
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Gera and London Applied Network Science 2023, 8(1):51
https://doi.org/10.1007/s41109-023-00575-2

Applied Network Science

Detecting and generating overlapping
nested communities
Imre Gera1* and András London1,2

Abstract

Nestedness has been observed in a variety of networks but has been primarily viewed
in the context of bipartite networks. Numerous metrics quantify nestedness and some
clustering methods identify fully nested parts of graphs, but all with similar limitations.
Clustering approaches also fail to uncover the overlap between fully nested subgraphs,
as they assign vertices to a single group only. In this paper, we look at the nestedness
of a network through an auxiliary graph, in which a directed edge represents a nested
relationship between the two corresponding vertices of the network. We present
an algorithm that recovers this so-called community graph, and finds the overlapping
fully nested subgraphs of a network. We also introduce an algorithm for generating
graphs with such nested structure, given by a community graph. This algorithm can
be used to test a nested community detection algorithm of this kind, and potentially
to evaluate different metrics of nestedness as well. Finally, we evaluate our nested com-
munity detection algorithm on a large variety of networks, including bipartite and non-
bipartite ones, too. We derive a new metric from the community graph to quantify
the nestedness of both bipartite and non-bipartite networks.

Keywords: Nestedness, Community detection, Network science

Introduction
Identifying clusters or communities of nodes in graphs is an important problem in
graph-based data mining and network science. The standard methods try to achieve
lots of edges within clusters (or communities) and only a few between distinct clusters
(Schaeffer 2007), imitating concepts of data clustering in statistics and machine learn-
ing (Xu and Tian 2015). In general, this approach works well and provides meaningful
clusters for social networks due to some of their widely observed common properties.
For instance, the number of triangles in a social network is much larger than in a ran-
dom graph with similar edge density, they often show heterogeneous degree distribution
and have small diameters (McGlohon et al. 2011). Taking these properties into account
helps to find the dense parts of the network. Many algorithms rely on maximizing the
modularity function, which measures the quality of a given clustering (Newman and
Girvan 2004), but there are lots of different approaches. While for clustering, where
each node is assigned to exactly one cluster, both bottom-up and top-down type algo-
rithms have been proposed, for community detection, where a node can be a member

*Correspondence:
gerai@inf.u-szeged.hu

1 Department of Computational
Optimization, University
of Szeged, Árpád tér 2,
Szeged 6720, Hungary
2 Department of Operations
Research and Mathematical
Economics, Poznań University
of Economics and Business,
61-875 Poznań, Poland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00575-2&domain=pdf

Page 2 of 26Gera and London Applied Network Science 2023, 8(1):51

of several communities, mostly bottom-up algorithms are used, i.e., smaller initial com-
munities are expanded with new nodes during the community detection process (Bóta
et al. 2010).

On the other hand, some social networks and especially technological or transac-
tion networks generally contain fewer triangles and often have tree-like structures
(Adcock et al. 2013). Therefore, trying to find disjoint dense parts is inadequate in prin-
ciple. Moreover, certain bipartite networks, such as pollination networks of plant spe-
cies and their pollinators or trade networks of countries and their exported/imported
goods, show the presence of special structures such as nestedness (Bastolla et al. 2009;
Mariani et al. 2019; Uzzi 1996; Wright et al. 1997). That is, the nodes of each side of
the bipartite network can be ordered in such a way that the neighborhood of any lower-
ranked node contains the neighborhood of any higher-ranked node. Ecological networks
often display a nested structure in which specialists species (refer to low degree nodes
considering the species’ interaction network) interact with generalists (i.e., high degree
nodes) species, while generalists interact with each other and with specialists, too (Bas-
compte 2010). The ecological concept of nestedness was published first by Darlington
(1943), and it was formally defined by Atmar & Patterson utilizing graph theoretical con-
cepts (Patterson and Atmar 1986). In the field of economics, the bipartite networks of
industrial firms and locations also show a high level of nestedness (Bustos et al. 2012;
Saavedra et al. 2009). At the macroeconomic level, world trade can be described by a
bipartite graph, where nodes represent either countries or products, and weighted edges
between a country and a product represent the ratio related to the total amount of the
product imported or exported. Like other economic networks, the world trade network
is also highly nested (Ermann and Shepelyansky 2013) with the coexistence of global and
regional dynamics in terms of network communities within it Zhu et al. (2014).

Extending the concept of nestedness to unipartite (non-bipartite) networks can
be done in various ways, see e.g., Chapter 2 of Mariani et al. (2019) and London et al.
(2022). Since perfect nestedness is rarely observed in real-world networks, several met-
rics have been proposed to quantify the level of nestedness (Payrató-Borràs et al. 2020;
Ulrich et al. 2009). In this paper we do not aim to review all the relevant literature in
detail, we only refer to the surveys (Csermely et al. 2013; Mariani et al. 2019; Ulrich et al.
2009).

The problem of identifying perfectly nested parts (i.e., nested subgraphs) of a network
has received much less attention in the literature, mostly in the context of image process-
ing only. Junttila and Kaski call a binary matrix (that is, a matrix whose entries are either
zero or one) fully nested if its rows and columns can be reordered such that the ones
are in an echelon form (Junttila and Kaski 2011). They define a binary matrix A fully
k-nested if its columns can be partitioned into k pairwise disjoint submatrices, called
blocks, each of which is fully nested. Given a matrix A, a natural optimization problem is
to find the smallest k such that A is fully k-nested and also to provide a partitioning into
k fully-nested parts. The problem can be solved in polynomial time. Note that any m× n
binary matrix can be considered as the incidence matrix of a bipartite network with m
and n nodes on its respective sides.

Extending the above definition to non-bipartite graphs can be done in several ways,
but much less known about the problem’s complexity. For instance, for a graph G and

Page 3 of 26Gera and London Applied Network Science 2023, 8(1):51

a fixed bipartite graph H, London, Pluhár and Martin defined the concept of induced
H-avoiding coloring (London et al. 2022), meaning that the union of any two color classes
spans an induced H-free graph, and defined χH (G) as the minimum number of colors in
an induced H-avoiding coloring of G. In the case of H = 2K2 (a graph of four vertices
with two non-adjacent edges) this coloring realizes a partitioning of G to bipartite, fully-
nested clusters. Although determining χH (G) is NP-hard, their approach and those we
present in this paper are both applicable to general graphs.

Here we present a novel method that identifies overlapping nested subgraphs and rep-
resents them as paths of a directed graph we call a community graph. We also introduce
a method that generates bipartite graphs with (any) ground-truth overlapping nested
structure, making it possible to generate example nested graphs and test nested com-
munity detection algorithms. Since our algorithm detects nestedness in non-bipartite
graphs, too, in order to be able to quantify nestedness in any graph, we derive a new
metric from the output of our algorithm called vertex presence. To measure the “general-
ist-ness” of a vertex, we derive another metric called vertex position.

The rest of the paper is organized as follows. First, we introduce the core definitions
we are going to use throughout the paper. In the section “Nestedness and community
detection” we introduce an algorithm for detecting overlapping fully nested subgraphs of
an arbitrary input graph. We represent the resulting nested community structure with a
community graph that encodes additional information about the hierarchy and relation-
ship of the nested subgraphs in the network. Then, in “Generation of overlapping com-
munities” section we introduce an algorithm that can generate a class of bipartite graphs
that exhibits the nested community structure of the input community graph. This algo-
rithm may also be suitable for testing nestedness metrics. In the “Experiments” section
we introduce two new metrics to measure nestedness on both node and graph level, and
test our nested community detection algorithm on typical nested and non-nested artifi-
cial and real-world graphs. The artificial graphs are either generated using the algorithm
introduced in the “Generation of overlapping communities” section, or bipartite nested-
ness benchmark networks and non-bipartite community detection benchmark networks
are utilized. Finally, in “Conclusions” we summarize.

Throughout this paper, G = (V ,E) will be a finite and unweighted graph with |V | = n
and |E| = m (with no self-edges, i.e., (i, i) /∈ E ∀i ∈ V), N(i) denotes the neighborhood
of node i and |N(i)| its size, i.e., the degree of i. In the case of directed graphs, we will
denote the incoming neighbors of a node i with in(i) = {j : (j, i) ∈ E} and its outgoing
neighbors with out(i) = {j : (i, j) ∈ E}.

Nestedness

A graph G is fully nested if, for any pair of vertices i, j ∈ V (G) such that j has a higher
or equal degree than i, N (i) ⊆ N (j) holds (Mariani et al. 2019). In other words, the
vertices of G can be ordered such that the respective neighborhoods (as sets) form
a chain. In case of bipartite graphs, the two compared vertices must be in the same
(color) class. If perfect or full nestedness holds for one class, then it holds for the
other. Figure 1a shows a fully nested graph, while Fig. 1b depicts one that is not fully
nested. Observe that the presence of an induced 2K2 , that is two independent edges
(formed by the edges (2, 5), (3, 6) in Fig. 1b, colored in red), is responsible for breaking

Page 4 of 26Gera and London Applied Network Science 2023, 8(1):51

full nestedness. We want to emphasize the use of not fully nested instead of not nested
as graphs may not be fully nested themselves, but may have fully nested subgraphs.
In other words, the definition of nestedness may not hold for the entire graph, but it
might be true for one or more subsets of vertices.

We distinguish between the definitions of nested vertices and nested graphs. As a
building block to define nestedness of graphs, we first define nestedness of a pair of
vertices. The amount (or strength) of nestedness between two vertices can be defined
as

If nest(i, j) = 1 , then N (i) ⊆ N (j) or N (j) ⊆ N (i) , i.e., the nestedness criterion holds for
the given vertices i and j. In the special case of either of the vertices being isolated (where
min |N (i)|, N (j) = 0), we consider the vertices non-nested and define nest(i, j) = 0.

While Eq. 1 is not ideal for measuring the nestedness of the whole graph (it would
require ≈ n2 calculations to get an average nestedness value, for example), we can use
it to find groups of vertices that form perfectly nested subgraphs—which is our ulti-
mate goal.

Existing methods

Clustering to nested parts

One way to find fully nested subgraphs is to use the incidence matrix to identify sub-
matrices of echelon form (Junttila and Kaski 2011)—this, however, works for bipartite
graphs only. Another possibility is to use Eq. 1 and assign vertices to a group where
the pairwise nestedness values are equal to 1. This can be done by, for example, per-
forming a 2K2-free coloring on the graph (London et al. 2022).

All of these methods exhibit the same problem, though. The graph in Fig. 1b contains
two nested subgraphs: one with the vertices {1, 2} and another with {1, 3} . Notice that
vertex 1 is present in both fully nested subgraphs, but we can only assign that vertex to a
single group in the clustering task. This would create two ambiguous cluster structures:
both {{1, 2}, {3}} and {{1, 3}, {2}} are valid clusterings of the same graph. Although this is
not necessarily a problem as one will often search for a single clustering, the resulting
structure does not encode such overlaps, potentially losing valuable information.

(1)nest(i, j) =

∣

∣N(i) ∩N(j)
∣

∣

min
{

|N(i)|,
∣

∣N(j)
∣

∣

} .

Fig. 1 Examples of (a) fully nested and (b) partially nested bipartite graphs. The 2K2 breaking nestedness is
highlighted in red

Page 5 of 26Gera and London Applied Network Science 2023, 8(1):51

Edge‑based nested community detection

We differentiate clustering from community detection based on the number of groups
a vertex can belong to. We refer to clustering when a vertex can be assigned to a sin-
gle group only, as in the previous case, and community detection when vertices can
belong to multiple, and thus potentially overlapping, groups. Note that in our case,
we are looking for a special (or constrained) overlapping community structure, where
each community is a fully nested subgraph.

One method that avoids the problem of nodes being constrained to a single group is
a greedy edge-based community detection algorithm (Gera et al. 2022). This method
first assigns community indices to the edges of the graph. It calculates nest(i, j) for
vertices i and j and if they are nested, the edges of both vertices are assigned to a com-
mon community. Otherwise, the edges of i get a different community index than the
edges of j. In the end, the communities that a vertex i belongs to will be the union of
the communities of its incident edges.

Nestedness in non‑bipartite graphs

Since we are focusing on general—not just bipartite—graphs, we need to take into
account the connection between a vertex pair when measuring their nestedness. This
was not an issue in bipartite graphs, since, by definition, there are no edges between
vertices of the same class.

If we use Eq. 1 to measure nestedness between vertices i and j, and there exists
an edge (i, j) ∈ E(G) , the two vertices will never be considered fully nested, because
i ∈ N (j) and j ∈ N (i) , but i /∈ N (i) and j /∈ N (j) . Thus, nest(i, j) < 1 when (i, j) ∈ E(G) .
This would also mean that the graph in Fig. 2 or even Kn (n ≥ 2), the complete graph
of n vertices, are not fully nested graphs.

The approach we are going to follow when comparing two vertices is to ignore
the edge between them if there exists one. Thus, we may use the following equation
instead of Eq. 1:

Note that considering the existence of edges between nodes when searching for fully nested
parts depends on the application. If we are looking for fully nested bipartite subgraphs in
graphs that are not necessarily bipartite themselves (e.g., as in Junttila and Kaski 2011;
London et al. 2022), the fact that two nodes are connected or not should not be ignored.

(2)nest(i, j) =

∣

∣(N(i) \ j) ∩ (N(j) \ i)
∣

∣

min
{∣

∣N(i) \ j
∣

∣,
∣

∣N(j) \ i
∣

∣

} .

Fig. 2 Example of a non-bipartite, fully nested graph. Nodes 1 and 2 are considered nested, despite them
having an edge (dashed line) between them

Page 6 of 26Gera and London Applied Network Science 2023, 8(1):51

Nestedness and community detection
In this section, we will present an algorithm that retrieves the nested community struc-
ture of the input (bipartite or general) graph. First, we will talk about how the order of
nodes inside nested community structures allows us to store more information com-
pared to traditional communities. We use this additional information to construct a so-
called community graph. Then, we introduce an algorithm that reconstructs not only the
nested communities, but the entire community graph from an arbitrary input graph.

While in this work we frequently mention community detection, we refer to it as a
framework for detecting overlapping groups (communities) of vertices that are, in some
sense, similar to vertices within the group, while, in the same sense, different to verti-
ces in other groups. Traditionally, this similarity meant vertices being densely connected
within a group, while vertices across different groups were less connected. Here, we are
looking for overlapping groups (communities) of vertices that form fully nested sub-
graphs instead of being densely connected. We will call these nested communities.

Nested hierarchy from directed graphs

Using Eq. 2 we are able to decide whether two vertices are nested, but the direction of
nestedness, i.e., which vertex’s neighborhood is a subset of the other, is not considered.
This is important because we will use this information to determine the hierarchy of ver-
tices. Knowing the direction of pairwise nestedness, we can use it to create a graph rep-
resentation that encodes the nested relationships of the entire graph.

To do this, we construct a directed graph, where a directed edge i → j means
N (i) ⊆ N (j) . We will refer to this graph as the community graph. Before we proceed, we
first verify some basic scenarios from Fig. 3.

1 If we have edges i → j and j → k (as in Fig. 3a), we get N (i) ⊆ N (j) and
N (j) ⊆ N (k) . Nestedness is transitive, so this also means N (i) ⊆ N (k) . For simplic-
ity, we omit these edges from our community graphs, or equivalently, we work with
the transitive reduction of the community graph (see the “Community detection
algorithm” section for more details).

2 A node can have multiple out-neighbors (Fig. 3b). If we have edges i → j and i → k ,
then we get N (i) ⊆ N (j) and N (i) ⊆ N (k) . This can be solved by letting both j and k

Fig. 3 Cases of nested relations in a community graph. From left to right: a fully nested graph (a), a node
nested with different nodes (b), multiple nodes nested with the same node (c), and nodes having equal
neighborhoods (d)

Page 7 of 26Gera and London Applied Network Science 2023, 8(1):51

have all the neighbors of i, but also making sure j and k each have at least one other
neighbor the other doesn’t

3 A node can also have multiple in-neighbors (Fig. 3c). Here we have edges i → k and
j → k and get N (i) ⊆ N (k) and N (j) ⊆ N (k) . This case can be solved by taking the
union of the neighbors of i and j to create the neighborhood of k (N (k) ⊇ N (i) ∪ N (j)).

4 Finally, nodes may have the exact same neighbors as other nodes (Fig. 3d). This
results in edges i ↔ j , and thus in both N (i) ⊆ N (j) and N (j) ⊆ N (i) (N (i) ≡ N (j)).
To reduce complexity, we will draw a path with bidirectional edges instead of a
clique.

It is important to note that a maximal (non-expandable) path of the community graph
will represent a nested community or, in other words, a nested subgraph. For example,
if the community graph of G is a single Pn (a path of n vertices, as in Fig. 3a), the original
graph G is fully nested, whereas if G is fully not nested (i.e., G does not have a single pair
of vertices (i, j) where N (i) ⊆ N (j)), its community graph will be a graph with no edges.

Community detection algorithm

Now we introduce an algorithm to find overlapping nested communities, that is, fully
nested subgraphs of G. The core parts of the detection algorithm reconstruct the com-
munity graph from the input graph and then find the community graph’s maximal (non-
extendable) paths to enumerate the communities. The main steps are the following.

Reconstructing the community graph

To reconstruct the community graph, we first enumerate all nested vertex pairs. Here,
instead of greedily performing ≈ n2 comparisons, we can use the same trick used in
Gera et al. (2022). That is, we do not compare vertices that have no common neighbors,
since they are certainly not nested. Instead, we calculate nest(i, k) by first going through
j ∈ N (i) , and pick k ∈ N (j) , where k < i.1 This way, i and k have at least one common
neighbor (j), so they are potentially nested. In practice, this can save us a lot of computa-
tional time (especially in sparse graphs), and the number of discarded comparisons can
be large, according to our experience. Since we do not exclude potentially nested vertex
pairs, we do not lose any information in this step.

When comparing vertices, we also need to know the direction of nestedness between
the vertices, for example, by calculating sgn(|N(i)| −

∣

∣N(j)
∣

∣) when nest(i, j) = 1 . Once we
have done all the comparisons, we build the directed edge list of the nested pairs, where
i → j is an edge if nest(i, j) = 1 and sgn(|N(i)| −

∣

∣N(j)
∣

∣) ≤ 0 (or equally, N (i) ⊆ N (j)).
However, the list will contain a lot more edges than we need. Let’s revisit the fully

nested graph from Fig. 1a for an example. Here N (3) ⊆ N (2) and N (2) ⊆ N (1) , but as
such, N (3) ⊆ N (1) will also hold. Since we need to find maximal paths in the resulting
graph, the transitive N (3) ⊆ N (1) relationship and its corresponding edge are redundant
and certainly not part of the maximal path 3 → 2 → 1 . To remove them, we perform a
transitive reduction on the graph built from the nested edge list. As a result, for all tri-
ples i → j → k the edge i → k will be deleted. This significantly reduces the number of

1 This condition enables us to skip the calculation of nest(k, i) , which would have the same result as the previously calcu-
lated nest(i, k).

Page 8 of 26Gera and London Applied Network Science 2023, 8(1):51

edges to consider in the next step, which greatly improves the performance of the algo-
rithm. This completes the community graph discovery.

Finding nested communities

Now that we have a community graph, we need to retrieve the list of nested communi-
ties. To do this, we enumerate the maximal (non-extendable) directed paths in the graph.
Listing these paths can be done using any traversal method, such as a depth-first search.
Due to the transitive reduction performed in the previous step, this can be accomplished
quite quickly.

Here, each directed path represents a fully nested community, with the order of the
vertices also encoding hierarchy. For example, if Kn (a clique of n vertices) is the input
graph, the community graph will be Pn (a path of n vertices), which will have a single
community with all n vertices in it.

Vertex compacting based on neighborhood

There is one edge case that complicates the search for maximal paths, where cycles are
created due to bidirectional edges between vertices. To solve this problem, and also
improve search performance, we first find vertices with equal neighborhoods and merge
them into a single vertex before building the community graph. Isolated vertices are not
compacted, and edges between vertices are ignored when checking for neighborhood
equality. This means that an isolated K2 (two nodes with an edge between them), for
example, is not compacted. This change has multiple positive effects. First, the com-
munity graph is now guaranteed to be a directed acyclic graph (DAG) as there are no
other factors that can introduce cycles, making maximal path finding much easier. It also
makes the resulting community graph smaller by having it be built from fewer vertices,
improving performance. For example, a star graph with any number of nodes will have a
community graph of just two nodes and a single edge.

We then find the maximal paths as normal, treating the merged vertices as a single
vertex. Finally, we recover the original vertices by expanding the merged vertices and
inserting edges in both directions between them.

Figure 4 shows all the steps of the algorithm on an example graph. When enumerating
the communities, we traverse the compacted graph (Fig. 4c) and then insert the removed
vertices into the paths.

Remarks

Here we pinpoint some key areas in the behavior of the algorithm. The algorithm’s pseu-
docode is available on Fig. 5 and its source code is included in Additional file 1.

1. Non-bipartite graphs A major advantage of the algorithm is that it does not exploit
any property specific to bipartite graphs. In theory, this could make it directly appli-
cable to any (unweighted) non-bipartite graph. In practice, we need to solve the
problem of connected vertices described in “ Nestedness in non-bipartite graphs”
section. As with Eq. 2 we ignore the connection between two vertices when compar-
ing them. This, combined with vertex compacting, results in the algorithm correctly

Page 9 of 26Gera and London Applied Network Science 2023, 8(1):51

finding nestedness in non-bipartite graphs too (as later demonstrated in “ Results on
typical examples” section).

2. On constrained community detection We also need to make some comments about
the community structure detected by the algorithm. The algorithm is designed to
detect certain types of overlapping communities (specifically communities that sat-
isfy the constraint of being fully nested), essentially performing a “constrained” com-
munity detection. The algorithm is also not a heuristic to detect nestedness. This is
due to the fact that we start by enumerating all possible ≈ n2 comparisons and then

Fig. 4 Steps of the community detection algorithm. Starting from the input graph (a), we first compact
vertices with equal neighborhoods (b), then build the community graph (c), and finally reverse the vertex
compaction, adding the bidirectional edges

Fig. 5 Pseudocode of the nested community detection algorithm. Despite having three nested for loops, the
algorithm only iterates over (i, k) pairs of vertices that have at least one common neighbor

Page 10 of 26Gera and London Applied Network Science 2023, 8(1):51

exclude only those pairs that are guaranteed not to be nested. As a result, all remain-
ing, potentially nested, vertex pairs are compared, and no stochastic elements are
included in the process.

3. Permissive nestedness As a possible future direction, we would also like to mention
the potential of relaxing the requirements of nestedness for communities. So far,
we have talked about how the algorithm detects communities that satisfy a certain
“constraint”. This constraint can be quite strict, as two nodes that share largely the
same neighborhood (with a few deviations) are considered to be non-nested. There
are many metrics that quantify the degree of nestedness of a graph. They allow us to
see not only whether a graph is fully nested or not, but also how much nested it is. To
increase the flexibility of our algorithm, we can similarly allow pairs of vertices that
are not fully nested to belong to the same community, above a certain nestedness
threshold, for example. The algorithm currently does not support this, but it is easy
to implement.

Generation of overlapping communities
Previously, we have shown an algorithm that can reconstruct the community graph
from an arbitrary input graph. Now, we present an algorithm that is capable of generat-
ing bipartite graphs with multiple overlapping fully nested groups of vertices, based on
an input community graph. The method also returns the ground truth nested structure,
making it suitable for use when benchmarking algorithms that find overlapping nested
communities.

The generated structure is more general than in-block nestedness (Solé-Ribalta et al.
2018), where the graph is partitioned into disjoint, fully nested “blocks”. Our method is
capable of generating not only this structure, making it a more versatile approach.

We believe that the proposed algorithm is useful not only for testing our nested com-
munity detection algorithm, but also for creating benchmark data sets for future meth-
ods that detect overlapping nested structures.

Benchmark generator algorithm

Now that we have a method for describing nestedness using a directed graph, we will
present an algorithm that generates a bipartite graph that satisfies the nested structure
described by the community graph. That is, if there is an edge i → j in the commu-
nity graph, the resulting graph will have N (i) ⊆ N (j) . We will show that the algorithm
is capable of generating not only fully nested graphs, but also graphs with overlapping
nested communities.

To generate a bipartite graph from a community graph, denoted by Gc , we first per-
form a topological sorting on Gc , since we need to generate neighbors for each vertex v
such that its predecessors (denoted by in(v)) already have their neighbors. To do this, we
must assume that the community graph is acyclic, as there must be at least one vertex
with no predecessors, which will be the starting vertex. When visiting a vertex, we add
all the neighbors of its predecessors to the neighbors of the current vertex and generate a
new neighbor for it (if we visit the ith vertex, we can label the new vertex n+ i). The first
part guarantees nestedness, while the new neighbor makes sure that the two vertices do

Page 11 of 26Gera and London Applied Network Science 2023, 8(1):51

not have the same neighborhood (in which case there should be both a i → j and a j → i
edge in Gc). Formally, we have the subroutine visible in Fig. 6.

Remarks

1. Generating random nested community structures The algorithm we have described
so far is used to generate a graph with a given nested structure from an input com-
munity graph. To generate random graphs with overlapping nested structures, we
can use random input graphs. However, the input graph must be a DAG. This can be
achieved, for example, by sampling a random spanning tree of the complete graph Kn
and randomly orienting its edges.

2. Cycles in the community graph Because the algorithm performs topological sorting
and requires the input graph to have a vertex with no predecessors (i.e., one that is
not part of a cycle), it is much simpler to work with an acyclic community graph.
This prevents us from generating vertices with equal neighborhoods, however, the
vertex compacting approach described in section “Community detection algorithm"
could be adapted to the generator algorithm to make this possible.

3. Generated graph sizes Since the algorithm takes a community graph of size n and
generates a neighbor for each vertex, the resulting graph will have exactly 2n nodes.
This also makes the algorithm incapable of generating bipartite graphs with classes of
different sizes—a trivial example is the star graph.

4. Multiple blocks We have not touched on whether the input Gc DAG has to be weakly
or strongly connected yet. The algorithm can handle community graphs with multi-
ple components and will render a component of the community graph as a compo-
nent in the generated bipartite graph. For example, a graph with multiple disjoint Pk
components (that is, a directed path of k nodes) results in an in-block nested bipar-
tite graph (Solé-Ribalta et al. 2018).

5. Nested structure of the other class As mentioned in the description of the algorithm
and in remark 2, the input to the algorithm is a DAG that describes the community
structure of one class of the graph. The other class of the generated bipartite graph is
not part of the input community graph (and thus the ground-truth). However, gener-
ating the bipartite graph from the community graph of the other class, we get a final
bipartite graph that is isomorphic to the one generated using the original input.

Fig. 6 Pseudocode of the nested graph generator algorithm

Page 12 of 26Gera and London Applied Network Science 2023, 8(1):51

Experiments
In this section, we will examine the performance of the nested community detection
algorithm from several perspectives. First, we verify that the algorithm is able to detect
the nested structures in a few basic examples, then whether it can find all ground-truth
communities of the benchmark graphs generated by the algorithm described in the
“Generation of overlapping communities” section, fully reconstructing the input com-
munity graph. We then examine the community structure of graphs commonly used
when benchmarking nestedness metrics. Then, in a separate section, we compare the
results of our method with other community detection algorithms to identify key differ-
ences in the discovered community structures. Finally, we measure the execution time of
our algorithm in the function of node and edge counts in various graphs.

To evaluate our results and quantify nestedness, we use the NODF (Almeida-Neto and
Ulrich 2011), discrepancy (Brualdi and Sanderson 1999) and temperature (using the Bin-
matnest algorithm) (Ángel Rodríguez-Gironés and Santamaría 2010) nestedness metrics
on bipartite graphs. To make it easier to compare these metrics with our community
structure, we derive our own nestedness metric from the community graph: the aver-
age fraction of communities a vertex is part of, called vertex presence. For normaliza-
tion purposes, this number is multiplied by 2 in bipartite graphs, since perfectly nested
bipartite graphs have 2 perfectly nested communities, one for each class. Vertex pres-
ence ranges from 0 to 1, where 1 means every vertex is part of every community, i.e.,
there is only a single community with all vertices in it. When vertex presence is low, it
means that vertices are part of few communities while the total number of communi-
ties is high. When vertex presence is calculated specifically on the nested community
structure, a maximal presence means there is one nested community (path), so the graph
is fully nested, and a minimal presence means that every vertex is in its own nested com-
munity, having no nestedness in the network at all. Intuitively, a larger value means a
vertex is part of a larger portion of the nested communities, which increases the overall
nestedness of the network. We also note that since our community detection algorithm
works on non-bipartite graphs, unlike the previously mentioned metrics, vertex pres-
ence is not restricted to bipartite graphs. Formally, we can obtain vertex presence for a
vertex v by calculating

where C is the set of nested communities (maximal paths in the community graph). Since
the domain of pres(v) will depend on n (its lowest value is 1n), we can normalize it into
the [0, 1] range, so that 0 means entirely not nested in all cases and 1 still means fully
nested. This can be achieved using

For compactness, we will use average vertex presence as a metric of the entire graph by
averaging the normalized vertex presence across all vertices.

As opposed to regular communities, an interesting property of nested communities is
that the position of a vertex inside a community is informative, too. If a vertex is at the

(3)pres(v) =
|{C : C ∈ C, v ∈ C}|

|C|
,

(4)pres(v) =
n

n− 1
(pres(v)− 1).

Page 13 of 26Gera and London Applied Network Science 2023, 8(1):51

beginning of a community (path), then its neighborhood is a subset of the other vertices
of the community. If, on the other hand, a vertex is at the end of a community, its neigh-
borhood is a superset of the other vertices in the same community. We call the quantifi-
cation of this vertex position, and it can be calculated using

where ∃i : Ci = v (v is the ith vertex of C), thus pos(v, C) is only valid if v ∈ C . We per-
form normalization in the denominator that makes the position of vertices at the
beginning of a community 0, even if they are the sole vertex in a community, assuming
indexing starts at 1. With this, we can calculate the position of a vertex on all nested
communities it is present in, then take its average to get the mean vertex position of said
vertex.

These two metrics allow us to measure nestedness both on a graph level (by calculat-
ing average vertex presence) and on a vertex level (through vertex position).

Results on typical examples

Before testing the algorithm on generated benchmark examples, we first demonstrate
that the algorithm finds basic nested structures. Figure 7a, e show that the algorithm
correctly identified the full bipartite graph that has two fully nested parts: nodes in one
class belong to the same community. Figure 7b, f show the same concept, but in a special
case: the star graph is also considered fully nested, and the algorithm correctly identifies
the upper class as fully nested and the single node of the bottom class as another. Fig-
ure 7c, g show that the nodes of the fully non-nested bipartite graph are all correctly put
into different communities.

(5)pos(v, C) =
i − 1

max {1, |C| − 1}
,

Fig. 7 Graphs showing typical nested configurations (a–d) and their community graphs (e–h)

Page 14 of 26Gera and London Applied Network Science 2023, 8(1):51

Finally, to demonstrate that the algorithm works with non-bipartite graphs, through
Fig. 7d, h we show that all five nodes of the complete graph are correctly classified as a
single community.

Results on benchmarks

In this section, we will compare the ground-truth community structure of the generated
benchmark graphs with the one found by our algorithm. In order to create a benchmark
graph, we use one or more random spanning trees (creating a spanning forest) sampled
from complete graphs and orient their edges randomly. These oriented spanning trees
will be the community graphs of the benchmark graphs.

The benchmark is set up as follows. We generated 2000 random graphs with ground-
truth communities with 1 to 4 blocks (components) and 1 to 60 nodes per block. Let nb
denote the sum of the number of nodes in the input to the generator across all blocks.
Note that we know the ground truth for the first nb nodes as these are the nodes of the
input community graph, the rest nb nodes are generated; this was discussed in more
detail in the generator algorithm’s “Remarks” section. The generated benchmark graphs
are available as Additional file 2.

After generating the benchmark graphs, we run the algorithm on them and compare
the first nb nodes of the result with the known ground truth. Again, we cannot compare
the rest due to the limitations of the generator algorithm, however, we do not need to,
since nestedness is a symmetric property for bipartite graphs. Furthermore, correctly
recovering the ground-truth community structure for the first nb nodes means that the
algorithm is capable of reconstructing the entire community graph on the input.

Our tests show that all community graphs in the benchmark set were correctly recov-
ered and that the resulting community structures were exactly consistent with the
ground truths. Figure 8 shows a generated benchmark graph and its detected nested
community structure. Even looking at this figure, we can presume that there are many
communities, even on smaller graphs, with many of them overlapping over a large part
of the vertices.

Fig. 8 A generated bipartite graph (a) and its detected community graph (b). The ground truth is known for
the green (bottom) class

Page 15 of 26Gera and London Applied Network Science 2023, 8(1):51

Results on real‑world networks

Bipartite networks

After validating that the algorithm is capable of reconstructing the community graph,
we take a look at real-world networks used to test nestedness metrics. First, we examine
the nested structure of ecological networks from Web of Life (Bascompte Lab 2014). We
examine the algorithm’s output on pollinator (mutualistic) and host-parasite networks.
These are two sets of small bipartite networks of species interactions. For an overview of
the results, see Table 1.

The first network we examine is M_PL_069_03 (Kohler 2011) (Fig. 9), a tiny pollina-
tion network of seven plant and four hummingbird species created from observations
in eastern South America. Vertices 1–7 represent plants, while vertices 8–11 represent
hummingbirds. For legibility reasons, we show the vertex IDs instead of species names
on the plot and clarify where needed. The NODF value of the network is 75.926 (in the
range [0, 100], where 100 means fully nested), and its discrepancy value is 2 (where 0
means fully nested), suggesting that it is indeed a highly nested network. The average
vertex presence of the community graph is 0.606.

We can see that the graph is clearly not fully nested, as there are multiple communities
(paths) on its community graph in both classes. However, it does have large nested com-
munities that cover most of the vertices in each class with high overlap. In both classes,
we have three communities that cover all vertices of that class. In the upper class (plant

Table 1 Computed properties on a subset of the full dataset

D: graph density; Cw
i

 : mean local vertex transitivity (clustering coefficient); Q: Newman-modularity (based on the multi-
level modularity optimization algorithm for finding community structure (Blondel et al. 2008)); |C| : number of nested
communities; Cs : average nested community size; Tb : Binmatnest temperature (0–100, lower = more nested); Tnodf :
NODF value (0–100, higher = more nested). Graphs marked with an asterisk (*) were directly mentioned and analyzed in
the article. NA nestedness values mean the graph is not bipartite, and thus the metric could not be calculated. The full
computational results are available in CSV format as Additional file 3

n m D C
w

i
Q |C| Cs

pres Tb Tnodf

M_PL_001 185 361 0.02 0.00 0.50 284 3.86 0.04 2.83 14.46

*M_PL_057 997 1920 0.00 0.00 0.53 2000 22.92 0.05 0.79 7.23

*M_PL_058 113 319 0.05 0.00 0.30 277 4.07 0.06 10.13 28.02

*M_PL_069_01 24 29 0.11 0.00 0.43 14 2.93 0.21 34.29 31.07

*M_PL_069_03 11 15 0.27 0.00 0.21 6 3.33 0.57 12.09 75.93

*A_HP_015 10 12 0.27 0.00 0.21 2 5.00 1.00 1.05 75.00

A_HP_016 27 52 0.15 0.00 0.24 11 5.18 0.36 21.82 56.25

A_HP_017 14 19 0.21 0.00 0.26 4 6.00 0.85 4.97 78.26

A_HP_025 58 107 0.06 0.00 0.39 56 3.88 0.12 21.56 25.22

A_HP_026 33 142 0.27 0.00 0.11 36 6.94 0.40 6.46 87.78

Adjnoun 112 425 0.07 0.19 0.28 166 2.57 0.01 NA NA

celegansneural 297 2359 0.03 0.31 0.39 238 1.66 0.00 NA NA

dolphins 62 159 0.08 0.30 0.52 65 2.08 0.02 NA NA

*karate 34 78 0.14 0.59 0.44 33 3.64 0.08 NA NA

netscience 1589 2742 0.00 0.88 0.96 895 3.38 0.00 NA NA

power 4941 6594 0.00 0.11 0.93 4256 1.96 0.00 NA NA

dswomen 32 89 0.18 0.00 0.31 27 2.37 0.12 36.19 48.58

*families 15 20 0.19 0.22 0.40 13 1.92 0.07 NA NA

les_miserables 77 254 0.09 0.74 0.57 77 5.78 0.06 NA NA

Page 16 of 26Gera and London Applied Network Science 2023, 8(1):51

species, purple), the communities cover a larger part of the class with 5 (71%) and 4
(57%) vertices. Three plant species (vertices 3, 5, and 1) also play a key role in these com-
munities, as they are part of all three communities. They represent generalist entities in
the network, connected to most vertices of the other class, i.e., most hummingbirds visit
them. Vertex 7 is also part of two communities, only vertices 2, 4, and 6 are part of a sin-
gle community. We can see that they are all visited by only one species of hummingbird.

Looking at the class of hummingbirds, the community structure is simpler because the
class has four entities only. Interestingly, we can see that vertex 8 (amazilia versicolor) is
part of the three communities but visits only a single plant (vertex 1, aechmea cylindrata),
a plant that all other hummingbird species visit, too. This connection alone makes the
amazilia versicolor nested with all other species. This is an important aspect of nested
networks, where specialist species tend to pick the generalists in the other class.
M_PL_069_01 (Kohler 2011) (Fig. 10) is a slightly bigger pollination network of 18

plants (vertices 1–18) and 6 hummingbirds (vertices 19–24), with a lower connectance.

Fig. 9 The original M_PL_069_03 graph (a) and its nested community graph (b)

Fig. 10 The original M_PL_069_01 graph (a) and its nested community graph (b)

Page 17 of 26Gera and London Applied Network Science 2023, 8(1):51

Interestingly, the community structure shows less symmetry in terms of the classes, with
eight overlapping plant communities and the six hummingbird species all in their own
class. On closer inspection, we can see that some hummingbird species visit largely the
same plants as others, but there are always plants that one visits, but the other one does
not, and vice versa. For example, vertex 21 (Clytolaema rubricauda) is connected to most
of the neighbors of vertex 24 (Thalurania glaucopis), but vertex 16 (Vriesea erythrodac-
tylon) is only connected to 21, creating a 2K2.

This graph also highlights the asymmetric nature of nested communities: while we can
observe some degree of nestedness (with some paths covering half the vertices) in the
class of plants, the class of birds is fully non-nested.

Moving on to larger networks, such as M_PL_058 (Bartomeus et al. 2008) (commu-
nity graph visible in Fig. 11), untangling the community structure becomes increasingly
more difficult, with many communities (277 over two classes) overlapping each other.
However, we can make some important observations on the community graph. For
example, the community graph has few zero-degree vertices, which means that most
vertices contribute to the overall nestedness of the graph, but they are nested only with
some other vertices. We can also see that in both large components, there are only a
few vertices with high total degrees. In the largest component of the community graph
(colored in green, containing bees), there is a bee (of the Andrena genus) with a high in-
degree, connecting lots of nested communities, by interacting with 22 plants out of 32.
In the second-largest component, which consists of plants, there is a vertex with a high
out-degree (a Vicea lutea), being part of a lot of communities at once by having only a
single connection to the aforementioned Andrena bee.

Fig. 11 Community graph of the slightly larger M_PL_058 graph. Larger vertex sizes correspond to higher
in-degrees (including transitive edges)

Page 18 of 26Gera and London Applied Network Science 2023, 8(1):51

Such large networks also show that partially nested networks can have a huge amount
of nested communities. We expect a fully nested bipartite network to have two com-
munities (one for each class), a fully nested non-bipartite network to have a single com-
munity, and a fully non-nested network to have n communities, each vertex belonging to
its own community. Partly nested networks, on the other hand, may have more than n
communities: M_PL_057 has n = 997 vertices and m = 1920 edges but at the same time
2000 > m > n communities, with an NODF value of 7.23 and a vertex presence of 0.045.
Thus, the number of communities is not a linear function of nestedness. This also means
that, unfortunately, the number of communities does not perfectly reflect the network’s
nestedness.

Host‑parasite networks

The host-parasite networks scored an average vertex presence of 0.28 versus 0.188 and
an average NODF score of 52.033 versus 30.857 in the pollination set, suggesting that the
host-parasite networks are on average more nested.

This set contains a fully nested network: A_HP_015 (Fig. 12), a network of three
rodents (vertices 1–3) and seven parasites (vertices 4–10). We can see that a specialist
entity (Microtus oeconomus, vertex 3) interacts only with a generalist species (Amphi-
psylla marikovskii, vertex 5) and vice versa. The network has a vertex presence score of
1 and a discrepancy of 0, but its NODF value is 75 (where 100 would mean fully nested).
Similarly, its temperature score isn’t showing perfect nestedness, either, at a value of 1.05
instead of 0.

Nestedness metrics

Examining the relationship between vertex presence and some nestedness metrics,
we can see that while vertex presence and NODF behave similarly with few excep-
tions (Fig. 13a, c), Binmatnest gave small scores (meaning high nestedness) to some
graphs with low vertex presence (Fig. 13b). These graphs had low NODF and high dis-
crepancy scores, both suggesting low nestedness. Similarly, NODF gave a score of 75
to a fully nested network in the host-parasite network set, where the discrepancy was
0 and vertex presence was 1 (Fig. 13c, d).

Fig. 12 The A_HP_015 host-parasite network (a) and its nested community graph (b)

Page 19 of 26Gera and London Applied Network Science 2023, 8(1):51

Non‑bipartite graphs

Now we are going to examine the algorithm’s output in some common non-bipartite,
mostly social networks. Nestedness in a social network can be interesting in the sense
of information exchange and domination. If some i is connected to all acquaintances
of j and more, and they get into a conflict, i can spread their position to everyone j
knows, potentially dominating j.

A common example used when testing community detection algorithms is Zach-
ary’s karate club network (Zachary 1977), visible in Fig. 14a. This is a social network
of 34 members of a karate club who interacted outside the club. The club split into
two, creating two communities, marked with two colors.

Fig. 13 Comparison of vertex presence with the NODF and Binmatnest nestedness metrics on the
pollination (a, b) and host-parasite (c, d) network set

Fig. 14 Zachary’s karate club network and its community graph. Vertex colors represent the ground-truth
communities

Page 20 of 26Gera and London Applied Network Science 2023, 8(1):51

Although this is not an ecological network, we can see that there are only three
weakly connected components in the community graph (Fig. 14b), two of them being
isolated vertices and the third formed by the rest of the graph. Most nested relation-
ships are between vertices of the same color (karate community), except for three
nodes. Node 1 (the instructor) is in a nested relationship with 9 other members out of
16 in its karate community, while node 34 (the administrator) is with 7 out of 16. The
graph contains 33 nested communities with an average size of 3.67 vertices per com-
munity and the mean vertex presence is 0.107. These observations lead us to believe
that nestedness does not play a key role in the formation of the network.

The Florentine families network (Breiger and Pattison 1986) (Fig. 15a) contains
marriage links between families during the Italian Renaissance. While this network is
typically used to demonstrate centrality, the presence of nestedness may be interest-
ing in the sense that families can be in a dominating position if they have connections
to all neighbors of another family.

Looking at the community graph in Fig. 15b we can see that there are few cases for
this, most of them due to having a single neighbor that is common with one of the
central families. For example, the Acciaiuoli family is nested with five others because
they have a connection only with the Medici family. This means that if someone
could influence the Medici family, they might also be able to influence the Acciaiuoli.
Another interesting observation is that the Castellani family is not nested with any-
one, so while they have their connections, they are not dominated by any other family.
With a low mean vertex presence of 0.128 and a maximum community size of 2, nest-
edness does not appear to play a key role in this network, either.

Comparison with general community detection algorithms

Now, we compare the nested community structure found by our algorithm with the out-
put of traditional community detection algorithms Linkcomm (Ahn et al. 2010), MOSES
(McDaid and Hurley 2010) and CFinder (Adamcsek et al. 2006). These algorithms use
different approaches for community detection, Linkcomm being a link partitioning
method, MOSES a fuzzy algorithm, and CFinder a clique search algorithm. Note that

Fig. 15 The Florentine families network and its community graph

Page 21 of 26Gera and London Applied Network Science 2023, 8(1):51

while Linkcomm, MOSES and CFinder propose to find communities where vertices
within communities are more densely connected, our algorithm defines communities
as fully nested subgraphs. While the community definitions are different, we perform
these comparisons to highlight the differences between nested and traditional commu-
nity structures.

Since our algorithm assigns each vertex to a community—vertices that don’t belong
anywhere else are put into their own communities – we modify the outputs of the com-
munity detection algorithms mentioned above so that omitted vertices are also assigned
a community. This helps us to level the comparisons and also to avoid making false con-
clusions based on the number of communities, since a single community is only possible
if all vertices are included in it.

Looking at the number of communities and their average sizes (Fig. 16a, b), we can
see that MOSES tends to identify fewer but occasionally larger communities, while
CFinder created many—sometimes as many as 4n communities—, although its average
community size was not the smallest in these cases either, meaning that there had to be
greater overlap between them. This is confirmed by the vertex presence in Fig. 16c. Ver-
tex presence was low across all graphs and algorithms, which means that overall there is
little overlap between the communities. The different community structures detected on
Zachary’s karate club network are shown in Fig. 17.

Fig. 16 Comparison of community statistics across algorithms and graphs

Page 22 of 26Gera and London Applied Network Science 2023, 8(1):51

Finally, we also calculate the Generalized Conventional Normalized Mutual Informa-
tion (Lutov et al. 2019) (GenConvNMI) index to measure Mutual Information between
the community structure of our algorithm and the compared other algorithms. The NMI
indices shown in Table 2 are high, especially in the case of CFinder. The full results are
included in Additional file 3.

Fig. 17 Community structures detected by different algorithms on Zachary’s karate club network.
Communities with a single vertex are not plotted

Table 2 Generalized Conventional Normalized Mutual Information (Lutov et al. 2019) between
the communities of our algorithm and the compared traditional community detection algorithms
(higher = more similar)

The subscripts M , C and L correspond to the algorithms MOSES, CFinder and Linkcomm, respectively. Graphs marked with
an asterisk (*) were directly mentioned and analyzed in the article

NMIM NMIC NMIL

adjnoun 0.686 0.911 0.538

celegansneural 0.567 0.678 0.657

dolphins 0.655 0.821 0.676

*karate 0.645 0.699 0.533

netscience 0.941 0.953 0.949

power 0.963 0.974 0.927

dswomen 0.842 0.836 0.530

*families 0.879 0.894 0.724

les_miserables 0.576 0.698 0.617

Page 23 of 26Gera and London Applied Network Science 2023, 8(1):51

Implementation and performance benchmarks

Finally, we show that our algorithm is scalable enough to be used on large networks. It
was implemented in R (R Core Team 2023) and C++ and its reference implementation,
together with the example generator code, is open source.2 Here, we measure the runt-
ime of our algorithm across all analyzed non-synthetic graphs.

Figure 18 shows average runtimes of 100 executions on each of the analyzed bipartite
and non-bipartite networks. The figure shows that while it is not perfectly linear, the
algorithm’s runtime doesn’t scale steeply with the increase of the vertices or edges. We
can see that it is capable of achieving runtimes of under a second on graphs with much
more than 1000 vertices, or more than 10,000 edges. For the details of the test environ-
ment, please refer to “Appendix A”.

Conclusions
We introduced a novel constrained community detection algorithm that finds over-
lapping nested subgraphs of a given input graph and constructs a directed graph,
called the community graph, representing this community structure in a compact
form. In reverse, we also introduced an algorithm that generates bipartite graphs with
any given nested community structure from the input community graph. Derived
from the resulting community graph, we also introduced two metrics to measure
nestedness in networks on both graph- and vertex levels. We have shown that our
community detection method can uncover detailed nested relationships within the
input graph. We demonstrated its capabilities through several benchmark networks
and real-world networks as well. Finally, we compared our method with multiple
commonly used community detection algorithms that are able to find overlapping
communities. We showed that our method can reveal a different type of community
structure in both bipartite and non-bipartite graphs.

Fig. 18 Average execution times of the nested community detection algorithm’s implementation over 100
runs

2 https:// github. com/ Hanzi ness/r- nested- comms/ relea ses/ tag/ v0.2.

https://github.com/Hanziness/r-nested-comms/releases/tag/v0.2

Page 24 of 26Gera and London Applied Network Science 2023, 8(1):51

Appendix A: Test environment
The performance tests were carried out on an ASUS ExpertCenter computer with an
Intel® CoreTM 7-10700 CPU @ 2.90GHz (16 cores) CPU and 16 GB of RAM. The sys-
tem was running Manjaro Linux (kernel version 6.3.5-2-MANJARO (64-bit)) with R
4.3.1 (latest packages as of 2023-07-01), compiled with the Intel Math Kernel Library
(MKL). Execution time was measured using the microbenchmark package.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1007/ s41109- 023- 00575-2.

Additional file 1. Source code of the community detection package nested.comms: This is an R package
that can be built and installed using the devtools package. To use it, one can call the install_local func-
tion from devtools on the source zip file. The installed package (nested.comms) exposes functions to
perform nested community detection (described in the “Nestedness and community detection” section) using the
nested_node_comm function, and test graph generation (“Generation of overlapping communities” section)
through the generate_benchmark_random function.

Additional file 2. Generated networks: The 2000 generated networks used in the “Results on benchmarks” section
are included in a compressed archive. The final networks are named gen_id.csv, their base community graphs
are named base_id.csv, and the ground-truth community list is included as truth_id.txt, where id is the
identifier of the generated graph and each line corresponds to one community. Both the final and the base graphs
are given in the form of edge lists. The final graph is always a bipartite graph.

Additional file 3. Computational results: A CSV file containing all the computed properties of all the non-syn-
thetic graphs we have analyzed, including graphs and properties omitted for compactness from Table 1.

Acknowledgements
The authors would like to express their gratitude to András Pluhár for his useful insights and to the reviewers for their
detailed suggestions and comments. All of them have contributed to a significant improvement of the quality of the
article.

Author contributions
IG designed and implemented both algorithms and carried out the experiments using them. AL helped in formalizing
and structuring multiple aspects of the paper. The authors jointly wrote and reviewed the manuscript.

Funding
Open access funding provided by University of Szeged. This work was supported by the National Research, Develop-
ment and Innovation Office-NKFIH Fund No. SNN-135643. This work was supported by the University of Szeged Open
Access Fund No. 6267.

Availability of data and materials
The pollination and host-parasite datasets analyzed during the current study are available in the Web of Life repository
at www. web- of- life. es. The analyzed non-bipartite networks are available in their respective published articles: Zachary’s
karate club (Zachary 1977), Florentine families network (Breiger and Pattison 1986). The other graphs not analyzed in
detail, but on which we performed calculations: coappearance network of characters in the novel Les Misérables (les_
miserables) (Knuth 1993), adjacency network of common adjectives and nouns in the novel David Copperfield by
Charles Dickens (adjnoun) (Newman 2006), network representing the neural network of C. Elegans (celegansneu-
ral) (Watts and Strogatz 1998), social network of frequent associations between dolphins (dolphins) (Lusseau et al.
2003), coauthorships in network science (netscience) (Newman 2006), network representing the topology of the
Western States Power Grid (power) (Watts and Strogatz 1998), Davis Southern women social network (dswomen) (Davis
et al. 1941). The generated random bipartite networks (along with their base community graphs and ground truths) ana-
lyzed in “Results on benchmarks” section are included in this published article and its supplementary information files.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 28 April 2023 Accepted: 18 July 2023
Published: 3 August 2023

References
Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) Cfinder: locating cliques and overlapping modules in biological

networks. Bioinformatics 22(8):1021–1023. https:// doi. org/ 10. 1093/ bioin forma tics/ btl039

https://doi.org/10.1007/s41109-023-00575-2
https://www.web-of-life.es
https://doi.org/10.1093/bioinformatics/btl039

Page 25 of 26Gera and London Applied Network Science 2023, 8(1):51

Adcock AB, Sullivan BD, Mahoney MW (2013) Tree-like structure in large social and information networks. In: 2013 IEEE
13th international conference on data mining. IEEE, pp 1–10. https:// doi. org/ 10. 1109/ icdm. 2013. 77

Ahn Y-Y, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–
764. https:// doi. org/ 10. 1038/ natur e09182

Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantita-
tive matrices. Environ Model Softw 26(2):173–178. https:// doi. org/ 10. 1016/j. envso ft. 2010. 08. 003

Ángel Rodríguez-Gironés M, Santamaría L (2010) How foraging behaviour and resource partitioning can drive the evolu-
tion of flowers and the structure of pollination networks. Open Ecol J 3:1–11. https:// doi. org/ 10. 2174/ 18742 13001
00304 0001

Bartomeus I, Vilà M, Santamaría L (2008) Contrasting effects of invasive plants in plant–pollinator networks. Oecologia
155(4):761–770. https:// doi. org/ 10. 1007/ s00442- 007- 0946-1

Bascompte Lab (2014) Web of Life: ecological networks database. https:// www. web- of- life. es
Bascompte J (2010) Structure and dynamics of ecological networks. Science 329(5993):765–766. https:// doi. org/ 10. 1126/

scien ce. 11942 55
Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks

minimizes competition and increases biodiversity. Nature 458(7241):1018–1020. https:// doi. org/ 10. 1038/ natur
e07950

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech:
Theory Exp 2008(10):10008. https:// doi. org/ 10. 1088/ 1742- 5468/ 2008/ 10/ p10008

Bóta A, Csizmadia L, Pluhár A (2010) Community detection and its use in real graphs. In: Proceedings of the conference
on applied theoretical computer science (MATCOS), pp 95–99

Breiger RL, Pattison PE (1986) Cumulated social roles: the duality of persons and their algebras. Soc Netw 8(3):215–256.
https:// doi. org/ 10. 1016/ 0378- 8733(86) 90006-7

Brualdi RA, Sanderson JG (1999) Nested species subsets, gaps, and discrepancy. Oecologia 119:256–264. https:// doi. org/
10. 1007/ s0044 20050 784

Bustos S, Gomez C, Hausmann R, Hidalgo CA (2012) The dynamics of nestedness predicts the evolution of industrial
ecosystems. PLoS ONE 7(11):49393. https:// doi. org/ 10. 1371/ journ al. pone. 00493 93

Csermely P, London A, Wu L-Y, Uzzi B (2013) Structure and dynamics of core/periphery networks. J Complex Netw
1(2):93–123. https:// doi. org/ 10. 1093/ comnet/ cnt016

Darlington PJ (1943) Carabidae of mountains and islands: data on the evolution of isolated faunas, and on atrophy of
wings. Ecol Monogr 13(1):37–61. https:// doi. org/ 10. 2307/ 19435 89

Davis A, Gardner BB, Gardner MR (1941) Deep South. The University of Chicago Press, Chicago
Ermann L, Shepelyansky DL (2013) Ecological analysis of world trade. Phys Lett A 377(3–4):250–256. https:// doi. org/ 10.

1016/j. physl eta. 2012. 10. 056
Gera I, London A, Pluhár A (2022) Greedy algorithm for edge-based nested community detection. In: 2022 IEEE 2nd

conference on information technology and data science (CITDS), pp 86–91. https:// doi. org/ 10. 1109/ CITDS 54976.
2022. 99140 51

Junttila E, Kaski P (2011) Segmented nestedness in binary data. In: Proceedings of the 2011 SIAM international confer-
ence on data mining. SIAM, pp 235–246. https:// doi. org/ 10. 1137/1. 97816 11972 818. 21

Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing, vol 1. AcM Press, New York
Kohler GU (2011) Redes de interação Planta Beija-Flor em um Gradiente Altitudinal de Floresta Atlântica no Sul do Brasil
London A, Martin RR, Pluhár A (2022) Graph clustering via generalized colorings. Theor Comput Sci 918:94–104. https://

doi. org/ 10. 1016/j. tcs. 2022. 03. 023
Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubt-

ful sound features a large proportion of long-lasting associations: can geographic isolation explain this unique trait?
Behav Ecol Sociobiol 54:396–405. https:// doi. org/ 10. 1007/ s00265- 003- 0651-y

Lutov A, Khayati M, Cudré-Mauroux P (2019) Accuracy evaluation of overlapping and multi-resolution clustering algo-
rithms on large datasets. In: 2019 IEEE international conference on big data and smart computing (BigComp). IEEE,
pp 1–8. https:// doi. org/ 10. 1109/ bigco mp. 2019. 86793 98

Mariani MS, Ren Z-M, Bascompte J, Tessone CJ (2019) Nestedness in complex networks: observation, emergence, and
implications. Phys Rep 813:1–90. https:// doi. org/ 10. 1016/j. physr ep. 2019. 04. 001

McDaid A, Hurley N (2010) Detecting highly overlapping communities with model-based overlapping seed expansion.
In: 2010 International conference on advances in social networks analysis and mining. IEEE, pp 112–119. https:// doi.
org/ 10. 1109/ ASONAM. 2010. 77

McGlohon M, Akoglu L, Faloutsos C (2011) Statistical properties of social networks. In: Social network data analytics.
Springer, pp 17–42. https:// doi. org/ 10. 1007/ 978-1- 4419- 8462-3_2

Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E
74(3):036104. https:// doi. org/ 10. 1103/ physr eve. 74. 036104

Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113. https://
doi. org/ 10. 1103/ PhysR evE. 69. 026113

Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Lin
Soc 28(1–2):65–82. https:// doi. org/ 10. 1111/j. 1095- 8312. 1986. tb017 49.x

Payrató-Borràs C, Hernández L, Moreno Y (2020) Measuring nestedness: a comparative study of the performance of dif-
ferent metrics. Ecol Evol 10(21):11906–11921. https:// doi. org/ 10. 1002/ ece3. 6663

R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing,
Vienna. https:// www.R- proje ct. org/

Saavedra S, Reed-Tsochas F, Uzzi B (2009) A simple model of bipartite cooperation for ecological and organizational
networks. Nature 457(7228):463–466. https:// doi. org/ 10. 1038/ natur e07532

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64. https:// doi. org/ 10. 1016/j. cosrev. 2007. 05. 001
Solé-Ribalta A, Tessone CJ, Mariani MS, Borge-Holthoefer J (2018) Revealing in-block nestedness: detection and bench-

marking. Phys Rev E 97(6):062302. https:// doi. org/ 10. 1103/ PhysR evE. 97. 062302

https://doi.org/10.1109/icdm.2013.77
https://doi.org/10.1038/nature09182
https://doi.org/10.1016/j.envsoft.2010.08.003
https://doi.org/10.2174/1874213001003040001
https://doi.org/10.2174/1874213001003040001
https://doi.org/10.1007/s00442-007-0946-1
https://www.web-of-life.es
https://doi.org/10.1126/science.1194255
https://doi.org/10.1126/science.1194255
https://doi.org/10.1038/nature07950
https://doi.org/10.1038/nature07950
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1016/0378-8733(86)90006-7
https://doi.org/10.1007/s004420050784
https://doi.org/10.1007/s004420050784
https://doi.org/10.1371/journal.pone.0049393
https://doi.org/10.1093/comnet/cnt016
https://doi.org/10.2307/1943589
https://doi.org/10.1016/j.physleta.2012.10.056
https://doi.org/10.1016/j.physleta.2012.10.056
https://doi.org/10.1109/CITDS54976.2022.9914051
https://doi.org/10.1109/CITDS54976.2022.9914051
https://doi.org/10.1137/1.9781611972818.21
https://doi.org/10.1016/j.tcs.2022.03.023
https://doi.org/10.1016/j.tcs.2022.03.023
https://doi.org/10.1007/s00265-003-0651-y
https://doi.org/10.1109/bigcomp.2019.8679398
https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1109/ASONAM.2010.77
https://doi.org/10.1109/ASONAM.2010.77
https://doi.org/10.1007/978-1-4419-8462-3_2
https://doi.org/10.1103/physreve.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
https://doi.org/10.1002/ece3.6663
https://www.R-project.org/
https://doi.org/10.1038/nature07532
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1103/PhysRevE.97.062302

Page 26 of 26Gera and London Applied Network Science 2023, 8(1):51

Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118(1):3–17. https:// doi.
org/ 10. 1111/j. 1600- 0706. 2008. 17053.x

Uzzi B (1996) The sources and consequences of embeddedness for the economic performance of organizations: the
network effect. Am Sociol Rev 61(4):674–698. https:// doi. org/ 10. 2307/ 20963 99

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. nature 393(6684):440–442. https:// doi. org/ 10.
1038/ 30918

Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1997) A comparative analysis of nested subset patterns of
species composition. Oecologia 113:1–20. https:// doi. org/ 10. 1007/ s0044 20050 348

Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193. https:// doi. org/ 10. 1007/
s40745- 015- 0040-1

Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33(4):452–473.
https:// doi. org/ 10. 1086/ jar. 33.4. 36297 52

Zhu Z, Cerina F, Chessa A, Caldarelli G, Riccaboni M (2014) The rise of China in the international trade network: a commu-
nity core detection approach. PLoS ONE 9(8):105496. https:// doi. org/ 10. 1371/ journ al. pone. 01054 96

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1111/j.1600-0706.2008.17053.x
https://doi.org/10.1111/j.1600-0706.2008.17053.x
https://doi.org/10.2307/2096399
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1007/s004420050348
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1371/journal.pone.0105496

	Detecting and generating overlapping nested communities
	Abstract
	Introduction
	Nestedness
	Existing methods
	Clustering to nested parts
	Edge-based nested community detection

	Nestedness in non-bipartite graphs

	Nestedness and community detection
	Nested hierarchy from directed graphs
	Community detection algorithm
	Reconstructing the community graph
	Finding nested communities
	Vertex compacting based on neighborhood

	Remarks

	Generation of overlapping communities
	Benchmark generator algorithm
	Remarks

	Experiments
	Results on typical examples
	Results on benchmarks
	Results on real-world networks
	Bipartite networks
	Host-parasite networks
	Nestedness metrics
	Non-bipartite graphs

	Comparison with general community detection algorithms
	Implementation and performance benchmarks

	Conclusions
	Appendix A: Test environment
	Anchor 31
	Acknowledgements
	References

