
Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Arnold et al. Applied Network Science            (2023) 8:80  
https://doi.org/10.1007/s41109-023-00574-3

Applied Network Science

Using a Bayesian approach to reconstruct 
graph statistics after edge sampling
Naomi A. Arnold1,2*, Raúl J. Mondragón1 and Richard G. Clegg1 

Abstract 

Often, due to prohibitively large size or to limits to data collecting APIs, it is not possible 
to work with a complete network dataset and sampling is required. A type of sampling 
which is consistent with Twitter API restrictions is uniform edge sampling. In this paper, 
we propose a methodology for the recovery of two fundamental network properties 
from an edge-sampled network: the degree distribution and the triangle count (we 
estimate the totals for the network and the counts associated with each edge). We use 
a Bayesian approach and show a range of methods for constructing a prior which does 
not require assumptions about the original network. Our approach is tested on two 
synthetic and three real datasets with diverse sizes, degree distributions, degree-
degree correlations and triangle count distributions.

Keywords:  Network reconstruction, Bayesian statistics, Sampling

Introduction
Analysis of complex networks remains a growing area and network data sets are more 
and more commonly available. However, some data sets are only a sample of the entire 
network. For very large networks, it may not be possible to work with complete data 
because of its size. Additionally, APIs can rate-limit the number of queries, meaning that 
not all nodes and edges are present (Morstatter et al. 2013). A common example is the 
Twitter stream API which returns a 1% random sample of all tweets in real-time (Twit-
ter 2022). In the usual Twitter graph formulation where edges constitute 1:1 replies or 
retweets, this corresponds to uniform edge sampling of the full Twitter reply/retweet 
graph. Inferring even simple characteristics such as the true number of nodes or edges 
from a sample can be nontrivial (Katzir et al. 2011; Bianconi 2022).

In this work we present a methodology for recovering the degree sequence and the 
triangle sequence (per edge) under a uniform edge-sampling scenario where for an 
undirected graph G, a sample is constructed by uniformly sampling each edge of G with 
probability p. First, we build on methods by Ganguly and Kolaczyk (2017) who recover 
the degree distribution from node-sampled networks using a Bayesian approach and we 
extend this to edge-sampled networks. We address the problem of finding an appropri-
ate prior degree distribution by proposing two different ways to construct a prior. We 
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further extend this Bayesian approach to estimating the edge triangle count (the number 
of triangles associated with each edge) and the total triangle count.

We find that our Bayesian method outperforms the standard scale-up method at esti-
mating the degree sequence, particularly in small p scenarios where as few as 10% of 
the edges remain. Moreover, the priors we use do not make any assumptions about the 
original degree distribution. For estimating the triangle per link count, in 3 out of the 5 
network datasets we use, a Poisson prior achieves similar performance to a correct prior.

This paper is structured as follows. First, in section  “Properties of edge sampled 
graphs” we describe the edge sampling procedure and derive properties of graphs that 
have been sampled in this way. Then in  section  “Estimators for the degree sequence 
and triangle count” we introduce the various estimators used for these properties, 
with the “Constructing a prior” section showing how to construct a prior for the Bayes 
estimators. Finally in  the  “Results” section  we present our results on recovering these 
properties on synthetic and real datasets. We discuss the implications in  the “Conclu-
sion” section.

Note that this paper is an extended version of previous work (Arnold et  al. 2023); 
in section “Properties of edge sampled graphs” we perform a deeper analysis of how the 
expectation and variance of quantities in the sampled graph relates to the structure of 
the original graph and how this may affect estimate quality, in the “Results” section we 
investigate the empirical bias of our estimators with respect to the different datasets, and 
we include results for a significantly larger dataset.

Related work
Sampling of complex networks in general is a well studied problem. One point of inter-
est is how well sampling preserves different properties, such as node rankings in Twit-
ter networks (Morstatter et al. 2013), temporal features (Ahmed et al. 2013) and scaling 
properties (Leskovec and Faloutsos 2006). These works have aimed also at designing 
sampling schemes specifically to preserve a given quantity. Other works have used sam-
pling to estimate quantities on graphs that are prohibitively large to work with in their 
entirety, with a focus on triangle counting (Tsourakakis et al. 2009; Antunes et al. 2021; 
Stefani et al. 2017) or other motifs (Klusowski and Wu 2018; Bhattacharya et al. 2022).

Two recent works studied the problem of recovering a network’s degree distribution 
working from a small sample, first posed by Frank (1971) in his Ph.D. thesis in 1971. 
The first by Zhang et al. (2015) frames it as an inverse problem involving the vector of 
observed degree counts and a linear operator representing the sampling scheme. The 
second by Ganguly and Kolaczyk (2017) uses a range of estimators for individual vertex 
degrees in node-sampled networks; simple scale-up estimators, risk minimisation esti-
mators and Bayes posterior estimates. Antunes et  al. (2021) whose work was on sam-
pling methods for estimating the triangle distribution, studied the n = 1 sample size 
problem as restricted access scenario as a case study. Other than this, little attention has 
been given specifically to these restricted access problems, noted in Zhang et al. (2015).

The problem of reconstructing triangles from sampled networks has also received 
attention. Tsourakakis et al. (2009) were motivated by the speed-up that can be obtained 
by working on sampled not complete data. Their method counts the number of trian-
gles in the graph G′ sampled from a full graph G retaining edges independently with 
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probability p (the setting for this paper). They proved that simply multiplying by 1/p3 on 
the observed triangles in the sample G′ gives an unbiased estimator for the original num-
ber of triangles in G. Lim et al. (2018) developed a streaming estimator that can work in 
a single pass over data using a similar algorithm. The extend (Tsourakakis et al. 2009) to 
graphs that allow multiple edges between the same node pair.

A related problem is reconstructing network structure from unreliable or noisy data, 
such as social networks constructed from reported friendships, which are well known 
for having missing or spurious edges due to the different interpretations of “friendship” 
(Young et al. 2020). Young et al. (2020) address this using a Bayesian approach for find-
ing posterior probabilities for an edge’s existence given the measurements obtained. 
Newman (2018) use a Bayesian approach involving the empirical false and true positive 
rates of observing an edge from the data.

While it does not deal directly with reconstruction, Bianconi et al. (2005) gives an esti-
mate of the number of triangles in a network as

where T̂  is the estimated number of triangles, P(k) is the number of nodes of degree k 
and k  is the mean degree. This would allow an estimate of the number of triangles to 
be derived if the degree distribution is known (or can be estimated). However, the esti-
mate is only reasonable if nodes are connected independently, that is the probability that 
node i connects to node j is proportional to kikj their degrees. In Bianconi et al. (2005) it 
is shown that this is a reasonable approximation for the Internet Autonomous Systems 
network but it is not a useful approximation for the majority of networks.

Properties of edge sampled graphs
Let G = (V ,E) be an undirected simple graph with vertex set V = {v1, . . . , vN } and edge 
set E = {e1, . . . , eM} . Consider a sampling regime where each edge el ∈ E is included in 
the sampled graph with probability p ∈ [0, 1] , and each vertex vi ∈ V  is included if any 
edge incident to it is included. Denote this sampled graph G′ = (V ′,E′) , where V ′ ⊆ V  
and E′ ⊆ E . Let the sizes of V ′ and E′ be N ′ and M′ respectively. This is known as inci-
dent subgraph sampling (Leskovec and Faloutsos 2006).

Degree

Let ki , respectively k ′i denote the degree of a node vi ∈ G and G′ respectively. Then k ′i fol-
lows a binomial distribution k ′i ∼ B(ki, p) , with conditional probability given by

with expectation E(k ′i |ki = k) = kp and variance Var (k ′i |ki = k) = kp(1− p) . The prob-
ability that node vi ∈ V  of degree ki has degree 0 in G′ is given by P(k ′i = 0) = (1− p)ki.

T̂ =
1

6

k(k − 1)kP(k)

k

3

,

(1)P(k ′i = k ′|ki = k) =

(

k
k ′

)

pk
′
(1− p)k−k ′

,
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Nodes in G that become isolated as part of the sampling process are invisible to 
observers of G′ and should be considered removed. In this way, let δi be the indicator 
random variable representing the removal of node vi from G, with probability (1− p)ki.

Then, the expected number N ′
0
 of removed nodes from G is given by

where Nk is the number of vertices in G of degree k. This is dependent on the degree dis-
tribution; the leading constant term for small p is N1 , the number of degree 1 nodes in G. 
This brings to mind the friendship paradox (Feld 1991), where a node incident to a ran-
domly chosen edge will on average have a higher degree than a randomly chosen node. 
From Fig. 1 we see Barabási and Albert (1999) networks experience more node removal 
than Erdős and Rényi (1960) networks.

Equation (2) is a special case of the expression DuBois et al. (2012) derived for the num-

ber of nodes of degree k ′ in an edge-sampled graph E (N ′
k ′) =

∑N
k Nk

(

k
k ′

)

(1− p)k−k ′pk
′ 

with k ′ = 0 . They note that the number of nodes of degree k ′ is the sum of variables that are 
not independent of each other and that the resulting degree of a node after edge sampling is 
intrinsically linked with the resulting degree of its neighbours.

Indeed, we find that the variance in the number of nodes removed N ′
0
 is given by

(2)

E (N0) =

N
∑

i=1

E (δi)

=

N
∑

i=0

(1− p)ki

=
∑

k≥1

(1− p)kNk
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Fig. 1  Proportion of nodes removed in Erdős-Rényi and Barabási-Albert graphs, of size 1000 nodes and 
10,000 (ER), 9900 (BA) edges (see Table 1), using the edge-sampling procedure. Shown is the mean value 
N′
0
/N for 15,000 sampled graphs for each value of p with standard deviation error bars (one above and one 

below). The y-axis is slightly truncated since the ratio is a positive number
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where Nk ,k ′ is the number of edges connecting vertices of degree k and k ′ . Treating p 
as a small constant, the dominating terms are N1 and N1,1 , meaning that the variance 
is dependent on both the number of low degree nodes and degree-degree correlations 
among low degree nodes.

In Fig. 2, we study two networks with the same power-law degree distribution but rewired 
in two different ways using Zhou and Mondragón (2007) to obtain a maximally assorta-
tive and maximally disassortative version of that network. Plotted is the difference between 
number of nodes removed and the expected number of nodes removed using Eq. 2, finding 
a slight small empirical bias for the disassortative network. With all these things in mind, 
estimating the number of nodes removed by an edge sampling process can therefore be 
expected to be nontrivial and we do not address it in this work.

Triangles

Let Tl be the number of triangles in G which include edge el ∈ E . Then the number of trian-
gles in G, denoted by T, is given by

where the factor of 1
3
 is present because each triangle in the sum is counted three times, 

once for each link.

Var (N ′
0) = Var

(

N
∑

i=1

δi

)

=

N
∑

i=1

Var (δi)+
∑

1≤i �=j≤N

Cov (δi, δj)

=

N
∑

i=1

(1− p)ki
[

1− (1− p)ki
]

+
∑

1≤i �=j≤N

(1− p)ki+kj−Aij − (1− p)ki+kj .

=
∑

k≥0

Nk

[

(1− p)k − (1− p)2k
]

+
∑

k ,k ′≥0

Nk ,k ′p(1− p)k+k ′−1

(3)T =
1

3

∑

el∈E

Tl

Fig. 2  Difference between the expected (using Eq. 2) and true number of nodes removed in the edge 
sampling process for two networks of the same power-law degree distribution but different degree 
assortativities. The mean is shown over 1000 sampled graphs for each value of p with standard deviation error 
bars (one deviation above and one below.)
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Let T ′
l
 be the number of triangles which include edge el in the sampled graph G′ , defining 

T ′
l = 0 if el /∈ E′ . In the case that edge el remains in the sampled network, then each trian-

gle that includes el will remain in the sampled network if and only if the other two edges 
remain; this occurs with probability p2 . There are Tl such triangles, so the number of these 
which remain in the sampled network is binomially distributed with Tl trials and probability 
p2 . That is,

In the case that el does not remain in the sampled network, the following holds:

where δ0,t ′ is the Kronecker delta function, taking the value of 1 if t ′ = 0 and 0 otherwise 
(since we defined T ′

l = 0 if el /∈ E′).
We can use the law of total probability to remove the conditioning on el from 

Eqs. (4), (5) and find P(T ′
l = t ′) , the probability mass function for the number of tri-

angles in the sampled graph link el participates in.

Therefore, the conditional probability mass function for T ′
l  given Tl is given by Eq. (6).

The expected value of T ′
l  given Tl is given by

where Eq. (7) comes from noting that the sum in the left hand side precisely evaluates 
the expected value of a binomial random variable with t trials and probability p2.

Let T ′ be a random variable representing the triangle count of G′ , then

where T ′ is the triangle count of the sampled network G′.
Similar to the discussion in the previous section, the sum in Eq. (8) is not the sum 

of independent random variables. The quantities T ′
l  and T ′

m for l  = m are only inde-
pendent if edges el , em ∈ E are not part of triangles which overlap in any way; this 
can happen not only if they are adjacent edges but if they have triangles dependent 

(4)P(T ′
l = t ′|Tl = t, el ∈ E′) =

(

t
t ′

)

p2t
′
(1− p2)t−t ′

.

(5)P(T ′
l = t ′|Tl = t, el /∈ E′) = δ0,t ′

(6)

P(T ′
l = t ′|Tl = t) = P(T ′

l = t ′|Tl = t, el ∈ E′)P(el ∈ E′)

+ P(T ′
l = t ′|Tl = t, el /∈ E′)P(el /∈ E′)

= p

(

t
t ′

)

p2t
′
(1− p2)t−t ′ + δ0,t ′(1− p).
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t
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t
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t
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)
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



1

3

�

el∈E

T ′
l



 =
1

3

�

el∈E

p3Tl = p3T



Page 7 of 18Arnold et al. Applied Network Science            (2023) 8:80 	

on a shared edge. We can therefore expect total triangle count estimates to be more 
variable in networks with numerous instances of multiple triangles sharing a link; 
in these cases, the removal of a single link may remove a large number of triangles. 
This nature of clustered triangle distribution would be likely in a network that was 
highly transitive. As an example, Fig. 3 shows the average number of triangles T ′ in a 
sampled graph minus the estimated number of triangles Tp3 . The network is a power 
law network with positive transitivity (global transitivity C̄ = 0.14 and assortativity 
ρ = 0.35 ). The total number of triangles in the original network is 13,305 and the 
maximum observed effect is an underestimate of around 8 triangles. This is consistent 
with low or zero bias in the estimator. Note that the large error bars for large p, while 
may seem counterintuitive, are due to larger variance in T ′ for these values of p and 
hence larger standard errors.

The variance of T ′
l  given Tl is given by

where the bracketed term in line Eq. (9) is the variance of a binomial variable with t trials 
and probability p2.

An argument involving computation of the covariances Cov (Tj ,Tl) shows that the 
variance of the expected total triangle count of G′ given the individual triangle counts 
T1, . . . ,TM is given by

(9)

Var (T ′
l |Tl = t) = E(T ′2

l |Tl = t)− E(T ′
l |Tl = t)2

= p

t
∑

t ′=0

t ′2
[(

t
t ′

)

p2t
′
(1− p2)(t−t ′)

]

− p6t2

= p

(

t
∑

t ′=0

t ′2
[(

t
t ′

)

p2t
′
(1− p2)(t−t ′)

]

− p4t2

)

+ p5t2 − p6t2

= p3t(1− p2)+ p5t2 − p6t2

= p3t(1− p2 + p2t − p3t)
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Fig. 3  Difference between the observed number of triangles and the expected number of trinagles using 
p3T  , on a power law network with N = 1000 and M = 5000 and degree assortativity ρ = 0.35 . Shown is the 
mean over 500 sampled graphs for each value of p and with standard deviation error bars (one deviation 
above and one below.)
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where k is the number of triangles which share a link. The full derivation of Eq. (10) can 
be found in the first author’s thesis Arnold (2021) which also contains derivations for 
wedge1 counts and clustering coefficient. An expression for this variance conditioned on 
total triangle count T not edge triangle counts is given in Tsourakakis et al. (2009).

The number of triangles per node Ti can be obtained from Teℓ from 2Ti =
∑

k Teℓ=(i,k)∈E 
meaning the estimators of the edge-sampled network can be extended to evaluate vertex 
statistics eg local transitivity of the nodes ci =

∑

k Teℓ=(i,k)∈E/(ki(ki − 1)).

Estimators for the degree sequence and triangle count
The previous showed how the distribution of a quantity X ′ in a sampled graph G′ could 
be calculated as a conditional probability P(X ′ = x′|X = x) given the unsampled meas-
urement X = x . This section aims to estimate the true network quantity X given its sam-
pled counterpart X ′.

Method of moments estimators

Let X be a random variable associated with a statistic of G and let X ′ be that statistic on 
G′ with expected value E(X ′) = f (X , p) . A naive ‘scale-up’ estimator for X given observed 
value x′ for X ′ is the solution x̂ to the equation x′ = f (x̂, p) , provided a solution exists. 
Borrowing the terminology from Ganguly and Kolaczyk (2017), we will refer to these 
estimators as method of moments estimators (MME).

Degree

For a node of degree k ′i in G′ , the MME for ki is given by k ′i/p . This is an unbiased estima-
tor with mean E (k ′i/p) =

1
pkip = ki and variance Var (k ′i/p) =

1
pk(1− p) . Nodes with 

the lowest possible degree (one) in the sampled graph are estimated as having degree 1/p 
in the unsampled graph so as p decreases, the estimation of low-degree nodes becomes 
poorer.

Triangle count

The expected triangle count E(T ′
l ) of edge el is p3Tl . If in addition, el remains in G′ , its 

expected triangle count is given by p2Tl . Therefore the MME for Tl is p−3T ′
l  or p−2Tl , 

without and with the conditioning respectively. Similar to the MME for degree, it pro-
vides poor estimates for edges that have a low triangle count, as it disallows any esti-
mates of Tl in the range (0, 1/p2).

Similarly, an MME estimate proposed by Tsourakakis et al. (2009) for the total triangle 
count of a network is p−3T ′ , which has expected value E (p−3T ′) = T  . They found that 

(10)

Var (T ′|T1, . . . ,TM) =
1

9

[

3p3(1− p2)T + (p3 − p2)
∑

el∈E

T 2
l

+ 6T (p3 − p6)+ 8k(p5 − p6)

]

.

1  A two hop path, a triangle is composed of three wedges.
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this estimator has variance 1

p6

(

(p3 − p6)T + 2k(p5 − p6)
)

 , where k is the number of 

pairs of triangles which share a link.

Bayes estimator

This estimator relies on Bayes theorem, giving

P(X ′ = x′|X = x) is the likelihood which is determined by the edge sampling procedure 
and is known. P(X = x) is the prior function which will be denoted by π(x) ; this is in 
general not known.

A posterior estimate for X given X ′ can then be given as the expected value

The immediate question arises of how to deal with the prior π(x) , as this may involve 
making assumptions about the structure of G. This will be discussed case by case for the 
degree and triangle count.

Degree

Using the likelihood function for the degree from Eq.  (1), a posterior estimate for the 
degree of node vi given it has degree k ′i in G′ is

where π(k) is a prior for the degree distribution P(k) of G.

Triangle count

Using the likelihood function from Eq. (4), a posterior estimate for the triangle count of 
edge el in G given it remains in G′ is

where π(t) is a prior for the proportion of edges with triangle count t.2

To establish the total triangle count, summing the value of this estimator over the 
remaining edges in G and dividing by 3, as in Eq. (3), will provide an underestimate for 

P(X = x|X ′ = x′) =
P(X ′ = x′|X = x)P(X = x)

P(X ′ = x′)
.

E (X |X ′ = x′) =

∑

x xP(X
′ = x′|X = x)π(x)

P(X ′ = x′)
.

(11)E(ki|k
′
i = k ′) =

∑∞
k=k ′ k

(

k
k ′

)

(1− p)kπ(k)

∑∞
k=k ′

(

k
k ′

)

(1− p)kπ(k)

(12)E(Tl |T
′
l = t ′, el ∈ G′) =

∑∞
t=t ′ t

(

t
t ′

)

(1− p2)tπ(t)

∑∞
t=0

(

t
t ′

)

(1− p2)tπ(t)

2  In experimental runs, the native binomial functions introduced numerical inaccuracies for large powers of (1− p) . 
Therefore, an equivalent evaluation of binomial probabilities using the log-gamma function and laws of logs was used in 
practice.
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the total triangle count of G, since there are potentially many missing edges in G′ . To 
mitigate this, we scale this factor up to the estimated number of edges in G. That is, our 
estimate of the total triangle count becomes

Remarks on our estimators

It is worth highlighting that up to now, our degree estimators k̂i, k̂j for nodes i and j will 
take the same value if k ′i and k ′j are the same. That is, only the node’s degree and the 
degree sequence of the sampled network are taken into account and no other aspect of 
the network’s structure. It also means that estimates will be very coarse; if the sampled 
network has maximum degree k then the estimated degree sequence will take up to k 
different values. The same is true for the triangle per link estimators.

Constructing a prior
The Bayes estimators for the degree and triangle per link sequences require the choice 
of a prior π(k) and π(t) for the degree distribution and triangles per link distribution 
respectively. In this section, we propose methods for constructing priors.

Degree distribution

A prior could be obtained from chosen family of distributions such as the Zipf distri-
bution or a power law distribution, but this baked-in assumption may not be desirable. 
Furthermore, it has been shown that the distribution of a sampled network may not even 
follow the distribution of the true network (Stumpf et al. 2005). Therefore, we propose 
two different methods of constructing a prior which do not make assumptions about the 
degree distribution of the true network.

Monte Carlo minimisation method

First, it is possible to estimate the prior using a Monte Carlo method to minimise the ℓ2 
norm of the error, which in this work we will refer to as the minimisation method. In this 
approach, we find a degree sequence {κi} which minimises min

(
∑

i ||pκi − k ′i ||
2
2

)

 . This is 
done with the restrictions that the degree κi is an integer number with κi ≥ k ′i and

To do this, we start with κi = ⌊k ′i/p⌋ . If the sum 
∑

vi∈V ′ κi of the estimated degrees is not 
equal to the estimated number of links ⌊2M′/p⌋ then we increment or decrement the 
degree of nodes chosen uniformly at random until equality holds. Then we construct a 
graph with degree distribution given by {κi} and rewire its links at random by a single 
edge swap (incrementing the degree of one node chosen at random and decrementing 
the degree of another node chosen at random) for a large number of iterations (15,000 
in our case), accepting each proposed rewire if it decreases the ℓ2 error. Note that if the 

T̂ =
1

3p

∑

el∈G
′

T̂l .

(13)
∑

i

κi = ⌊2M′/p⌋.
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initial estimate κi satisfies Eq. 13, then this is a global minimum for the ℓ2 norm. In par-
ticular, this happens when k ′i/p is an integer for all i.

Link cascade method

The MME (and hence sometimes the minimisation method) cannot estimate the degree 
ki ≈ k ′i/p when k ′i = 0 ; that is, the lowest possible estimated degree is 1/p. If a good esti-
mate for the original number of nodes is known then another prior for capturing these 
low degree nodes is constructed by “cascading” links from high degree to low degree 
nodes. This is a heuristic method based on the observation, that when k ′i = 0 the estima-
tion is poor, so the idea is to create a prior that has the original number of nodes and 
there are no zero degree nodes. As with the minimisation method, we start with an esti-
mated degree sequence κi = ⌊k ′i/p⌋ , redistributing links as before if the total estimated 
degree does not match twice the estimated number of links. Then, we place the nodes 
in descending order based on their estimated degree, with the knowledge of the original 
number of nodes in the network being used to append placeholder nodes which would 
have been removed by the sampling process. Finally, we pick the first occurring node in 
this list with degree zero, and increment this degree by simultaneously decrementing the 
degree of the node directly before it, this operation is to conserve the total number of 
links. This step is performed iteratively until there are no degree zero nodes. This heuris-
tic method is fast as it does not require the construction of a graph and the shuffling of 
its links. As the method manipulates only the degree sequence the method is attractive 
when trying to construct a prior for large networks. Finally, as a comparison point rep-
resenting the best possible result achievable with the Bayes method, we use a true prior 
which places the probability mass π(k) equal to the proportion of nodes of degree k in 
the original network.

Triangle per link distribution

The two methods for prior construction of the degree distribution do not immediately 
translate to an analogue for triangles, and little is known about the triangle per edge dis-
tribution as a starting place for selecting a prior. As an initial approach therefore, we use 
a Poisson distribution Po(�) with � = 3T̂/M′ , the average number of triangles per link in 
the MME estimator. As with the degree distribution, we include a result with a true prior 
π(t) equal to the proportion of links with triangle count t in the original network as a 
comparison point.

Results
To test the capability of our estimators of degree sequence and triangle count, we con-
sider five different starting networks: an Erdős–Rényi G(N, M) network (Erdős and Rényi 
1960) with N = 1000 and M = 10, 000 , a Barabási–Albert network (Barabási and Albert 
1999) of approximately the same size and density, a real collaboration network from 
authors who submitted to the ArXiV high-energy theoretical physics category (New-
man 2001) (henceforth Hep-Th for brevity), an Internet autonomous systems topology 
dataset (henceforth AS) (Chen et al. 2002) and an interaction network on the MathOv-
erflow sub-forum on StackExchange (Paranjape et al. 2017). A quick reference of some 
summary statistics can be found in Table 1. These datasets were chosen to represent a 
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heterogeneous selection of network types. The ER network has a Poisson degree and 
edge triangle count distribution and an overall low number of triangles for the network’s 
density. The BA network has a theoretical power law degree distribution and a low tri-
angle count for its density. The Hep-Th and AS networks have a heavy-tailed degree 
distribution but have very different degree correlations, and the Hep-Th has a higher 
clustering than the AS network. The MathOverflow dataset is provided as an example of 
a larger network. For each of these datasets modelled as a graph G, we take an edge-sam-
pled network G′ with edge sampling probability p, for p = 0.1, 0.2, . . . , 0.9 and from this, 
reconstruct the degree sequences, edge triangle counts and total triangle counts using 
our estimators. In the larger datasets (Hep-Th, AS topology, StackExchange) we examine 
also the cases p = 0.01 and p = 0.05 to consider the most extreme scenarios.

In the degree distribution experiment, we reconstruct the degree k of nodes in V ′ using 
our chosen estimators k̂ , and compute the root mean squared error of the degree 
sequences as RMSE(k̂) =

√

1
N ′

∑N
i=1(ki − k̂i)2 . These results are shown in Fig. 4, show-

ing the mean and s.d. error over 10 experiments. In all but the AS topology network and 
the Math Overflow network, the Bayes estimator with true prior has the lowest error, 
though this is included only to show the best possible result that could be obtained with 
the Bayes method since the true prior is unknowable. The link cascade method performs 
well for many networks in the realistic cases with low sample rates but poorly for the E-R 
network. Bayes with link cascade prior is a good all round performer, never being a bad 
performer and second or third best for most networks. This method assumes knowledge 
of the number of nodes in G (i.e. the number of nodes pruned by the edge-sampling) so 
performs better at estimating low degree nodes. This is particularly evident in Fig. 4c, 
performing better than the Bayes approach with true prior. The Monte Carlo minimisa-
tion method used as an estimator overlays the MME due to the restriction that the 
degree sequence is an integer (c.f. “Constructing a prior” section).

Figure 5 studies the performance of the Bayes posterior estimate (the one with prior 
obtained using the minimisation method) against the baseline method of moments esti-
mator in small p and large p scenarios, with the assumption that the number of nodes in 
the original graph is known. For small values of p, our estimates for low degree nodes are 
very poor. This is due to the information loss; for p = 0.1 as an example, it is more likely 
than not for a node of degree 6 or fewer to lose all its edges in the sampling process, and 
hence the performance is worse in networks with a low maximum degree such as the 
Erdős-Rényi and Hep-Ph collaborations graph. The MME is further restricted to taking 
values that are multiples of 10 for this value of p = 0.1 , so gives very coarse estimates. 
However, for the p ≤ 0.1 cases, the Bayes posterior method brings the estimates closer 
to the correct answer than the MME in all but the AS topology dataset, where the two 
methods appear to perform similarly.

In the triangle count experiment, we estimate the triangle per edge count T̂l for edges 

el ∈ E′ and compute the mean squared error as RMSE(T̂) =
[

1

M′

∑

el∈E
′(Tl − T̂l)

2
]
1
2 . In 

addition, we estimate the total number of triangles as described in section “Estimators 
for the degree sequence and triangle count” and calculate the mean squared error over 
the 10 experiments performed. These are shown in Fig. 6.
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Fig. 4  Error in estimation of the true degree sequence. Each value is averaged over 10 experiments with 
the shaded error bars representing standard deviation and plotted with log-scaled y-axis. The MME overlays 
the minimisation method (blue, green respectively) in all plots; the same is true of the Bayes methods with 
minimisation and link cascade priors (red and purple respectively). In e all apart from the link cascade method 
are overlaid. The error bars in some places are very small, in part because we are considering root mean 
squared error and additionally the y axis is log-scaled

Table 1  Original statistics of network datasets used prior to sampling

Shown is the number of nodes N, number of edges M, maximum degree kmax , degree assortativity ρ , number of triangles T, 
average node clustering coefficient C̄ (Watts and Strogatz 1998), and average number of triangles per link T̄l

Dataset N M kmax ρ T C̄ T̄l

Erdős-Rényi 1000 10,000 35 − 0.002 1373 0.021 0.41

Barabási-Albert 1000 9900 170 − 0.041 6099 0.063 1.85

Hep-Th 5835 13,815 50 0.185 10,624 0.506 2.31

AS Topology 11,174 23,409 2389 − 0.195 19,894 0.296 2.55

MathOverflow 24,759 187,985 2172 − 0.215 1,403,896 0.313 22.4
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In all experiments, the Bayes estimator with Poisson prior overlays the MME for the 
total number of triangles because the � used in the Poisson distribution is the MME esti-
mate of the average number of triangles per link.. However, in all but the AS topology, 
the Poisson prior improves the estimate of triangles per link, especially in the small p 
scenario. In the AS topology dataset, the Poisson is an inappropriate prior, performing 
poorly even with large sample sizes.

As with the degree sequence, we compare the number of triangles per link and 
estimated triangles per link in small and large p scenarios in our datasets, using the 

Fig. 5  Estimated degree k̂ against the true degree k for five different datasets, at a p = 0.1 sample and 
p = 0.9 sample. We compare the method of moments estimator k̂ = k′/p with the Bayes posterior estimate 
with prior obtained using the minimisation method
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MME and Bayes posterior estimate with Poisson prior in Fig.  7. Considering first 
the p = 0.1 scenario, we see that the Bayes posterior estimate helps to ease the prob-
lem of extreme estimates (the MME T̂l = T ′/p2 takes smallest values 0 then 1/p2 ) 
since the contribution of high t terms in Eq. (12) is suppressed by the Poisson prior. 

Fig. 6  Error in estimation of the triangles per link sequence (left hand column) and total triangles (right hand 
column) using our different approaches. Each value is averaged over 10 experiments with the shaded error 
bars representing standard deviation. The MME overlays the Bayes estimator with Poisson prior in the right 
hand column
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However, for large p, we see that the Poisson prior begins to dominate inappropri-
ately, incorrectly assuming that the distribution of triangles across the links is homo-
geneous. This manifests in the BA and Hep-Ph examples as a slight overestimate at 
the lower triangle count end and a large underestimate at the upper end. We see 
this even clearer in the AS topology example, where a triangle count of over 250 is 
effectively forbidden by the Poisson prior, while the MME remains unbiased in all 
datasets.

The poor performance of both estimators at p = 0.1 indicates how difficult a prob-
lem estimating the edge triangle count is after so much information has been lost; in 

Fig. 7  Estimated edge triangle count T̂l against the true edge triangle count Tl for five different datasets, at a 
p = 0.1 sample and p = 0.9 sample. We compare the method of moments estimator with the Bayes posterior 
estimate with Poisson prior
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all datasets apart from the AS topology, edges in the sampled graph had only 0 or 1 
triangle remaining. A better estimate for these may involve more assumptions about 
the network structure. For example, the results in Fig. 7 show that the distribution of 
triangles in the real network and, to an extent, the BA network is heterogeneous, so 
perhaps a heavier tailed distribution than a Poisson should be considered.

Conclusion
This paper provided methods for recovering the degree sequence, number of triangles 
and triangle per link sequence from networks sampled via uniform edge sampling such 
as graphs limited to a sample by the Twitter API. Our derivations of the expectation 
and variance of these quantities demonstrate the difficulty of the problem, finding their 
dependency on the degree sequence, degree-degree correlations and triangle distribu-
tions of the original networks. Our results show that our Bayesian estimators perform 
much better than standard approaches on the degree sequence even when the priors 
were constructed without knowledge of distributions for the original network. For 
the triangle count per edge, we showed that while the Bayes estimates do not always 
improve upon the MME for total triangle counts, they provide a markedly better esti-
mate of triangles per link in the small p scenario where most information has been lost. 
However, an inappropriate choice of prior can lead to a bias even when the sample size is 
large, as we found when using a Poisson prior for a network with heterogeneous triangle 
distribution.

Future work will investigate generalising methods we used for constructing a degree 
distribution prior for constructing a prior for triangle counts per link. However, it should 
be noted that, in particular, reconstructing triangles is extremely hard at low sampling 
rate and it is doubtful any technique would produce large improvements. The work 
could instead be extended by considering sampling regimes and network properties for 
which a likelihood can be calculated.
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