboina 2011; Sayama 2015).

The Jacobian matrix of SIIDR modeled as NDLS and an analysis of its eigenvalues is 
presented in Appendix 3. We show that one of the eigenvalues of the Jacobian has value 
1. This result is particularly significant. Asymptotic stability requires all the eigenvalues 
of the Jacobian matrix to be less than 1 in absolute values. Since the Jacobian matrix has 
at least one eigenvalue of value 1, the equilibrium point of the NLDS system cannot be 
asymptotically stable. However, the equilibrium point can still be Lyapunov stable.

(9)PID ,i,t+1 = PI ,i,t · αIID + PID ,i,t · αIDID

(10)∀i, t : PS,i,t + PI ,i,t + PID ,i,t + PR,i,t = 1

(11)

PS,i,t+1 = PS,i,t · ζi,t(I)

PI ,i,t+1 = PS,i,t · (1− ζi,t(I))+ PI ,i,t · αII + PID ,i,t · αIDI

PID ,i,t+1 = PI ,i,t · αIID + PID ,i,t · αIDID
PR,i,t+1 = 1− PS,i,t − PID ,i,t · (αIDI + αIDID )− PI ,i,t · (αII + αIID )

P∗ = [PS , 0, 0,PR]
T
, where PR + PS = 1
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We show that the equilibrium points of SIIDR are indeed Lyapunov stable using Lya-
punov’s second stability criterion.

Definition 6 The equilibrium point P∗ of Pt+1 = g(Pt) NLDS is Lyapunov stable if 
there exists a continuous function L, such that for any t:

Theorem 2 The equilibrium points of SIIDR represented as NLDS of the form (11) are 
Lyapunov stable if:

where �A is the largest eigenvalue of the adjacency matrix, β̃ and µ are probabilities of 
infection and recovery respectively.

The proof of Theorem 3 is presented in Appendix 4.

Experimental results
In this section, we present the reconstruction of WannaCry dynamics from network 
logs captured with Zeek monitoring tool  (The Zeek Project 2023). Additionally, we 
show supporting results that confirm that the SIIDR model fits WannaCry traces best. 
We also present our experiments for parameter estimation, providing the statistics 
from the posterior distribution of SIIDR transition rates. These results expand the 
results presented in our previous work where we introduced SIIDR model (Chernik-
ova et al. 2022). Moreover, we study the basic reproduction number R0 of the recon-
structed attacks to understand its correlation with SPM dynamics (in particular, its 
propagation speed). We also discuss the issue of structural and practical identifiabiil-
ity of SIIDR parameters which is common in epidemiological modeling. Finally, we 
experimentally demonstrate that the condition for Lyapunov stability of the disease-
free equilibrium point holds when the networks are modeled as arbitrary graphs 
relaxing homogeneous mixing assumption.

WannaCry malware traces

We obtained realistic WannaCry attack traces by running the malware in a controlled 
virtual environment consisting of 51 virtual machines, configured with a version of Win-
dows vulnerable to the EternalBlue SMB exploit. The external traffic generated by the 
VMs was blocked to isolate the environment and prevent external malware spread. The 
infection started from an initial victim IP, and then the attack propagated through the 
network as the infected IPs began to scan other IPs. In these experiments, WannaCry 
varied the number of threads used for scanning, which were set to 1, 4 or 8, and the 
time interval between scans, which was set to 500ms, 1  s, 5  s, 10 s or 20 s. Using the 

(12)L(P) > 0, L(P∗) = 0

(13)L(Pt+1)− L(Pt) ≤ 0

(14)�A
β̃

µ
≤ 1
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combination of these two parameters resulted in 15 WannaCry traces. While running 
WannaCry with this setup, the log traces were collected with the help of the open source 
Zeek network monitoring tool.

WannaCry reconstruction

To reconstruct the WannaCry dynamics we are using Zeek communication logs where 
we consider only communication between internal IPs. Since WannaCry attempts to 
exploit the SMB vulnerability, we label as malicious all the attempts of connections on 
destination port 445. The first attempt to establish the malicious connection is consid-
ered to be the start of the epidemics, and the end corresponds to the last communication 
event in the network. Each IP trying to establish a malicious connection for the first time 
at time t is considered infected at time t. The cumulative number of infected IPs through 
time represents the curve of the WannaCry epidemics.

WannaCry dynamics

We show the dynamics of WannaCry variants characterized by different numbers of 
scanning threads and time between scans in Fig. 4. These dynamics represent the cumu-
lative number of infected nodes during the epidemic time. The trace which corresponds 
to 1 thread and 20 s sleeping time wc_1_20s has unusual behavior in the dynamics. It 
has a very small number of infected nodes until the end of the attack, when the infec-
tions rapidly increase to the 7 infected nodes at once. For all other WannaCry variants 
we observe that the attack reaches the maximum number of infected nodes quickly 
and is not able to infect any other nodes for a large time window before the end of the 
epidemic. These graphs confirm the fact that after an IP enters a recovered state it no 
longer has an opportunity to get back to susceptible or infected nodes. For modeling and 
parameter estimation experiments we exclude the time windows after which the number 

Fig. 4 The cumulative number of the infected nodes I(t) (counting all nodes in states I, ID and R) at each 
time point t of WannaCry propagation for different variants of WannaCry. Each WannaCry variant is identified 
by two parameters: the number of threads used for scanning and the time interval between scans (i.e., 
wc_1_500ms uses 1 thread to scan every 500 ms)
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of infections does not change. Additionally, we present the number of contacted and 
infected IPs in Table  3. Interestingly, the overall percentage of infected nodes is small 
(around 25% on average) for all variants. The possible reason for this is the fact that 
some of the machines that do not get infected may have immunity to the malware.

Model selection

We select the model that fits WannaCry traces best among several representative com-
partmental epidemiological models: SI, SIS, SIR, SEIR and SIIDR assuming an homog-
enous mixing of machines. These models have different number of parameters and, 
therefore, different a-priori explaining power. The SIIDR model is also the one that has 
the largest number of parameters. To allow for a fair comparison among models, we 
considered the Akaike Information Criterion (AIC) as a metric to measure their per-
formance. The AIC is calculated based on the maximum likelihood estimate and the 
number of free model parameters, thus, allowing comparison of models with different 
number of parameters. More information about AIC criteria can be found in “Model 
selection” section in Appendix 5. We perform model selection for all WannaCry traces. 
The lowest AIC score corresponds to the best model. We run the experiments on an uni-
form grid of model parameter values between 0 and 1. We select the lowest AIC score 
for each WannaCry trace and each compartmental model. The results are illustrated in 
Table 4. In bold, we highlight the minimum AIC value across all models for each Wanna-
Cry trace. The SIIDR model has the lowest AIC score for all traces except for wc_1_20s. 
For instance, the AIC score associated with the SEIR model for wc_8_5s WannaCry 
trace is equal to -87, the SIS model score is 104, the SIR model score is -35, whereas for 
the SIIDR model the AIC is the lowest and has the value of -121. This trend is valid for 
all other WannaCry traces except for wc_1_20s where the SEIR model provides the best 

Table 3 Number of contacted and Infected IP adresses from communication data for WannaCry 
modeling

WannaCry variant # Contacted IPs # Infected IPs Fraction of 
infected IPs

wc_1_500 s 37 8 0.22

wc_1_1 s 37 8 0.22

wc_1_5 s 37 8 0.22

wc_1_10 s 34 10 0.29

wc_1_20 s 35 7 0.20

wc_4_500 ms 34 5 0.15

wc_4_1 s 35 8 0.23

wc_4_5 s 36 9 0.25

wc_4_10 s 35 7 0.20

wc_4_20 s 35 5 0.14

wc_8_500 ms 35 7 0.20

wc_8_1 s 35 7 0.20

wc_8_5 s 35 5 0.14

wc_8_10 s 36 6 0.17

wc_8_20 s 35 9 0.26
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fit. However, this variant is an outlier. Therefore, we can conclude that, among the four 
epidemiological models, the SIIDR model fits the WannaCry attack traces best.

For each compartmental model and each WannaCry trace, we plot the reconstruction 
curve of the number of infected nodes using the parameters corresponding to the low-
est AIC score along with the true dynamics of infected nodes. The results are shown in 
Fig.  5. In the case of the SIS model, the orange line (representing the simulated dynam-
ics of the number of infected nodes) is far from the blue one, which illustrates the empir-
ical dynamic for all malware traces. In the case of the SIR and SEIR models the numbers 
of simulated infections are closer to the real ones, however, the SIIDR and actual dynam-
ics curves are the closest.

Parameter estimation

We approximated the posterior distribution of SIIDR transition rates using the ABC-
SMC-MNN technique  (Filippi et  al. 2013). The details of this technique are described 
in “Posterior distribution of transition rates” in Appendix  5. The mean values and 
standard deviation of the posterior distribution of SIIDR transition rates ( β , µ , γ1 , γ2 ) 
are represented in Table 5. The parameter dt is the integration step, which is calculated 
as: dt = (tN − t0)/T  , where tN is the last timestamp, t0 is the first timestamp, and T is 

Table 4 AIC scores for each of the SPM models for different WannaCry variants

Lower is better

WannaCry variant SIS SIR SEIR SIIDR WannaCry variant SIS SIR SEIR SIIDR

wc_1_500 ms 143 114 − 8 − 126 wc_4_10 s 94 − 36 − 78 − 145
wc_1_1 s 188 145 − 10 − 127 wc_4_20 s 76 11 − 26 − 117
wc_1_5 s 163 143 121 72 wc_8_500 ms 101 18 − 120 − 147
wc_1_10 s 197 53 69 − 92 wc_8_1 s 91 51 − 99 − 116
wc_1_20 s 559 696 − 63 700 wc_8_5 s 104 − 35 − 87 − 121
wc_4_500 ms 76 − 45 − 143 − 166 wc_8_10 s 74 − 90 − 92 − 118
wc_4_1 s 160 107 − 17 − 55 wc_8_20 s 164 173 105 − 89
wc_4_5 s 186 158 28 − 46

Fig. 5 Model fitting for different WannaCry variants
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the number of timestamps in WannaCry traces. dt differs by variant due to the different 
propagation speeds. The attack transmission probability β̃ is related to attack transmis-
sion rate β as follows: β = β̃�k�t where 〈k〉t is the average contact rate per unit time. In 
the WannaCry traces we have one communication or contact per dt, hence, the trans-
mission probability β̃ over a contact-link also equals β.

Based on estimated values of transition rates we calculated the basic reproduction 
number R0 for all WannaCry traces. We also calculate the SPM propagation speed for 
all WannaCry traces as the average number of new infections per 100 s. The results are 
illustrated in Fig. 6. As expected, we observe that higher SPM propagation speed corre-
sponds to a higher basic reproduction number R0.

Table 5 Statistics from posterior distribution of SIIDR parameters estimated with the ABC‑SMC‑MNN 
method

WannaCry β µ γ1 γ2 dt
variant (mean, std) (mean, std) (mean, std) (mean, std)

wc_1_500 ms (0.16, 0.10) (0.11, 0.11) (0.79, 0.15) (0.06, 0.07) 0.09

wc_1_1 s (0.16, 0.11) (0.11, 0.10) (0.80, 0.15) (0.06, 0.06) 0.06

wc_1_5 s (0.05, 0.03) (0.04, 0.03) (0.82, 0.12) (0.02, 0.01) 0.16

wc_1_10 s (0.13, 0.08) (0.08, 0.07) (0.80, 0.15) (0.05, 0.04) 0.09

wc_1_20 s (0.22, 0.20) (0.63, 0.24) (0.46, 0.28) (0.51, 0.29) 0.99

wc_4_500 ms (0.45, 0.26) (0.66, 0.24) (0.53, 0.28) (0.47, 0.29) 0.05

wc_4_1 s (0.17, 0.13) (0.11, 0.13) (0.79, 0.17) (0.07, 0.07) 0.05

wc_4_5 s (0.14, 0.10) (0.09, 0.08) (0.76, 0.18) (0.07, 0.07) 0.07

wc_4_10 s (0.20, 0.17) (0.23, 0.20) (0.74, 0.20) (0.07, 0.08) 0.10

wc_4_20 s (0.43, 0.26) (0.65, 0.24) (0.50, 0.29) (0.51, 0.29) 0.14

wc_8_500 ms (0.17, 0.14) (0.16, 0.16) (0.79, 0.15) (0.07, 0.08) 0.03

wc_8_1 s (0.17, 0.14) (0.16, 0.16) (0.76, 0.17) (0.09, 0.09) 0.03

wc_8_5 s (0.45, 0.27) (0.63, 0.24) (0.47, 0.28) (0.48, 0.29) 0.07

wc_8_10 s (0.47, 0.26) (0.63, 0.24) (0.49, 0.29) (0.46, 0.29) 0.06

wc_8_20 s (0.14, 0.10) (0.09, 0.09) (0.80, 0.15) (0.07, 0.06) 0.07

Fig. 6 The basic reproduction number R0 calculated by using estimated values of transition rates compared 
to the speed of SPM propagation. Higher propagation speed corresponds to higher R0 . We exclude the 
results for the wc_1* traces
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The mean values of the parameters’ posterior distribution can be further used to simu-
late SPM with the SIIDR model. This provides an opportunity to create synthetic, but 
realistic, WannaCry scenarios and evaluate whether existing defenses are successful in 
preventing and stopping the malware from propagation in the networks. However, we 
notice that some of the WannaCry attack variants affect only a small number of nodes. 
For example, the wc_8_5s trace has only 4 infected nodes at the end of the trace which 
constitutes 14% of all nodes. Consequently, ABC-SMC-MNN is expected to perform 
worse in the estimation of transition rates for such traces. Thus, parameters estimated 
from the traces with higher numbers of infections are more reliable.

Identifiability of SIIDR transition rates

As long as the goals of modeling with SIIDR include inferences about the underlying 
propagation process, we are interested in the estimation of SIIDR parameter distribution 
corresponding to model outputs that best fit the observed data. However, parameters’ 
estimation can only produce robust results if the model is identifiable meaning that it is 
possible to obtain a unique solution for all unknown parameters given the model struc-
ture and output. On the other hand, if parameters are not identifiable their similar values 
may yield considerably different model outputs (Chis et al. 2011; Tuncer and Le 2018).

The common problem of data uncertainty forces the issue of parameter identifiability 
to appear relevant in epidemiological modeling  (Chowell 2017; Gallo et al. 2022; Weitz 
and Dushoff 2015; Valdez et al. 2015). The lack of identifiability in the model parameters 
may prevent reliable predictions of the epidemic dynamics. Therefore, it becomes cru-
cial to investigate the parameter identifiability, and its limitations and propose solutions 
to improve it.

There exist notions of structural and practical identifiability. Structural identifiabil-
ity is a property of the model structure itself given that the model is error-free and the 
observed data has no noise. Practical identifiability is connected to the quality of data 
leveraged for parameter estimation. It measures whether there is enough information to 
infer the transition rates (Dankwa et al. 2022).

We addressed the structural SIIDR parameters identifiability using the method of dif-
ferential algebra (Chis et al. 2011; Miao et al. 2011) with the help of DAISY (Bellu et al. 
2007) and SIAN (Hong et al. 2020; Ilmer et al. 2021) software and achieved the following 
result:

Theorem  3 All parameters of the SIIDR model are globally structurally identifiable 
when incidence represents the output of the model and the size of population N is known. 
Otherwise, parameters N and β appear to be structurally non-identifiable while µ, γ1 and 
γ2 remain identifiable.

Therefore, we consider the SIIDR model to be structurally identifiable as long as 
the size of the computer networks is usually known. More information about SIIDR 
structural identifiability along with the results from DAISY software can be found in 
Appendix 2.

However, even when the model parameters are structurally identifiable, they may 
still be non-identifiable in practice due to the limited number of observed variables, 
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the quality of data used for estimation, and the complexity of the model (the number of 
parameters that are jointly estimated).

To investigate practical identifiability we looked at the joint posterior distribution 
of SIIDR parameters. The plots can be found in “Joint posterior distributions of SIIDR 
parameters” in Appendix  2. For some of the WC variants, there exists a correlation 
between parameters β and µ . Additionally, some of the joint posterior distributions pos-
sess multimodality. Although on average the issue of non-identifiability is not dominant, 
it might appear in some parts of the phase space of the SIIDR model. One reason for this 
behavior is that the incidence represents the output of the fitted model and appears to 
be insufficient to characterize the whole model’s dynamic. On the other hand, SIIDR has 
four parameters estimated jointly, therefore, it may contain multiple sets of parameters 
that lead to the same output of the model. Hence, measuring the data about other states 
rather than just the number of infected nodes as a function of time to characterize the 
system dynamics more extensively, should improve the practical SIIDR identifiability.

Threshold evaluation

In this section, we evaluate the conditions of SIIDR model equilibrium points to satisfy 
the Lyapunov stability. Specifically, we are interested in the equilibrium point which cor-
responds to the start of epidemics, when all nodes in the network have the following 
probability vector to appear in all of the states of SIIDR model P∗ = {�1, �0, �0, �0} . We study 
the stability of this point after the infection of the initial node by SPM (i.e., the system 
initial state P0 lies in the ball of radius δ around P∗ ) by looking at the density of recovered 
nodes w.r.t to the stability threshold s and associated infection propagation dynamics Pt.

We evaluate stability conditions on the variety of synthetic and real-world networks 
described in the following subsection.

Graphs characteristics

We consider synthetic networks generated with Barabási-Albert (BA)  (Barabási and 
Albert 1999), Erdős-Rényi (ER) (Erdős and Rényi 1959), Watts-Strogatz (WS) (Watts and 
Strogatz 1998), Configuration Model (CM) (Newman 2003), and Scale-free (SF) (Bara-
bási 2009) models along with three real-world graphs  (Leskovec et  al. 2005; Leskovec 
and Mcauley 2012; Leskovec et  al. 2007). Real-world graphs include networks gener-
ated using Facebook data (Facebook), autonomous systems peering information inferred 
from Oregon route views (Oregon), and anonymized traffic data about incoming and 
outgoing emails between members of the European research institution (Email). All syn-
thetic graphs have 1000 nodes and different topological characteristics. Thus, ER graphs 
have different leading eigenvalues that range from 11 to 999, BA networks have the lead-
ing eigenvalue between 35 and 508, and WS graphs - between 10 and 900. ER, BA, and 
WS networks have only one connected component. They have a larger diameter and 
average path length, and smaller density and transitivity in the graphs with smaller lead-
ing eigenvalues. CM and SF networks have more connected components and the val-
ues of other topological characteristics are similar to ER, BA, and WS graphs with small 
leading eigenvalues.

More details about the topological characteristics of considered networks are pre-
sented in Table 6.
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Phase transition

To illustrate the results of Theorem 2 we plot the final number of recovered nodes in the 
network with respect to the threshold values s = �A ∗ β/µ in the range from 0 to 2. We 
achieve these results by fixing the transition rates µ = 0.5, γ1 = 0.5, γ2 = 0.5 and chang-
ing the value of β . For ER, BA and WS graphs infection propagation starts from one 

Table 6 Topological Characteristics of Graphs Generated for the Stability Condition Evaluation.ER 
is Erdő?s‑Rényi graph, BA is Barabási‑Albert graph, WS is Watts‑Strogatz graph, CM is Configuration 
Model graph, SF is scale‑free graph. Dm, T, Dn is the diameter, transitivity, and density of the graph 
correspondingly

Graph Number of Nodes Number of Edges �A Dm T Dn Avg. 
Path 
Length

ER 1000 5054 11 5 0.01 0.005 3.2

ER 1000 49304 100 3 0.1 0.05 1.9

ER 1000 249540 500 2 0.5 0.25 1.5

ER 1000 499500 999 1 1 0.5 1

BA 1000 9900 35 4 0.06 0.01 2.6

BA 1000 47500 130 3 0.17 0.05 1.9

BA 1000 90000 222 2 0.27 0.09 1.8

BA 1000 187500 508 2 0.5 0.19 1.6

WS 1000 5000 10 7 0.48 0.005 4.4

WS 1000 50000 100 3 0.56 0.05 2.0

WS 1000 250000 500 2 0.63 0.25 1.5

WS 1000 299500 900 1 1 0.5 1

CM 1000 995 9 21 0.01 0.001 6.6

SF 1000 2165 22 7 0.03 0.002 3.2

Email 265214 365570 103 14 0.004 0.00001 4.1

Facebook 4039 88234 162 8 0.52 0.005 3.7

Oregon 11174 23409 60 10 0.01 0.0002 3.6

Fig. 7 The mean value of recovered nodes R with 50% and 95% reference ranges obtained from numerical 
simulations of the SIIDR model on Erdős‑Rényi networks with respect to threshold �1 ∗ β/µ value
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initially infected node, for SF, CM and real-world networks the fraction of infected nodes 
at t = 1 is 0.05. We average results over 100 stochastic realizations that we run consid-
ering 50 different seeds. Resulting phase transition plots are illustrated in Figs. 7, 8, 9, 
and 10.

For all types of graphs, the total fraction of recovered nodes is negligible for values of 
s < 1 . As predicted by the theory, the epidemic threshold is s ∼ 1 . In the case of SF, CM, 
and real networks (see Fig. 10), the threshold appears to be for s < 1 . However, we note 
how in order to obtain macroscopic outbreaks in these graphs, we started the simula-
tions with 5% of initially infected seeds, instead of a single one as done for the other net-
works. Hence, also for these networks, the phase transition takes place for s ∼ 1.

Fig. 8 The mean value of recovered nodes R with 50% and 95% reference range obtained from numerical 
simulations of the SIIDR model on Barabási‑Albert networks with respect to threshold �1 ∗ β/µ value

Fig. 9 The mean value of recovered nodes R with 50% and 95% reference range obtained from numerical 
simulations of the SIIDR model on Watts‑Strogatz networks with respect to threshold �1 ∗ β/µ value
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In general, networks with larger diameters and average path lengths, smaller den-
sity, and transitivity have a smaller fraction of recovered nodes during the infection 
propagation.

These results demonstrate that for all t the solution Pt stays in some ball of radius ǫ from 
the starting equilibrium point P∗ = P0 when s < 1 , therefore, it is Lyapunov stable. Moreo-
ver, we see that SIIDR behaves the same as the SIR model in terms of the stability of equilib-
rium points: when the threshold s is less than one the SIIDR system solution converges to 
DFE when t tends to infinity. It can be explained by the fact that SIIDR model is very similar 
to a SIR model except for the particular configuration of transition rates.

Conclusions
We performed a comprehensive analysis of a new compartmental model, SIIDR, that cap-
tures the behavior of self-propagating malware. We showed that SIIDR fits real-world Wan-
naCry traces much better than existing compartmental models such as SI, SIS, SIR, and 
SEIR (which were previously studied in the literature). Additionally, we estimated the poste-
rior distribution of the model’s parameters for real attack traces and showed how they char-
acterize the WannaCry behavior. We also analytically derived the conditions when SPM is 
expected to become an epidemic and discussed the stability of model’s disease-free equi-
librium points. Our work demonstrates the impact of modeling the propagation of SPM, 
simulating real attacks on networks, and evaluating defensive techniques.

Appendix 1 Compartmental models of epidemiology
SI model

The SI model is used to describe diseases where infection is permanent. It features two 
compartments and one transition. The susceptible compartment S represents healthy 

Fig. 10 The mean value of recovered nodes R with 50% and 95% reference range obtained from numerical 
simulations of the SIIDR model on real‑world networks along with scale‑free and configuration model graphs 
with respect to threshold �1 ∗ β/µ value
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individuals that interacting with infectious individuals in the compartment I can get 
infected ( S + I → 2I ). It can be translated in the following system of ODEs:

Due to the homogeneous mixing assumption, the per capita rate at which susceptible 
individuals get infected can be written as the probability of interacting with an infected 
individual (I/N) times the transmission rate of the disease β . The state diagram for the SI 
model is shown in Fig. 11.

SIS model

The SIS model features two compartments and two transitions. Beside the infection 
process as in the SI model, SIS models have also a recovery process: infected individu-
als spontaneously recover at rate µ becoming susceptible to the disease again ( I → S ). 
Hence SIS models are used for diseases that can infect individuals multiple times. The 
system of ODEs associated with SIS model is:

Note how, differently from infection, the recovery process is spontaneous and does not 
require any interaction. Hence, each infected individual has an average duration of infec-
tion of µ−1 . The state diagram for SIS model is shown in Fig. 12.

dS

dt
= −βS

I

N
dI

dt
= βS

I

N

dS

dt
= −βS

I

N
+ µI

dI

dt
= βS

I

N
− µI

Fig. 11 Schematic representation of the SI model

Fig. 12 Schematic representation of the SIS model
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SIR model

The SIR model describes diseases that give permanent (or long-lasting) immunity. It 
features three compartments and two transitions. Differently from SIS models, within 
the SIR framework infected individuals that are no longer infectious transition to the 
recovered compartment R. The system of differential equations corresponding to the SIR 
model is the following:

The state diagram for the SIR model is represented in Fig. 13.

SEIR model

The SEIR model describes diseases where susceptible individuals S remain exposed E after 
interaction with infected I individual before becoming infectious themselves. It features 
four compartments and three transitions. The system of differential equations correspond-
ing to the SEIR model is the following:

The state diagram for the SEIR model is represented in Fig. 14.

dS

dt
= −βS

I

N
dI

dt
= βS

I

N
− µI

dR

dt
= µI

dS

dt
= −βS

I

N
dE

dt
= βS

I

N
− γE

dI

dt
= γE − µI

dR

dt
= µI

Fig. 13 Schematic representation of the SIR model

Fig. 14 Schematic representation of the SEIR model
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Appendix 2 Identifiability of SIIDR transition rates
SIIDR model can be represented as follows:

where t0 ≤ t ≤ T  , Ẋ(t) is a system of ODEs, X(t) is a vector of time-varying diseases 
states and the unique solution to the system Ẋ(t) , θ ∈ � is a vector of constant unknown 
model parameters, Y(t) is a vector of time-dependent model outputs, g is the measure-
ment equation which defines the relationship between X(t), θ and Y, and X0 is a vector of 
the known initial conditions.

Definition 7 A parameter θ is structurally globally identifiable if ∀ θ∗ ∈ �:

Definition 8 A parameter θ is structurally locally identifiable if ∀ θ∗ ∈ � , there exists a 
neighbourhood �(θ) such that

A variety of methods exists to evaluate the structural and practical identifiability of 
parameters. In our work, we leveraged the method of differential algebra implemented 
in DAISY (Bellu et al. 2007) and SIAN (Hong et al. 2020; Ilmer et al. 2021) software to 
address the structural identifiability of SIIDR. We looked at the joint posterior distri-
bution of SIIDR parameters to address the issue of practical identifiability. We discuss 
SIIDR identifiability results in the following subsections.

Differential algebra approach for structural identifiability

In this section, we show the results for structural identifiability of SIIDR parameters 
achieved with the differential algebra approach implemented in DAISY software. Fig-
ures 15, 16 represent the input and output of the DAISY software when the number of 
infected nodes is the output variable Y(t). Figures 17, 18 show the results from DAISY 
software in the situation when the sum of infected, infected dormant, and recov-
ered nodes is the output variable. When the size of the population N is known, we can 
exclude it from the ODE equations and consider β = β/N  to be the unknown parame-
ter. In both cases all parameters of the SIIDR model are globally structurally identifiable. 
Figures 19, 20 show the results when the N is the unknown parameter. In this sutiation, 
parameters β and N are not identifiable, however, µ, γ1, γ2 remain identifiable.

(15)SIIDR :=







Ẋ(t) = f (X(t), θ)
Y (t) = g(X(t), θ)
X0 = X(t0)

SIIDR(θ∗) = SIIDR(θ) ⇒ θ∗ = θ

θ∗ ∈ �(θ) ∨ SIIDR(θ∗) = SIIDR(θ) ⇒ θ∗ = θ



Page 28 of 43Chernikova et al. Applied Network Science            (2023) 8:52 

Joint posterior distributions of SIIDR parameters

In this subsection, we illustrate the joint posterior distribution for SIIDR parameters. 
The plots for wc_4_500ms variant are in Figs.  21,  22. In this case, joint posterior dis-
tribution has multiple modes which means that the parameters value are not uniquely 
identifiable. The results for wc_8_20s are illustrated in Figs. 23, 24. In this situation, β 
and µ parameters are correlated. In Figs. 25, 26 we show the results for wc_1_5s variant. 
The posterior joint distribution of β and µ parameters are not correlated and there is no 
multimodality.

Fig. 15 Input for DAISY to evaluate the SIIDR structural identifiability of parameters when output is the 
number of infected individuals

Fig. 16 SIIDR structural identifiability of parameters achieved with DAISY when output is the number of 
infected individuals
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Fig. 17 Input for DAISY to evaluate the SIIDR structural identifiability of parameters when output is the sum 
of infected, infected dormant and recovered individuals

Fig. 18 SIIDR structural identifiability of parameters achieved with DAISY when output is the sum of infected, 
infected dormant and recovered individuals

Fig. 19 SIIDR structural identifiability of parameters achieved with DAISY when output is the sum of infected, 
infected dormant and recovered individuals and the size of population N is unknown



Page 30 of 43Chernikova et al. Applied Network Science            (2023) 8:52 

Fig. 20 SIIDR structural identifiability of parameters achieved with DAISY when output is the sum of infected, 
infected dormant and recovered individuals and the size of population N is unknown

Fig. 21 Joint posterior distribution for SIIDR parameters for wc_4_500ms variant

Fig. 22 Joint posterior distribution for SIIDR parameters for wc_4_500ms variant

Fig. 23 Joint posterior distribution for SIIDR parameters for wc_8_20s variant
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Appendix 3 Linearization of SIIDR as NLDS
The Jacobian matrix J  at the equilibrium point P∗ is defined as:

where Ji,j = [∇g(P∗)]i,j =
∂gi
∂pj

|P=P∗.

We calculate the partial first order derivatives of our equation system and obtain 
the Jacobian matrix:

(16)J = ∇g(P∗),

Fig. 24 Joint posterior distribution for SIIDR parameters for wc_8_20s variant

Fig. 25 Joint posterior distribution for SIIDR parameters for wc_1_5s variant

Fig. 26 Joint posterior distribution for SIIDR parameters for wc_1_5s variant
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The size of the Jacobian matrix is 4N × 4N  , where N is the number of nodes in the 
graph. Every row has 4 elements of size N × N  . We use the following notation: I is the 
identity matrix of size N × N  and O is a matrix of size N × N  with all zeros. A is the 
adjacency matrix of the network represented as a graph, of size N × N .

The first row is a linear combination of the other rows, thus:

Let us represent the Jacobian matrix as follows:

where Q1 , Q2 , Q3 , O are matrices of size N × N  , 2N × N  , 2N × 2N  , 2N × N  respectively:

Let �v of size 3N × 1 and �J  be the eigenvector and the eigenvalue of J respectively. 
Then we can define �v to be composed of �v1 of size N × 1 and �v2 of size 2N × 1:

�v and �J satisfy the following equation:

which results in:

Eq. 23 implies that:

From Eq. 25 we have: 

1. �v2 = �0 , or
2. �v2 is the eigenvector of Q3 and �J is the eigenvalue of Q3.

(17)J =









O − I − (αIDI + αIDID )I − (αII + αIID )I

O I O − xS β̃A
O O αIDIDI αIIDI

O O αIDI I xS β̃A+ αII I









(18)J =





I O − xS β̃A
O αIDIDI αIIDI

O αIDI I xS β̃A+ αII I





(19)J =

[

Q1 Q2

O Q3

]

(20)Q1 = I, Q2 =
[

O −xS β̃A
]

, Q3 =

[

αIDIDI αIIDI

αIDI I xS β̃A

]

(21)�v =

[

�v1
�v2

]

(22)J�v = �J �v

(23)
[

Q1 Q2

O Q3

] [

�v1
�v2

]

= �J

[

�v1
�v2

]

(24)Q1 · �v1 + Q2 · �v2 = �J · �v1

(25)Q3 · �v2 = �J · �v2
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We look at the first case into more detail: if v2 = 0, from Eq.  24, we obtain that 
Q1 · �v1 = �J · �v1 . That means either: (a) �v1 = 0 , which is not feasible, because in this 
case �v = �0 , or (b) �J  is the eigenvalue of Q1.

Thus, the eigenvalues of the Jacobian matrix can be represented as eigenvalues of 
matrix Q1 (when �v2 = 0) and eigenvalues of matrix Q3 . Given the structure of Q1 (i.e., 
identity matrix of size N × N  ), the eigenvalues of Q1 are equal to �1 . Thus, we can 
conclude that the Jacobian matrix has at least one eigenvalue equal to 1.

Appendix 4 SIIDR stability as the system of NLDS
Theorem 4 The equilibrium points of SIIDR represented as NLDS of the form (11) are 
Lyapunov stable if:

where �A is the largest eigenvalue of the adjacency matrix, β̃ and µ are probabilities of 
infection and recovery respectively.

Proof System (11) can be reduced to the first three equations because of linear depend-
ency of PR,i,t+1 on other equations, and has the following representation in the matrix 
form:

where matrices C and PT
t BPt of size 3N × 3N  correspond to the linear and non-linear 

part of the system, respectively. PT = {PT
1 ,P

T
2 ,P

T
3 } is a 3N × 9N  matrix, where PT

i  is a 
3N × 3N  matrix with non-zero ith row PS ,PI ,PID:

B = {Bi}
3
i=1 is a 9N × 3N  matrix where Bi = {bkl}

3
k ,l=1

 has the size of 3N × 3N  . Based on 
our system representation (11) matrix C is the following:

and matrix B is:

(26)�A
β̃

µ
≤ 1

g(Pt+1) = CPt + P
T
t BPt

P
T
i =





O O O

PS PI PID
O O O





C =





I O O

O αII I αIDI I

O αIIDI αIDIDI
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where A is the adjacency matrix of the corresponding graph.

Let L be the continuous function equal to PTK  , where K is the 3N × 1 matrix:

Then

L is positive definite because it is equal to the sum of probabilities of all nodes in the 
graph be infected or infected dormant. The finite difference (13) in this case is equal to:

where:

and

B =



























O O O

−β̃A O O

O O O

O β̃A O

O O O

O O O

O O O

O O O

O O O



























K =





O

1

1





L(P) =
�

PS PI PID

�





O

1

1





=

N
�

i=1

(PI + PID )i

L(Pt+1)− L(Pt) = P
T

k+1
K − P

T
t K

= [CPt + P
T
t BPt ]

T
K − PtK

= P
T [CT

K + B
T
P

T
K − K ]

C
T
K =





I O O

O αII I αIIDI

O αIDI I αIDIDI









O

1

1





=





O

αII I+ αIIDI

αIDI I+ αIDIDI





=





O

1− µ1

1
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thus,

which results in the condition:

or

where PI is the 1× N  vector of node probabilities to be infected, PS is the 1× N  vector of 
node probabilities to be susceptible, and A is the adjacency matrix of the corresponding 
graph. Expression (27) means that the sum of probabilities of nodes to recover should be 
greater than the sum of probabilities of nodes to become infected at each time step for 
the equilibrium points of the system (11) to be Lyapunov stable.

As long as the maximum value of probabilities in the vector PS is 1, it is true that:

So if we prove that:

the condition (27) will be satisfied.

This condition can also be formulated by incorporating the nodes’ degrees as follows:

BT
P

TK =



























O O O

−β̃A O O

O O O

O β̃A O

O O O

O O O

O O O

O O O

O O O



























T





O PS O

O PI O

O PID O









O

1

1





=





O

β̃PSA
O





CTK + BT
P

TK − K =





O

−µ1+ β̃PSA
O





�

PS PI PID
�





O

−µ1+ β̃PSA
O



 ≤ 0

(27)PI [β̃PSA− µ1] ≤ 0

(28)β̃PSA ≤ β̃1A

(29)PI [β̃1A− µ1] ≤ 0

(30)PI [β̃D− µ1] ≤ 0
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where D is the 1× N  vector where each element di is equal to the degree of the node i in 
the graph.

As long as the maximum value of probabilities in the vector PI is 1, it is true that:

So if we prove that:

the condition (27) will be satisfied. Condition 32 can be rewritten as follows:

or

It is known that the largest eigenvalue �A has the following lower bound in the case of an 
arbitrary graph:

where dave is the average degree of the graph. Therefore it is true that

Hence if the following condition:

is satisfied, then the DFE equilibrium point will be Lyapunov stable on an arbitrary 
graph. �

Appendix 5 Model fitting and parameter estimation
In this section, we present the methodology used to compare different epidemic models 
in reproducing real WannaCry attack traces. Our method leverages the Akaike Informa-
tion Criterion (AIC) Akaike (1974) to select the model that best fits the spreading caused 
by WannaCry malware. We also discuss how we estimate the posterior distribution of 
the SIIDR transition rates using an Approximate Bayesian Computation approach based 
on Sequential Monte Carlo (ABC-SMC) Filippi et al. (2013), McKinley et al. (2018), Toni 
et al. (2009).

(31)PI β̃D ≤ 1β̃D

(32)1β̃D− µ1 ≤ 0

(33)
β̃
∑N

i di

Nµ
≤ 1

(34)
β̃dave

µ
≤ 1

(35)dave ≤ �A

(36)
β̃dave

µ
≤

β̃�A

µ

(37)
β̃�A

µ
≤ 1
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Model selection

We use the AIC as guiding criterion to compare SIIDR to other epidemiological models, 
namely SI, SIS, SIR. The AIC is calculated based on the number of free parameters k and 
the maximum likelihood estimate of the model L as follows:

The first term introduces a penalty that increases with the number of parameters and 
thus discourages overfitting. The second term rewards the goodness of fit that is assessed 
by the likelihood function. For the likelihood function, we use the least squares estima-
tion. The best model is the one with the lowest AIC. In the case of the least squares esti-
mation, the AIC can be expressed as:

where:

and ǫ̂i are the estimated residuals:

with I simt  being the cumulative number of infected nodes from model simulations, and 
Irealt  the cumulative number of infected nodes from real-world observations, at time 
interval t.

We use stochastic simulations (Higham 2001) to obtain a numerical approximation of 
the propagation process described by the system of ODEs. Generally, statistical methods 
such as stochastic simulations are a good approximation for larger systems, while in the 
case of smaller systems stochastic fluctuations become more important. The transitions 
among compartments are implemented through chain binomial processes (Abbey 1952). 
At step t the number of entities in compartment X transiting to compartment Y is sam-
pled from a binomial distribution PrBin(X(t), pX→Y (t)) , where pX→Y (t) is the transition 
probability. If multiple transitions can happen from X (e.g., X → Y  , X → Z ), a multino-
mial distribution is used (e.g., PrMult(X(t), pX→Y (t), pX→Z(t))).

The model selection methodology is summarized in Algorithm 1. We start by creating 
a uniform grid of possible parameter values (lines 2-5). For each model and each set of 
parameter values p = (β ,µ, γ1, γ2) we perform several stochastic experiments simulat-
ing the model dynamics (the run_stochastic_avg procedure). Each stochastic realization 
consists of a time series, where S(t), I(t), ID(t),R(t) represent the number of nodes in 
each state at time interval t during the simulation. The cumulative infection Isim consists 
of the total number of nodes in states I , ID , and R, and is also a time series across all time 
intervals dt. Next, we compute the AIC using equation (38) by comparing the simulated 
to the actual dynamic. We select the minimum AIC score for each model; the best model 
is the one with the minimum AIC score overall.

(38)AIC = 2k − 2 ln L

AIC = 2k + n ln σ̂ 2

(39)σ̂ 2 =

∑T
t=1 ǫ̂

2
i

T

ǫ̂t = I simt − Irealt
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Algorithm 1 SPM model selection

1: procedure model selection
2: β ← 20 equidistant values in (0,1)
3: µ ← 20 equidistant values in (0,1)
4: γ1 ← 10 equidistant values in (0,1)
5: γ2 ← 10 equidistant values in (0,1)
6: for each model m ∈ {SI, SIS, SIR, SIIDR} do
7: for each set p = (β, µ, γ1, γ2) do
8: Si, Ii, IDi, Ri = run stochastic avg(p, h)
9: Isim = Ii + IDi +Ri

10: aic = AIC(Isim, Ireal)
11: end for
12: aicmmin ← mini aic
13: end for
14: aicmin ← minm aic
15: M ← model that corresponds to aicmin

16: return M
17: end procedure

SIIDR Parameters associated with the best AIC score

In Table 7 we show the SIIDR parameters associated with the minimum AIC score for all 
WC variants.

Posterior distribution of transition rates

To find the best set of parameters for the SIIDR model we can approximate the pos-
terior distribution of the parameters using Approximate Bayesian Computation (ABC) 
techniques (Minter and Retkute 2019). These techniques are based on the Bayes rule for 
determining the posterior distribution of parameters given the data:

Table 7 SIIDR parameters associated with the minimum AIC score

WannaCry β µ γ1 γ2

wc_1_500 s 0.01 0.01 0.99 0.12

wc_1_1 s 0.01 0.01 0.66 0.77

wc_1_5 s 0.01 0.11 0.88 0.01

wc_1_10 s 0.01 0.01 0.77 0.55

wc_1_20 s 0.01 0.58 0.55 0.34

wc_4_500 ms 0.01 0.01 0.23 0.34

wc_4_1 s 0.11 0.01 0.89 0.01

wc_4_5 s 0.01 0.01 0.77 0.99

wc_4_10 s 0.01 0.01 0.66 0.45

wc_4_20 s 0.01 0.06 0.66 0.55

wc_8_500 ms 0.01 0.01 0.12 0.66

wc_8_1 s 0.22 0.53 0.34 0.01

wc_8_5 s 0.01 0.01 0.34 0.99

wc_8_10 s 0.01 0.01 0.12 0.66

wc_8_20 s 0.11 0.16 0.55 0.01
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where P(θ) is the prior distribution of parameters that represents our belief about them 
and P(D|θ) is the likelihood function, i.e., the probability density function of the data 
given the parameters. Marginal likelihood of the data P(D) does not depend on θ , and 
therefore the posterior distribution P(θ |D) is proportional to the numerator in (40).

ABC methods are useful when the likelihood function is unknown or is not feasible 
to estimate analytically. The simplest version of ABC techniques is called rejection algo-
rithm and is illustrated in Algorithm 2. Despite it simplicity, the rejection algorithm is 
generally slow at converging. Indeed, each iteration is independent from the previous 
ones and the prior distribution from which parameters are sampled is never updated. 
Furthermore, it is often difficult to decide, a priori, a reasonable threshold value ǫ that 
guarantees both fast convergence and accurate results.

Algorithm 2 ABC-rejection algorithm

1: Sample θ∗ from the prior distribution P (θ).
2: Simulate SPM model D∗ using θ∗.
3: If

∑T
t=1(Dt −D∗

t )
2 ≤ ε accept θ∗, reject otherwise.

4: Repeat until N particles θ∗ = {θ∗j , j = 1, . . . , N} are accepted.

In alternative to the rejection algorithm, we use here a more advanced ABC tech-
nique that leverages Sequential Monte Carlo (ABC-SMC) (Toni et al. 2009; McKinley 
et al. 2018). The ABC-SMC approach iteratively constructs generations of prior dis-
tributions by decreasing the rejection threshold over time. At the first generation, a 
given number of parameter sets (i.e., particles) is accepted from the starting prior dis-
tribution, while each prior distribution used in following generations is obtained as a 
weighted sample from the previous generation θ∗ perturbed through a kernel K (θ |θ∗) . 
Common choices for the kernel are the uniform and multivariate normal distribu-
tions. A kernel with a large variance will prevent the algorithm from being stuck in 
the local modes, but will result in a huge number of particles being rejected, which is 
inefficient. Therefore, we use the multivariate normal distribution, where the covari-
ance matrix is calculated considering M nearest neighbors (MNN) of the particles 
from the previous generation  (Filippi et al. 2013). The ABC-SMC-MNN algorithm is 
illustrated in Algorithm 3.

(40)P(θ |D) =
P(D|θ)P(θ)

P(D)
∝ p(D|θ)P(θ),
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Algorithm 3 SIIDR parameters estimation

Require: G - number of generations, N - number of particles, M - number of nearest
neighbors, ε1 > ε2 > ε3 > · · · > εG - sequence of decreasing tolerance values for
each generation of the particles

1: Set g = 0
2: Set j = 0
3: If g = 0, sample particle θ∗∗ from prior distribution P (θ). Otherwise, sample θ∗

from the previous generation of particles {θg−1} with weights {wg−1} and perturb
to obtain θ∗∗ ∼ K(θ|θ∗)

4: Generate n model simulations D∗∗
l using θ∗ and calculate P̂ (D|D∗∗) =

1/n
∑n

l=1(d(D,D∗∗
l ) < εg)

5: If P̂ (D|D∗∗) = 0 return to step 4
6: Set θjg and calculate weights for the particle:

wj
g =





P̂ (D|D∗∗)P (θ∗∗), g = 1

P̂ (D|D∗∗)P (θ∗∗)∑N
l=1 wl

g−1K(θj
g|θl

g−1)
, g > 1

7: If j < N increment j and go to step 4
8: Normalize weights:

∑N
j=1 w

j
g = 1

9: If g < G increment g and go to step 3
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