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Abstract 

Motivation:  Social media platforms centered around content creators (CCs) faced 
rapid growth in the past decade. Currently, millions of CCs make livable incomes 
through platforms such as YouTube, TikTok, and Instagram. As such, similarly to the job 
market, it is important to ensure the success and income (usually related to the fol-
lower counts) of CCs reflect the quality of their work. Since quality cannot be observed 
directly, two other factors govern the network-formation process: (a) the visibility 
of CCs (resulted from, e.g., recommender systems and moderation processes) and (b) 
the decision-making process of seekers (i.e., of users focused on finding CCs). Prior virtual 
experiments and empirical work seem contradictory regarding fairness: While the first 
suggests the expected number of followers of CCs reflects their quality, the second 
says that quality does not perfectly predict success.

Results:  Our paper extends prior models in order to bridge this gap between theo-
retical and empirical work. We (a) define a parameterized recommendation process 
which allocates visibility based on popularity biases, (b) define two metrics of indi-
vidual fairness (ex-ante and ex-post), and (c) define a metric for seeker satisfaction. 
Through an analytical approach we show our process is an absorbing Markov Chain 
where exploring only the most popular CCs leads to lower expected times to absorp-
tion but higher chances of unfairness for CCs. While increasing the exploration helps, 
doing so only guarantees fair outcomes for the highest (and lowest) quality CC. Simula-
tions revealed that CCs and seekers prefer different algorithmic designs: CCs generally 
have higher chances of fairness with anti-popularity biased recommendation pro-
cesses, while seekers are more satisfied with popularity-biased recommendations. Alto-
gether, our results suggest that while the exploration of low-popularity CCs is needed 
to improve fairness, platforms might not have the incentive to do so and such inter-
ventions do not entirely prevent unfair outcomes.

Keywords:  Social networks, Recommender systems, Popularity biases, Algorithmic 
fairness, Agent-based modeling, Markov chains

Introduction
Over the past few decades, social media platforms have significantly influenced our 
lives by shaping the information we receive (Bakshy et  al. 2012) and the opinions we 
form Hall et al. (2018). These platforms have shifted from connecting real-life friends to 
encouraging users to follow strangers based on their content. Today, platforms such as 
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YouTube, Twitter, Instagram, and TikTok are heavily centered around User Generated 
Content (UGC) and use recommender systems to facilitate the exploration of content.

As a result of this shift, certain users focus on producing content that is semi-profes-
sional in nature, which is intended to draw in a growing number of followers and gener-
ate income based on their viewership. Given this scenario, it is reasonable to expect that, 
similarly to the job market (Adams 1963), these social media platforms would ensure 
fairness for content creators (CCs), where equally qualified individuals are rewarded 
equally in terms of their visibility, audience, and ultimately their earnings.

To ensure fairness for content creators (CCs) on these online platforms, it is appropri-
ate to ask whether recommender systems produce fair outcomes. In a model proposed 
by Pagan et al. (2021), each CC has an intrinsic quality. Repeatedly, one CC is recom-
mended to each user; then, users follow the recommended CC when this CC has higher 
quality than their current followees. This simplified setup thus models one community 
characterized by a single predominant ordinal attribute which can be perfectly observed 
by all users (e.g., a community of advanced chess players who want to improve the qual-
ity of their game by following the CC most clearly presenting advanced techniques). 
Simulating this model shows that the expected number of followers for CCs follows a 
Zipf ’s law Zipf (2016), and the expected rankings by quality and followers are the same.

Although the findings of Pagan et al. (2021) imply that UGC-centered platforms are 
equitable for content creators (CCs), some empirical evidence suggests otherwise. For 
instance, in cultural markets, predicting success can be challenging (De  Vany 2003). 
According to the experimental study conducted by Salganik et al. (2006), this is partly 
due to social influence. Specifically, as users receive more information about the prior 
choices of others, the predictability of an item’s popularity decreases. This lack of pre-
dictability can be interpreted as a failure to ensure fairness on certain UGC-centered 
platforms.

The two lines of work appear thus to be in stark contrast, which raises the question of 
the underlying cause for the gap in results. While the unidimensionality of the attrib-
ute space of CCs and the resulting simplicity of the decision-making process of users 
could be one cause, we believe that the apparent inconsistency of the previous litera-
ture is mostly because of two other limitations in the model used by Pagan et al. (2021). 
Firstly, the analysis is confined to only two exploratory recommendation processes that 
use either popularity-based (mimicking the Preferential Attachment mechanism (Bara-
bási and Albert 1999)) or uniformly random (UR) recommendations. However, these 
simplified recommender systems are limited in their ability to exert social influence and 
take risks to discover better options, and real-world recommender systems can be dif-
ferent. For instance, recent research has shown the importance of striking the right bal-
ance between exploration and exploitation to encourage diversity in recommendation 
systems (McNee et al. 2006; Kunaver and Požrl 2017; Helberger et al. 2018; Gravino et al. 
2019). The second limitation of the model (Pagan et al. 2021) is that they only consider 
the expected number of followers at convergence. However, this ex-ante fairness does 
not necessarily imply ex-post fairness. Even if content creators receive followers propor-
tional to their quality in expectation, many actual outcomes could still be unfair for at 
least some unlucky content creators. (Myerson 1981) explains this concept. Additionally, 
as noted by the authors themselves, there might be long times to convergence, which 
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means that even if a fair outcome is eventually reached, it might not happen within a 
reasonable time frame.

We address these two challenges by bringing together concepts from network sci-
ence, recommender systems, and algorithmic fairness. First, we extend the recommen-
dation process beyond UR and the prior implementation of PA by using a parameter 
α which governs the level of popularity bias in the visibility of CCs. Besides a more 
granular understanding of various PA-like recommendation processes, this parametri-
zation allows us to also (a) investigate the potential of interventions which increase the 
visibility of unpopular CCs to improve fairness (i.e., negative values of α which lead to 
anti-PA recommendation processes (Pollner et al. 2005; Stoikov and Wen 2021)) and (b) 
investigate extreme versions which recommend only the most (or least) popular CCs 
(i.e., α = ±∞ , processes which were inspired by the popularity recommender system 
(Chaney et  al. 2018)). Second, we formulate ex-ante and ex-post fairness metrics for 
CCs, as well as a measure for user satisfaction. Third, we use Markov Chains to theoreti-
cally analyze the network formation process under the different recommendation pro-
cesses and its fairness at convergence. Finally, we use simulations to better investigate 
how popularity biases and time constraints affect the fairness of CCs and the satisfaction 
of seekers. Altogether, our work questions whether a unanimous agreement of users on 
the relative ranking of CCs in terms of desirability is enough to guarantee individual fair-
ness for CC in the final outcome, or if luck still plays an important role.1

Related work
Network formation

After the seminal work on the random graph model (Erdös and Rényi 1959), the complex 
networks community began developing straightforward yet insightful mechanisms to 
explain the emergence of social networks. For instance, the small-world network model 
(Watts and Strogatz 1998) and the preferential attachment model (PA) (Barabási and 
Albert 1999) have been used to study the formation of social networks. In the PA model, 
newborn nodes form connections to existing nodes with a probability proportional to 
their degree, leading to a rich-get-richer phenomenon where popular nodes become 
even more popular due to their high visibility. However, the PA model doesn’t emphasize 
the socio-economic reasons that motivate individuals to form certain connections.

In contrast, some research in sociology (Stochastic Actor Oriented Models (Snijders 
1996)) and economics (strategic network formation models (Jackson 2010)) has taken a 
utilitarian perspective, where agents form connections to maximize some benefit, such 
as their network centrality. The quality-based model of Pagan et  al. (2021) combines 
both of these approaches by using a user-based ranking system (UR) or PA-based rank-
ing system and a utilitarian decision-making function for users.

1  This paper is an extension of our prior work (Ionescu et al. 2023). It is thus important to note that the model, fairness 
metrics, and theoretical results are similar to the ones in the aforementioned paper. However, the current work brings 
significant novelty. Regarding the model and metrics, we parameterized the recommendation function (thus allowing us 
to investigate recommendations with α values different from 0, 1, and ∞ – i.e., UR, PA, and ExtremePA in Ionescu et al. 
(2023)) and added a metric for user satisfaction. In the theoretical analysis, we generalized the results to arbitrarily finite 
values of α . We also added theoretical results for α = −∞ (Extreme anti-PA). Finally, we developed the code (publicly 
available at https://github.com/StefaniaI/ABM-IFforSMI) and run simulations for different scenarios. This gives a com-
plete picture of the role of popularity biases on the different stakeholders.
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To gain a better understanding of how ranking systems and human behavior interact, 
we introduce a non-exploratory ranking system and study the fairness of the resulting 
outcomes.

Fairness

Scholars are not solely concerned with the average performance of processes, but also 
with their equity in terms of their impact on individuals. As such, much effort has been 
devoted to developing fairness measures, as well as a methodology for selecting the most 
appropriate measure depending on the application domain (Verma and Rubin 2018; 
Garg et al. 2020; Mitchell et al. 2021). Among the various fairness metrics, our focus is 
on individual fairness, which evaluates the extent to which similarly qualified individuals 
receive similar quality outcomes (see (Binns 2020) for a comprehensive overview of its 
significance and its apparent incompatibility with other fairness metrics).

A crucial phenomenon in this area is the timing effect, which suggests that it is not 
enough to specify a welfare function; the time at which the function is measured (ex-
ante or ex-post) also matters (Myerson 1981). Building on these concepts, we define and 
examine both ex-ante and ex-post individual fairness for content creators (CCs).

Recommender systems

In recent years, the recommender system (RS) community has recognized the signifi-
cance of evaluating RSs beyond accuracy (McNee et al. 2006). Efforts have been made to 
develop diverse RSs (Kunaver and Požrl 2017; Helberger et al. 2018; Gravino et al. 2019) 
that ensure any two items can be jointly recommended to users (Guo et al. 2021). This 
could explain why popularity-based algorithms implemented within the RS community 
(Chaney et  al. 2018; Lucherini et  al. 2021) differ from PA (Barabási and Albert 1999; 
Pagan et al. 2021) by not allowing for a full exploration of recommendations. Our inter-
est in examining extreme PA is motivated by this background, but our primary objective 
is to understand the network formation process and its fairness. We also differentiate 
our work from the experimental study of Salganik et al. (2006) as we (a) formally define 
fairness metrics, (b) use theoretical tools to explain why social influence reduces fair-
ness, and (c) examine network-specific metrics such as the time to convergence.

Model and metrics
As discussed before, the apparent gap between the conclusions of prior simulation 
(Pagan et  al. 2021) and empirical (Salganik et  al. 2006) work regarding the individual 
fairness of the system could have various roots. On the one hand, it could be caused by 
the modeling limitations of the recommendation processes. On the other hand, it could 
be due to how and when fairness is measured. To better understand the degree at which 
the quality of content creators (CCs) is reflected in their success, we thus need to extend 
prior models and metrics used to evaluate fairness (Pagan et al. 2021). This section will 
address each of these extensions in turn To preserve the simplicity of the model, which 
is critical for its interpretability, we keep most of the simplifying assumptions made in 
prior work (Pagan et al. 2021; Ionescu et al. 2023).
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Model overview

The platform is composed of two types of users: n ≥ 2 content creators (CCs) who gen-
erate content for platforms, and m regular users who seek valuable content and will 
be called seekers. Consistent with prior work and observations, we assume there are 
far more many seekers than CCs. Moreover, we assume CCs are ranked by their qual-
ity ( CC1 � CC2 � · · · � CCn ), and all users prefer higher ranked CCs. In particular, 
the quality associated with a content creator is a mono-dimensional ordinal attribute2 
which ultimately induces the same preference ranking of seekers over CCs. Therefore, 
as done in prior work (Pagan et al. 2021; Ionescu et al. 2023), we model a community of 
experienced users who all agree on the relative evaluation of CCs, e.g., advanced chess 
players who want to improve the quality of their game by following the content crea-
tor most clearly presenting advanced techniques. This simplifying assumption allows for 
increased interpretability of the process and its results, as well as for a clear notion of 
what outcomes are individually fair for CCs. Perhaps most important, it lets us study the 
effect of the noise within the system (i.e., the luck of CCs) in isolation from other factors 
(e.g., the size of the target audience).

The network formation is a sequential dynamic process where (a) the follower network 
is initially empty, and (b) at each timestep, each seeker is recommended a CC which they 

2  Theories and other models often distinguish between two types of attributes that ultimately count within the decision-
making process of users: (a) ordinal or competing (i.e., attributes on which others prefer a value as large as possible, such 
as sound quality), and (b) nominal or matching (i.e., attributes on which others prefer a value matching their own, such 
as being funny or serious) (Spiller and Belogolova 2017; Liu et al. 2020; Ionescu et al. 2021; Bruch and Newman 2018).

Fig. 1  The network formation process is split into two phases: in the first phase, each seeker is 
recommended a content creator. The probability of recommending a given content creator is based on 
their current number of followers, as well as on the recommendation process, as shown in 2. In the second 
phase, the seeker decides whether or not to follow the recommended content creator. This decision process 
is based on the quality of the recommended content creator and on the quality of the seeker’s current 
followees: if the quality is greater (or equal) the seeker follows the newly recommended content creator. The 
two processes are coupled as the decision-making phase changes the status of the network by affecting the 
number of followers of each content creator. In turn, this changes the probability a given content creator will 
be recommended



Page 6 of 29Ionescu et al. Applied Network Science            (2023) 8:46 

can follow or not. We therefore start with an empty follower network and add edges 
between seekers and CCs, thus maintaining its bipartite structure 3. As shown in Fig. 1, 
in each timestep, there is a recommendation phase (where each seeker is recommended 
a CC) and a decision phase (where seekers decide whether or not to follow the recom-
mended CC). Seekers follow a recommended CC only if the CC is higher ranked with 
respect to quality than each of their current followees.

Before explaining the recommendation phase, we introduce some useful notation. 
Throughout the paper we denote the follower network at time t by At ∈ {0, 1}m×n . As 
usual, ats,c is 1 if seeker s ∈ m follows CC c ∈ n at time t and 0 otherwise, where k  denotes 
the set of non-zero natural numbers that are at most equal to k, i.e. k := {1, 2, . . . k}.

The recommendation phase. During the recommendation phase, each seeker receives 
a suggested CC, based on the state of the network. Formally, suggestions are generated 
depending on the recommendation process which maps a follower network At to a rec-
ommendation function, i.e., a function Rt : m → n which maps seekers to CCs  4. The 
recommendation process we consider here uses the popularity of CCs to distribute their 
visibility:

where a.,i := s∈m as,i is the number of followers of CCi . We introduce this function as 
a parametrized way of expressing multiple fundamental network formation processes. 
Positive values of α correspond to preferential attachment (PA), when visibility is pro-
portional to popularity. In particular, when α = 1 we obtain the same version of PA as 
in prior work (Pagan et al. 2021; Ionescu et al. 2023). When α = 0 we get uniform ran-
dom (UR) recommendations which distribute visibility equally among CCs. Negative 
values of α are for anti-preferential attachment (antiPA) (Pollner et al. 2005; Stoikov and 
Wen 2021) and were not explored in the aforementioned work. Such recommendation 
processes promote the CCs with fewer (rather than more) followers. Moreover, as we 
will show later, extreme values of α of plus (minus) infinity 5 correspond to extreme ver-
sions of recommendation processes where only the CCs with the most (least) number 
of followers is recommended. For example, we later show that α = ∞ corresponds to 
ExtremePA (Ionescu et al. 2023). Figure 2 considers one example of follower counts for 
CCs and illustrates the recommendation functions resulted from recommendation pro-
cesses with different values of α. 

From the perspective of recommender systems (RS), extreme values of α are directly 
linked to the level of item availability (Dean et al. 2020). Similar to prior work, we say 
content creator CCi is reachable by seeker s at time t if CCi can be recommended to s at 

P(Rt
α(s) = i) =

(1+ at.,i)
α

∑

j∈n(1+ at.,j)
α
,

5  As usual, we use infinity as a shorthand notation for the limit. For example, P(Rt∞(s) = i) = limα→∞

(1+at.,i )
α

∑

j∈n(1+at.,j )
α .

3  While in general seekers could create content and CCs can also follow other CCs, we make this simplifying assump-
tion as: (a) in practice, only a small share of users create content (Nielsen 2006), so (b) relatively few edges would be 
between CCs. A more detailed discussion on modelling assumptions can be found in prior work (Pagan et  al. 2021; 
Ionescu et al. 2023).
4  Although, in general, each seeker receives a list of recommendations, for simplicity and to allow comparable results 
with prior work (Pagan et al. 2021), we provide only one recommendation for each seeker per timestep.
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that time step, i.e., if P(Rt
α(s) = i) > 0  6. Moreover, we say a recommendation process 

guarantees complete availability of CCs to seekers if all content creators are reachable at 
any timestep. For example, when α = ±∞ , some CCs will eventually become unreach-
able, meaning those recommendations do not guarantee complete availability. More 
details will follow in the Theoretical Results Section.

In addition, high values of α correspond to relying more on current CC-popularity 
resulted from historical interactions, which leads to popularity biases (Bellogín et  al. 
2017; Abdollahpouri 2019). Reducing the value of α could thus be perceived similarly 
to increasing the exploration of RSs, a change which is thoroughly considered in the RS 
community (McNee et al. 2006; Kunaver and Požrl 2017; Helberger et al. 2018; Gravino 
et al. 2019).

We use (At
α)t≥0 to denote our stochastic process. It thus starts from the initial network 

A0 and sequentially makes recommendations based on the parameter α.

Metrics of interest

As we will see later in the results section, the process described above is a Markov Chain, 
as the network at the next timestep At+1 only depends on the current network At . Using 
this interpretation, we investigate whether the process is an absorbing Markov Chain, 
i.e., if it will eventually reach an absorbing state where the network will not change 
for any possible recommendations. If so, we want to find out the expected number of 
timesteps until convergence and investigate the fairness in the absorbing states. Doing 
so allows for comparable results with prior work (Pagan et al. 2021) and a deeper under-
standing of the causes of the emergent results.

As mentioned in the introduction, we expand our notion of outcome desirability by 
looking at individual fairness for CCs both in expectation and in the realized outcome. 
Formally, we define:

Fig. 2  The effect of the different recommendation functions on the visibility of the content creators. Uniform 
( α = 0) provides equal visibility, independently of the number of followers. PA ( α = 1 ) and extreme PA 
( α = ∞ ) enhance the visibility of already popular content creators. Vice-versa, antiPA ( α = −1 ) and extreme 
anti PA enhance the visibility of unpopular content creators

6  This definition is slightly simplified from prior work. (Dean et al. 2020) say that an item is reachable by a user if the 
user could change their interaction history s.t. the item in question could be recommended to them. Since seekers are 
many and have identical preferences, unilateral changes in follower decisions have limited to no impact on recommen-
dations. As such, for our purpose, the two definitions are almost always equivalent.
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•	 Ex-post individual fairness for CCs. We say that a network A is (individually) fair if the 
ranking of CCs by quality and popularity are the same; i.e., if a.,1 ≥ a.,2 ≥ · · · ≥ a.,n . 
In particular, we say that an outcome A is fair for CCi if CCi is one of the top i most 
popular CCs; i.e. if |{j : a.,j > a.,i}| < i . We call such outcomes (individually) CCi-fair. 
Note that an outcome is fair if it is CC-fair for all CCs 7.

•	 Ex-ante individual fairness for CCs. When the resulting process is an absorb-
ing Markov Chain, we can evaluate the fairness of the network formation process 
by considering the expected number of followers of CCs at convergence. We then 
say the process is ex-ante (individually) fair if the expected number of follow-
ers of CCs at absorption is decreasing with respect to their quality index, i.e., if 
E[a∞.,1] ≥ E[a∞.,2] ≥ · · · ≥ E[a∞.,n] . Similarly, we say that a process is ex-ante (individu-
ally)  CCi-fair if |{j : E[a∞.,i ] < E[a∞.,j ]}| < i.

The probability of achieving an ex-post fair outcome for a CC thus corresponds to the 
chance that their number of followers reflects the quality of their content. As a result, 
ex-post fairness can be interpreted as an inverse measure of the role of luck, where low 
values mean that the CC in question needs to be extremely lucky in order to be treated 
fairly within this system. By defining ex-post fairness for each CC, we can find out which 
CCs have better chances of reaching fair outcomes at convergence. Moreover, as found 
previously (Pagan et al. 2021; Ionescu et al. 2023), the time to reach convergence varies 
a lot depending on the recommendation process. As such, during the simulation results, 
we also investigate the fairness of the network after a fixed number of timesteps.

As an extension to prior work (Ionescu et al. 2023), we look at how different recom-
mendation processes affect the satisfaction of seekers. Doing so is important in under-
standing whether changes in the recommendation process could harm the satisfaction 
of regular users and could thus make that change unappealing to platforms. We measure 
the dissatisfaction of a seeker based on the quality-wise ranking of the best CC followed 
by the respective seeker. More precisely, the dissatisfaction of seeker s in a network a 
is min{i|as,i = 1} . Therefore, similarly to prior definitions (Jiang et  al. 2015; Su 2003), 
longer search times for the best CC are associated with more dissatisfaction from 
seekers.

Theoretical results
Building on prior sections, we use theoretical analysis to better understand the role the 
recommendation processes play in deciding what types of outcomes we observe. In 
order, we (i) show our system can be viewed as an absorbing Markov Chain (MC), (ii) 
investigate the expected time to absorption, and (iii) analyze the fairness of outcomes. 
To aid understanding, we start each subsection with a paragraph summarizing the 
results followed by a paragraph which discusses the main take-aways of these results. 
Afterwards, we proceed to present the theorems and proofs. As a rule, within proofs we 
aim to only include the details which we believe to be either relevant for understanding 
the system or more difficult to prove. Details or straightforward steps are thus omitted.

7  This definition does not consider ties as a signal for unfairness and, thus, represents a weak definition of individual 
fairness. As we will show in the theoretical results, this is not a key assumption, as ties in follower counts are rare when 
the number of seekers is large.
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An absorbing Markov chain

Summary. Cornerstone to our paper is the view of the process as an absorbing Markov 
Chain (MC). We thus start with Theorem 1 which proves such a view is correct. To bet-
ter understand the process, we depict in Fig. 3 the states and transitions for the small 
case of two seekers and two content creators (CCs) under different parameters for the 
recommendation process. We use the rest of the subsection to characterize the transi-
tions and the absorbing states. Lemma 1 proves that for finite values of α availability is 
guaranteed, while for plus (minus) infinity, only CCs with the highest (lowest) number 
of followers can be recommended. This means that the absorbing states are very differ-
ent depending on the recommendation process. Theorem 2 shows that when availability 
is guaranteed (i.e., when α  = ±∞ ) the absorbing states are the ones where each user 
follows the best CC. For the remaining recommendation processes (i.e., the extreme ver-
sions when α = ±∞ ), a state is absorbing if and only if no additional seeker would fol-
low any of the CCs with the highest (when α = ∞ or least when α = −∞ ) number of 
followers (see Theorem 3). Moreover, using Lemma 2, we prove that for ExtremePA (i.e., 
α = ∞ ) all absorbing states reachable form 0 have in addition a unique most followed 
CC.

Take-away. The results of this subsection build a representation of the process, 
which facilitates its understanding. Specifying the transition matrix allows us to see 
the impact of popularity biases within recommendation processes. When availabil-
ity is not guaranteed, we have more absorbing states. Among these, only the states 
where all seekers found the best CC (i.e., CC1-fair ones) are also absorbing under avail-
ability. Moreover, PA lies between UR and Extreme PA in terms of exploration: As 
we rely increasingly more on popularity (i.e., increasing the value of α ) the chance of 
remaining in transient states (which are fairness-wise similar to the states which are 
absorbing only under ExtremePA) grows. Finally, all these results are key in under-
standing the time to convergence and fairness which we investigate in the upcoming 
subsections.

Fig. 3  The states and transition probabilities for two users and two CCs. The starting state is the node with 
the zero matrix (colored in orange). We use full edges when transition probabilities are equal for any value 
of α . When transitions depend on α we use dotted edges. Labels represent the transition probabilities for 
(1) ExtremePA ( α = ∞ ), (2) PA with α = 1 , (3) UR ( α = 0 ), (4) AntiPA with α = −1 , and (5) ExtremeAntiPA 
( α = −∞ ) respectively. Dots replace zeros or probabilities when the starting state is not reachable from 0 
under the respective recommendation process
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Theorem 1  (At
α)t≥0 is an absorbing MC (for any value of α).

Proof  By our modeling of the network formation process, the configuration of the net-
work at the next timestep depends only on the current state of the network and not on 
the history. Formally, (At

α)t≥0 is a MC with: (a) {0, 1}m×n as the state space, (b) � (where 
�A = 1 iff A = 0 ) as the initial distribution, and (c) pB,C := P(At+1 = C|At = B) as the 
transition matrix. For the latter, we transit only to states where each seeker either (1) fol-
lows the same CCs as before, or (2) follows exactly one more CC which is better than the 
best CC they followed so far (i.e., for all seekers s there exists at most one CCi such that 
bs,j = 0 ∀ j ≤ i and cs,i = 1 ). The exact probabilities of such transitions generally depend 
on the value of α . The only exception is when all CCs have the same number of followers. 
In particular, from the initial state A0 = 0 we can only transit to a network where each 
seeker follows precisely one CC:

Finally, based on the monotonous properties of the transition matrix we can show that 
(At

α)t≥0 is absorbing: Since pB,C is non-zero iff C = B or there is some user u who follows 
one more CC, any state B is either absorbing or can transit to a state of a strictly higher 
sum of elements. However, the sum of elements of any state is bounded above by the 
number of entries (i.e., m · n ). Hence, such a sequence of transitions must be finite and it 
eventually reaches an absorbing state.�  �

Lemma 1  When α is finite all recommendation process guarantee complete availability 
for all seekers. Differently, when α = ±∞ , only CCs with the highest (lowest) number of 
followers have a nonzero probability to be recommended. Thus availability is no longer 
guaranteed for α = ±∞.

Proof  The first statement follows directly from the definition of the recommendation 
process: when α ∈ R , P(Rt

α(s) = i) > 0 for any follower matrix At . Therefore, each CCi is 
reachable for all seekers s. By definition, availability is thus guaranteed.

When α = ∞ , however, CCs that do not have the maximum number of followers are 
inaccessible to seekers:

where arg maxj a.,j is the set of CCs with the maximum number of followers in A. Analo-
gous results hold when α = −∞ . So, availability is not guaranteed for extreme recom-
mendation processes.�  �

p0,C =

{

1/nm, if cs,. = 1 ∀ s ∈ m
0, otherwise

P(Rt
∞(s) = i) = lim

α→∞

(1+ at.,i)
α

∑

j∈n(1+ at.,j)
α

= lim
α→∞

1

∑

j∈n

(

1+at.,j

1+at.,i

)α

=

{

1/| argmaxj a
t
.,j|, if i ∈ arg maxj a

t
.,j ∀ s ∈ m

0, otherwise



Page 11 of 29Ionescu et al. Applied Network Science            (2023) 8:46 	

Theorem 2  When α is finite, a state B is absorbing iff all users follow the best CC, i.e. iff 
bs,1 = 1 for all s ∈ m.

Proof  (⇒ ) We prove the direct implication by contradiction. Let B be a state with 
bs,1 = 0 for some seeker s. By Lemma 1, CC1 is available to s. So, s can first receive CC1 
as a recommendation and thus follow them. Hence, we have a non-zero probability of 
transitioning from B to a state C  = B where cs,1 = 1 . In particular, it implies B is not 
absorbing.

(⇐ ) For the converse, assume bs,1 = 1 for all seekers s. Since everybody already found 
the best CC, no seeker will follow somebody new. This means that no recommendations 
will change the follower network, thus making B absorbing. � �

Theorem 3  When α = ∞ (or α = −∞ ), a state is absorbing iff every seeker follows a 
CC at least as good as the highest-quality CC with the maximum (minimum) number 
of followers. Formally, when α = ±∞ , B is absorbing iff for all seekers s there exists some 
j ≤ eα(B) s.t. bs,j = 1 , where e∞(B) = min argmaxi b.,i and e−∞(B) = min argmini b.,i

Proof  (⇒ ) Assume B is absorbing, but there exists some seeker s who does not follow 
anybody at least as good as eα(B) ; i.e., bs,i = 0 for all i ≤ eα(B) . By Lemma 1, eα(B) has 
a nonzero probability of being recommended to s. Therefore, from B we can transit to 
a new network C where cs,eα(B) = 1 . Thus, we reach a contraction as B is not absorbing.

(⇐ ) If all seekers follow somebody at least as good as the highest-quality CC with the 
maximum (minimum) number of followers, then no seeker will follow a CC with the 
maximum (minimum) number of followers if recommended. However, by Lemma  1, 
these CCs are the only ones who have a chance of being recommended when α = ±∞ . 
Thus, B is absorbing. � �

Lemma 2  Any state reachable from 0 has, for each CCi that has the maximum number 
of followers, a seeker s who does not follow any CC better than CCi . I.e., if A0 = 0 then for 
any t ∈ N and i ∈ n s.t. at.,i = maxj a

t
.,j there exits some seeker s ∈ m s.t. ats,j = 0 for all 

j < i.

Proof  We prove this by induction on t. After the first timestep (i.e., when t = 1 ) each 
seeker follows precisely one CC, so the claim holds.

Assume the claim is true at time t and let Mt = arg maxj a
t
.,j be the set of the CCs with 

the maximum number of followers at time t. From At , we can either return to the same 
state (i.e., At+1 = At ) or we transit to a different network where a subset of the CCs 
who originally had the maximum number of followers still do (i.e., Mt+1 ⊂ Mt ). In the 
first case, the claim trivially continues to hold. In the latter case, each CCi with i ∈ Mt+1 
increased their number of followers between the two timesteps. Therefore, each such 
CCi was recommended to at least one seeker s who decided to follow them. This makes 
CCi the best CC s follows in At+1 , i.e., i = min{j : at+1

s,j = 1} . Hence, the claim.�  �
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Corollary 1  When α = ∞ , a state reachable from 0 is absorbing iff it has (a) a unique 
most followed CC, and (b) all users follow either this most followed CC or a better one. I.e., 
if A0 = 0 then At is absorbing iff (a) there exist some i ∈ n s.t. at.,i > b.,j for all j ∈ n− {i} , 
and (b) for all s ∈ m there exist some j ≤ i s.t. ats,j = 1.

Proof  (⇒ ) Assume At is absorbing, but two CCs have the highest number of follow-
ers, say CCi and CCj with i < j . By Lemma  2, some seeker s does not follow CCi . By 
Lemma 1, there is a nonzero probability to recommend CCi to s and thus transit to a new 
state. Thus, At is not absorbing (contradiction). So, if At is absorbing then (a) must hold. 
Moreover, (b) must also hold by Theorem 3.

(⇐ ) The converse is an immediate consequence of Theorem 3.�  �

Expected time to absorption

Summary. To investigate the time to absorption under extreme recommendation pro-
cesses, we first prove some preliminary results. First and most important, the chance 
of having two content creators (CCs) with an equal number of followers after the first 
round of recommendations (Lemma 3) goes to zero as the number of seekers grows to 
infinity. Second, the probability there is no seeker which would follow the most popular 
CCi if recommended also goes to 0 as the number of seekers goes to infinity (for i  = n , 
see Lemma  4)8. Third, Lemma  5 and Theorem  5 formalize the following intuition: If, 
after the first timestep, no two CCs have the same number of followers, then extreme 
anti-PA will recommend in turn the CCs with the least number of followers until it 
either recommends CCn or a CC of a lesser quality than in the previous round. Based 
on these observations, we obtain most of the annotations in Figs. 4 and 5, figures which 
summarize the process and provide the intuition for proving the two main results. Theo-
rem 4 shows that when α = ∞ the process is expected to converge in 2− 1/n timesteps. 
Theorem 6 proves that when α = −∞ the process is almost always expected to converge 
in about e · (n− 1)/n many timesteps.

Take-away. This puts extreme recommendation processes in sharp contrast with those 
guaranteeing availability. While our results show that extreme recommendations gener-
ally lead to fast convergence, prior work reveals that Uniform Random (UR) and Prefer-
ential Attachment (PA) (with α = 1 ) convergence times increase logarithmically in the 
number of CCs and linearly (or sub-linearly) in the number of users (see Figs. 2 and 7b 
of Pagan et  al. (2021)). Consequently, while for extreme recommendations it could be 
sufficient to consider the fairness at convergence, this might not be the case for general 
values of α . Longer convergence times indicate that fairness in transient states has a high 
relevance. This is particularly true for PA recommendation processes which, as observed 
in the prior subsection, remain for longer in unfair states. To expand on this, the upcom-
ing simulations will look at fairness at intermediate timesteps.

8  These first two results do in fact hold for any value of α.
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Lemma 3  As the number of seekers grows to infinity, the probability two CCs will have 
the same number of followers after the first timestep goes to zero. That is, for any i  = j ∈ n , 
P(a1.,i = a1.,j) → 0 as m → ∞.

Proof  For each seeker s, we define a random variable Ys based on the recommendations 
in the first round:

As, in the first timestep, the recommended CC is chosen uniform randomly, (Ys)s∈m are 
i.i.d. (with P(Ys = 0) = (n− 2)/n and P(Ys = c) = 1/n when c = ±1 ). Hence, E[Ys] = 0 
and Var(Ys) = E[Y 2

s ] = 2/n . By the central limit theorem it follows that,

Equivalently, for any constants c1 ≤ c2 we have limm→∞ P

(

c1 ≤
a1
.,i−a1

.,j

2/n·
√
m

≤ c2

)

=
∫ c2
c1

1
√
2π

e−
1

2
x2dx . For c1 = c2 = 0 , this implies that limm→∞ P(a1.,i = a1.,j) = 0 .�  �

Lemma 4  The probability a non bottom-quality CCi is the most (least) fol-
lowed CC and no seeker would follow CCi , if recommended in the first round, 

Ys =







0, if seeker s is recommended some CCk with k �= i, j;
1, if seeker s is recommended CCi;

−1, if seeker s is recommended CCj .

∑

s∈m Ys −m · 0

2/n ·
√
m

→
D N (0, 1).

Fig. 4  The diagram shows the main states and transitions when α = ∞ and m → ∞ . We use rectangles 
for sets of states and circles for the general form of the states in each set. The annotations for the transition 
probabilities are in the limit. When these probabilities go to 0 as m → ∞ we use dotted edges

Fig. 5  The diagram shows the main states and transitions when α = −∞ , given that no two CCs have an 
equal number of followers after the first timestep. We use rectangles for sets of states and circles for the 
general form of the states in each set
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goes to zero as the number of seekers goes to infinity. Formally, for any i ∈ n− 1 , 
P((a1.,i > a1.,j ∀j ∈ n) ∧ (∀s ∈ m, ∃j ∈ i s.t. a1s,j = 1)) → 0 as m → ∞ . Same for the prob-
ability when the first condition in the conjunction is a1.,i < a1.,j ∀j ∈ n.

Proof  To show this, note that the second condition in the conjunction is equivalent to 
the case when all seekers were recommended in the first round either CCi or a better 
quality CC. The chance that all seekers were recommended one of the top-quality i CCs 
in the first round is 

(

i
n

)m
 and thus goes to zero as the number of seekers go to infinity. 

So, P((a1
.,i > a1

.,j ∀j ∈ n)∧(∀u ∈ m, ∃j ∈ i a1u,j = 1)) ≤ P(∀u ∈ m, ∃j ∈ i a1u,j = 1) =

(

i
n

)m
→ 0 as 

m → ∞ . The same is true first condition is a1.,i < a1.,j ∀j ∈ n .�  �

Theorem 4  When α = ∞ , the expected time to absorption goes to 2− 1/n as m goes to 
infinity.

Proof  Based on Theorems 1 and Corollary 1, we can group states in subsets, as shown 
in Fig. 4. Let µB be the expected time from the state B to absorption. Then µB:B∈S∗ = 0 
(as all states in S∗ are absorbing) and µB:B∈S = 1 (as all states in S lead in one timestep to 
a state in S∗ ). Therefore,

We can use Lemmas 3 and 4 to find the transition probabilities from 0 to sets of states as 
m → ∞ : (a) p0,S∗n →

1
n , (b) p0,S∗−S∗n → 0 , (c) p0,S →

n−1
n  , and (d) p0,E → 0 . Moreover, 

since E has finitely many states, one of them has the maximum probability of being real-
ized from 0 (i.e., µB∗ = maxB∈E µB ). Then, 

∑

B∈E p0,B · (1+ µB) ≤ p0,E · (1+ µB∗) and 
µB∗ ≤ c (c constant)9. Consequently, limm→∞ µ0 = 1 · 1

n + 2 · n−1
n = 2− 1

n .�  �

Lemma 5  Assume α = −∞ and B is a state where (a) CCik , . . . ,CCi1 ,CCi0 are the CCs 
with the least number of followers (with b.,ik < · · · < b.,ii < b.,i0 ), (b) the number of fol-
lowers of all CCij is pairwise distinct, (c) there are at least b.,i0 many seekers who would 
follow any of CCij with j  = 0 and there is no seeker who would follow any CC with an 
equal number of followers to CCi0 (if any such CC), and (d) ik > · · · > i1 and i1 < i0 . Then 
from B we transit with probability 1 to a state C where the only difference is that CCik has 
at least as many followers as CCi0 and no seeker would follow CCik . Moreover, if k = 1 
then C is an absorbing state.

Proof  By assumption (c) there is a set X of at least b.,i0 seekers who would follow CCik if 
recommended. Since CCik is the unique least followed CC, it will be recommended to all 
seekers and all seekers in X will thus follow CCik . This makes CCik have at least as many 
followers as CCi0 . Moreover, since CCij has higher quality than CCik for all 0 < j < k (by 
assumption c) , all seekers in X would follow such a CCij if recommended. Therefore, 
from B we transit in one timestep to a state where (a) CCik−1

, . . . ,CCi1 ,CCi0 are the CCs 

µ0 = 1 · p0,S∗n + 1 · p0,S−S∗n + 2 · p0,S +
∑

B∈E

(1+ µB) · p0,B

9  Perhaps the easiest is to show this or c = 4n/(n− 1) . Using Lemma 2 we can prove that pB∗ ,S∪S∗ ≥ 1/2n (although 
better bounds can be obtained).
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with the least number of followers (with the same relative ordering as none were recom-
mended this turn), (b) the number of followers of all CCij , j < k , is pairwise distinct, (c) 
there are at least b.,i0 many seekers who would follow any of CCij with j  = 0 and no one 
would follow any CC with the same number of followers as CCi0 , and (d) ik−1 > · · · > i1 
and i1 < i0.

In addition, CCi1 would be recommended before CCi0 and CCi1 has a higher quality than 
CCi0 . Thus, when CCi0 is recommended no new seeker would follow them. Nor would 
any seeker follow a CC with an equal number of followers with CCi0 (by assumption c 
and since CCi1 was just recommended). Thus we reached an absorbing state.

� �

Theorem 5  Assume α = −∞ and after one timestep all CCs have distinct numbers of 
followers (say CCi1 , . . . ,CCin in increasing order of their number of followers). Let k be 
either 1 if CCn is the least followed CC, or, when this is not the case, the lowest j > 1 such 
that CCij is of a lesser quality than CCij−1 . Then, (At

−∞)t≥0 converges in k timesteps.

Proof  First we note that k is well defined as there is always such a lowest j. If k = 1 and 
CCn is the unique least followed CC, then only CCn will be recommended but no one 
new will follow them. So, (A∞

t )t≥0 is absorbing in one timestep.

If k > 1 , CCi0 is the least followed CC and ij < i0 for all j < k . Since i0 < n , this means 
that CCn is not among the (k − 1) least followed CCs. Thus, CCn has at least as many 
followers as followers as CCik−1

 . All the followers of CCn would follow any of the CCij 
with j < k as every CCij has a higher quality than CCn (thus meeting condition (c) in 
Lemma 5). The other three conditions in Lemma 5 are trivially true. By the aforemen-
tioned lemma, we iteratively transit to new states where CCij is the unique least fol-
lowed CC, where j takes in order values from 1 to k. When j = k , by the same lemma, we 
reached an absorbing state. Thus (At

−∞)t≥0 converged in k steps.�  �

Theorem  6  When α = −∞ , the expected time to absorption given that 
no two CCs have the same number of followers after the first round is 
n−1
n

∑n−2
k=0

1
k!
−

1
n

∑n−2
k=0

k
k!
+

1
n

∑n−1
k=0

1
k! . This is asymptotically equivalent to n−1

n · e.10

Proof  Assume no two CCs have the same number of followers after the first timestep. 
Let Tk be the set of states where k is either 1 if CCn is the least followed CC, or, when this 
is not the case, the lowest j > 1 such that CCij is of a lesser quality than CCij−1 (i.e., as in 
Theorem 5 and Fig. 5).

Now, we find the probabilities of transitioning from 0 to each of these sets, given that 
no two CCs will have the same number of followers. For T1 , p0,T1 =

1
n since there is a 

10  By definition, a function f(x) is asymptotically equivalent to a function g(x) if limx→∞
f (x)
g(x)

= 1.
Note that since, by Lemma 3, the chance of equalities in the number of followers after the first timestep goes to zero 
as the number of seekers goes to infinity, Theorem 6 implies the process is almost always expected to converge within 
about n−1

n
· e under extreme anti-PA.
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unique least followed CC, and, by symmetry, all n CCs have the same chance of being on 
that position. For Tk with k > 1:

Note that the formula above does, in fact, also hold for k = 1 (as it gives p0,T1 = 1/n ). 
Moreover, by Theorem 5, the process converges exactly in k steps when it passes through 
state Tk in the first timestep. As such, the expected time to convergence from 0 given 
that there is no equality after the first timestep is:

This is asymptotically equivalent to n−1
n · e . � �

Fairness for content creators

Summary. Based on the results of the previous subsections, Corollary 2 proves that non-
extreme recommendation processes are both ex-ante and ex-post fair for the best quality 
content creator (i.e., CC1-fair). Extreme recommendation processes, on the other hand, 
are rarely leading to a CC1-fair absorbing state (see Corollaries 3 and  4). However, Theo-
rem 7 shows these processes continue to be ex-ante CC1-fair.

Take-away. Together, these results show that availability plays a vital role in the impact 
of luck on observing a fair outcome for the best content creator (CC), i.e. in the likeli-
hood of observing ex-post CC1-fair outcomes. While recommendation processes that do 
not guarantee complete availability are ex-ante fair, they are rarely ex-post fair, even for 
the highest quality CC. This result aligns with the prior experimental work11, thus con-
firming that it is crucial to understand and analyze extreme recommendation processes 
as they share important similarities with real-life ones.

Corollary 2  When α is finite, (At
α)t is both ex-post and ex-ante CC1-fair.

Proof  This is an immediate consequence of Theorem 2. Since in all absorbing states for 
non-extreme recommendation processes CC1 is followed by all seekers, CC1 always has 
m followers and is, thus, (at least weakly) the most followed CC. So, all absorbing states 
are CC1-fair (i.e., ex-post fairness) and E[b.,1] = m ≥ E[b.,i] for all i ∈ n (i.e., ex-ante CC1

-fairness).�  �

p0,Tk
=

(n−1
k

)

· (k − 1)+
(n−1
k−1

)

(n
k

)

· k!
=

(n− k) · (k − 1)

n · k!
+

1

n · (k − 1)!
.

µ0 =

n
∑

k=1

k · p0,Tk

=

∞
∑

k=2

(n− k) · (k − 1) · k

n · k!
+

∞
∑

k=1

k

n · (k − 1)!

=
n− 1

n

n−2
∑

k=0

1

k!
−

1

n

n−2
∑

k=0

k

k!
+

1

n

n−1
∑

k=0

1

k!
.

11  “Although, on average, quality is positively related to success, songs of any given quality can experience a wide range 
of outcomes”s (from (Salganik et al. 2006), page 855).
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Corollary 3  When α = ∞ , the probability the outcome is ex-post CC1-fair goes to 1/n 
as m → ∞ . More generally, as m → ∞ , the probability of CCk-fairness goes to k/n, while 
the probability of ex-post fair outcomes for all CCs goes to 1/n!.

Proof  For the first part, note that the set of CC1 fair states (a) contains the set of states 
where CC1 is the unique most followed CC after the first round, and (b) is contained in 
the set of states where CC1 is one of the CCs with a maximum number of followers after 
the first round. If, as in Fig. 4, E is the set of states where at least two CCs are the most 
followed and S1 ∪ S∗1 is the set of states where CC1 is the unique most followed CC, then 
p0,S1∪S∗1 ≤ P(CC1 − fair) ≤ p0,S1∪S∗1 + p0,E . Since, as shown before, p0,S1∪S∗1 → 1/n and 
p0,E → 0 , we conclude that P(CC1 − fair) → 1/n as m → ∞.

More generally, the set of CCk-fair states (a) contains the set of states where no two CCs 
have an equal number of followers and CCk is in the top k CCs (according to the number 
of followers) after the initial round of recommendations, and (b) is contained in the set 
of states where CCk is one of the top k CCs after the first round of recommendation. 
Analogous to above, and since, by symmetry, all choices of the top k CCs has the same 

probability of occurring, P(CC1 − fair) →
(n−1
k−1)
(nk)

=
k
n.

Finally, similarly as before, the chance of ties in the number of followers after the first 
round of recommendations goes to zero as m goes to infinity. If no two CCs have the 
same number of followers, then we achieve ex-post fairness iff, after the first timestep, 
a1.,1 > a1.,2 > · · · > a1.,n . But all n! strict orderings of the follower counts after the first 
round occur with an equal probability (by symmetry). Thus, P(ex-post fairness) → 1/n! 
as m → ∞ .�  �

Corollary 4  When α = −∞ , the probability the outcome is ex-post CC1-fair as m → ∞ 
is at most 1n +

1
n ·

∑n−1
k=1

1
(k−1)! −

1
n(n−1) ·

∑n−1
k=1

k−1
(k−1)! . This is asymptotically equivalent 

to (e + 1)/n.

Proof  Let (dif ) be the condition that all CCs have a distinct number of followers. The 
key observation is that, if after the first timestep:

•	 (dif ) holds and CC1 is the least followed CC then (At
−∞)t≥0 always converges in 

the next timestep to a CC1-fair state (since CC1 will be recommended and thus fol-
lowed by all seekers). We call the set of such states T1;

•	 (dif ) holds and CC1 is the k-th most followed CC (but not the least or the most fol-
lowed one) then CC1 will eventually be the most followed CC (i.e., we have ex-post 
CC1-fairness) iff (a) the least most followed CCs until CC1 are ordered in increas-
ing order of their quality and (b) CCn is not the least followed one (by Lemma 5). 
We call the set of such states Tk . Moreover, if the least followed k − 1 CCs are not 
the bottom or top quality ones and are ordered in increasing order of their quality 
we say the ordering has property (right);
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•	 (dif ) does not hold or (dif ) holds and CC1 is the most followed CC then (At
−∞)t≥0 

might be ex-post CC1 fair at convergence. We call F the set of states where (dif ) does 
not hold, and Tn the set of states where (dif ) holds and CC1 is the most followed CC.

Then, 
∑n−1

k=1 p0,Tk
≤ P(CC1-fairness) ≤ p0,F +

∑n
k=1 p0,Tk

 . But, if k < n

Since, by Lemma  3, limm→∞ p0,F = 0 and p0,Tn ≤ (1− p0,F ) ·
1
n it follows that 

limm→∞ P(CC1-fairness) ≤
1
n +

1
n ·

∑n−1
k=1

1
(k−1)! −

1
n(n−1) ·

∑n−1
k=1

k−1
(k−1)! . This is asymp-

totically equivalent to e+1
n  .�  �

Theorem 7  When α = ±∞ , (At
α)t≥0 is ex-ante fair.

Proof  The proof is based on the following observation: If Xi is the number of seekers 
who would follow CCi if recommended after the first round, then X1 ⊇ · · · ⊇ Xn.

For extreme PA, this means that when CCi becomes the most followed CC, they will be 
eventually followed by all CCs who did not follow a better-quality CC before. For exam-
ple, if CC2 is the most followed after the first round, all users (except those who were rec-
ommended CC1 ) will follow CC2 after round 2. Differently, if CC1 was the most followed, 
then everybody will end up following CC1 next, while if CC3 was the most followed, then 
everybody except those who originally followed CC1 or CC2 will follow CC3 . This intui-
tively leads to CC2 having more followers in expectation than CC3 and fewer than CC1 . 
For simplicity, we will only formalize this intuition for n = 2:

As the sum is larger than E[a∞.,2] =
∑m

k=0

(

k
m

)

nm · k , (At
∞)t≥0 is ex-ante fair.

Similarly, for extreme anti-PA, the observation implies that whenever a CCi is the CC 
with the least number of followers, they will be followed by at least as many CCs as when 
CCj of lesser quality is recommended. For n = 2 , (a) if X1 ⊃ X2 then none of the two CCs 
will change their follower count, and (b) if X2 ⊇ X1 then eventually all seekers will follow 
CC1 and CC2 will remain with the followers in X2 . Thus, E[a−∞

.,1 ] ≥ E[a−∞

.,2 ] and the pro-
cess is ex-ante fair when there are two CCs. The same intuition can be used to show the 
result for general values of n.�  �

p0,Tk
= (1− p0,F ) · P(CC1 is the k-th least followed|(diff))

· P(the least followed (k-1) CCs are (right)|(diff))

= (1− p0,F ) ·
1

n
·

(n−2
k−1

)

(n−1
k−1

)

· (k − 1)!

= (1− p0,F ) ·
1

n
·

(

1

(k − 1)!
−

1

n− 1
·

k − 1

(k − 1)!

)

E[a∞.,1] =

m
∑

k=0

P(a1.,1 = k) · E[a∞.,1 |a
1
.,1 = k] =

[

m−1
2

]

∑

k=0

(

k
m

)

nm
· k +

m
∑

k=
[

m−1
2

]

+1

(

k
m

)

nm
·m.
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Simulation results
Our theoretical results showed that while individual fairness with respect to the 
expected number of followers is guaranteed, many realized outcomes could be unfair. 
In this section, we use simulations for a more granular understanding of the role of the 
recommendation process in the network formation. More precisely, we look at how it 
impacts (a) the structure of the follower network, (b) the chances of fair outcomes for 
content creators (CCs), and (c) the satisfaction of seekers. Our theoretical analysis also 
reveals that while extreme recommendation processes are expected to converge quickly, 
others could take long periods. As such, our simulations will look beyond fairness at 
convergence, thus also investigating the effect of time.

Virtual Experiment Design. We run our simulations for a platform with 100 CCs and 
10000 seekers for different recommendation processes (values of α ) and 1000 itera-
tions12. Since recommendation processes are based on random functions, we also sim-
ulate each parameter configuration with 1000 different random seeds. We chose this 
number to balance the quality of results with the run-time and memory tractability. 
During the analysis, we investigate ex-post individual fairness and user satisfaction at 
different timesteps. We use the metrics introduced in the Model Section. For the figures 
in the main text, we do not include confidence intervals (for clarity). However, alterna-
tive visualization with the 95% confidence intervals (CIs) obtained via bootstrapping are 
included in the Appendix. We will say that differences between two values are significant 
if their CIs do not overlap. The code is publicly available on our GitHub repository13.

The evolution of the follower network depends on the recommendation process

We start our simulation analysis by providing an example of how the network forma-
tion process evolves under the different recommendation processes. To do so, we simu-
late our model under different values of α ∈ {−∞,−2,−1, 0, 1,∞} . For each scenario, 
we plot the network after 10, 50, 250 iterations, and at convergence. As shown in Fig. 6, 
extreme recommendation functions ( α ∈ {±∞} ) converge faster, namely in less than 10 
iterations, but also lead to sparser networks. As a consequence of the AntiPA-like pro-
cess, negative but finite values of α are the slowest to reach convergence and lead to very 
dense networks. More generally, in all scenarios but the Extreme PA, we observe a cor-
relation between the number of followers (which is proportional to the nodes’ size) and 
their quality (which is proportional to the nodes’ color intensity). A closer look shows 
that neither Extreme PA nor Extreme AntiPA leads to CC1 fairness. Yet, Extreme AntiPA 
achieves a higher level of fairness compared to Extreme PA, with the most followed 
nodes being of high quality (yet, not being the highest-ranking nodes).

Slight increases in the visibility of low‑popularity CCs improves fairness

We then closely investigate the effect of reducing popularity bias and even introducing 
low-level anti-popularity bias on the chance of individually fair outcomes for content 
creators (CCs). Figure 7a shows the percentage of ex-post fair results for different CCs 
starting from a realistic PA (with α = 1 (Pagan et al. 2021)) to AntiPA (with α = −1 ). In 

12  In the network analysis in (a), we use n = 50 CCs and m = 500 seekers to enhance visualization clarity.
13  GitHub link for the code: https://github.com/StefaniaI/ABM-IFforSMI.
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Fig. 6  For different levels of α ∈ {−∞,−2,−1, 0, 1,∞} , we simulate one instance of the network 
formation model ( m = 500 and n = 50 ) and we plot the network at different stages: T = 10, 50, 250 , and at 
convergence. The size of the nodes is proportional to their in-degree, and the color intensity to their quality
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accordance with prior work, our results confirm that popularity biases negatively affect 
CC-discoverability. Fairness-wise, this leads to significant chances of unfair outcomes 
for most CCs (see Fig.  11a in the Appendix). More precisely, as the recommendation 
process relies more and more on popularity, increasingly many CCs need an important 
degree of luck to obtain a fair outcome, since for many CCs, the chance of arriving at a 
fair outcome is around 50%.

Our simulations also show that interventions that slightly increase exploration by giv-
ing higher visibility to low-popularity CCs increase fairness for the top-quality CCs. This 
increase can be observed for most of the 75% top-quality CCs, and is significant for the 
top 50%. However, this gain is obtained by a slight decrease in the chances of fairness for 
bottom-quality CCs.

High levels of visibility of either low or high‑popularity CCs reduces fairness

Our theoretical results show that extreme recommendations have low chances of fair-
ness for top-quality CCs. As such, increases in popularity or anti-popularity biases (i.e., 
of |α| ) leads PA and AntiPA processes to approach their extreme versions and reduce 
fairness at the top. We verify this intuition and investigate the rate of change.

Fig. 7  The plots show how different recommendation processes influence the chance of observing fair 
outcomes for different CCs. The x-axis is for CCs (from highest-quality, CC1 , to lowest-quality, CC100 ) while the 
y-axis is for the percentage of simulations which were CCi-fair is satisfied after 1000 timesteps. a focuses on 
the effect of increasing the visibility of low-popularity CCs when starting from the realistic recommendation 
process (i.e., PA with α = 1 ). b (respectively, (c)) look at the effect of further increasing (respectively, 
decreasing) the visibility of the most popular CCs
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As shown in Fig.  7b and c, large (anti-)popularity biases do indeed exacerbate the 
chance of unfairness for top-quality CCs. With the increase in |α| , PA-like processes 
increase fairness guarantees for the bottom-quality 50% CCs at the expense of the top-
quality CCs. Contrary, AntiPA continues to increase fairness, especially for middle-qual-
ity CCs. However, very large |α| ultimately leads to lower fairness chances for all CCs. 
This suggests that exploration should be carefully introduced, as too much could easily 
harm up to all CCs.

Fairness improves throughout time

The fact that outcomes can be CC1-unfair (see Fig. 7b and  c) could seem contradictory 
to the theoretical results. While we proved that the system was always ex-post CC1-fair 
at convergence when availability was guaranteed, simulations show that this is not nec-
essarily the case after 1000 timesteps. Therefore, the most likely explanation is the lack 
of convergence within the given timeframe. We further investigate the convergence of 
the given processes and the effects of time constraints on the observed outcome.

Figure 8 confirms both our intuition and the theoretical analysis. In accordance to 
Theorems 4 and 7, the extreme recommendation processes always converge. How-
ever, this was not the case for the rest. In the near and short future (i.e., within 50 or 
100 timesteps) most of the recommendation processes rarely converge. While longer 
timeframes obviously increase the percentage of simulations that converge, PA-like 

Fig. 8  The plot shows the percentage of simulations that converged within a given number of timesteps. We 
show the results for different values of α . We exclude finite and negative values of α as they never converged 
with 1000 timesteps

Fig. 9  The plot shows the impact of the running time on the chances of observing fair outcomes for 
different CCs in two scenarios: a PA-like and b Anti-PA-like recommendation processes
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processes with large values of α still have low chances of convergence. Moreover, 
none of the non-extreme anti-PA processes ( 0 > α  = −∞ ) converge within 1000 
timesteps. We thus omit them from Fig.  8. Altogether these results underline the 
importance of analyzing fairness in transient states, especially for the many pro-
cesses with long expected times to absorption. Additionally, together with Fig.  7b 
and c it signals that short and long-term fairness could be significantly different.

In Fig. 9 we look at the impact of the number of timesteps on individual fairness. 
For UR and PA-like recommendations, the chance of fair outcomes is independent 
of the number of timesteps for most CCs (the only exception being the top-quality 
CC). Conversely, anti-PA has significant differences in the likelihood of fair out-
comes depending on the number of timesteps, especially for the 25% top-quality 
CCs (see Fig. 12 in the Appendix for more information). This implies that different 
recommendation processes could be more appropriate depending on the time hori-
zon in which we want to minimize the impact of luck (i.e., maximize fairness) and 
for whom. While implementing anti-PA does improve long-term fairness, only the 
middle-quality CCs will benefit in the short term. For the top-quality ones, it does 
significantly worse.

Fig. 10  Log-log plots showing how different recommendation processes influence the satisfaction of 
seekers over time. We use the x-axis for the timestep and the y-axis for the average quality-position of the 
most followed CC (averaged over both users and simulations). Low y-values, thus, correspond to higher levels 
of user satisfaction. As before, subplot a focuses on the effect of increasing the visibility of low-popularity CCs 
when starting from the realistic recommendation process (i.e., PA with α = 1 ), while subplots b and c look at 
the effects of further increasing or respectively decreasing the visibility of the most popular CCs
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Seekers are most satisfied under PA with medium importance to popularity

Finally, we investigate the effect of popularity biases on the satisfaction of seekers. 
Figure 10 shows how user dissatisfaction changes over time depending on the recom-
mendation process. As expected, seekers become more satisfied as time passes. By 
comparing with prior results, we notice that seekers and CCs benefit from different rec-
ommendation processes: While most CCs would prefer reduced to low anti-popularity 
biases (Fig.  7a), seekers are less satisfied with such changes (Fig.  10a). In fact, seekers 
are, on average, the most satisfied with PA-like processes with α around 1. However, if 
we extend the comparisons towards extreme processes, we can see that large absolute 
values of α also harm seeker satisfaction.

This shows that while platforms do not benefit from introducing large levels of pop-
ularity biases, low levels could improve the satisfaction of their consumers. Moreo-
ver, when seekers are solely interested in finding the best creators, platforms could be 
harmed if they introduce anti-PA recommendation processes.

Conclusion
This paper investigated the effects of recommendation popularity biases on the indi-
vidual fairness of content creators (CCs). To do so, it (a) extended prior network mod-
els with a parametrized recommendation function with popularity and anti-popularity 
biases, (b) defined two types of individual fairness measures (ex-ante and ex-post), and 
(c) defined a measure of user satisfaction. We explored the properties of this model both 
analytically and through simulations. The theoretical analysis revealed that the network 
evolution over time is an absorbing Markov Chain, where the probability of transition-
ing between states varies much depending on the level and type of popularity bias. 
Importantly, we proved that the accessibility of CCs to seekers is critical in guaranteeing 
fair outcomes for CCs: While under accessibility, all the absorbing states are ex-post fair 
for the best-quality CC, this is rarely the case for extreme recommendation processes. 
Such extreme processes do, however, continue to be ex-ante fair for the top-quality CC, 
thus proving we should look beyond fairness in expectation when analyzing CC-cen-
tered platforms. Moreover, we showed that extreme processes are expected to converge 
quickly, thus putting them in stark contrast with non-extreme alternatives.

The simulation results brought a more complete and granular understanding of how 
popularity biases affect the users and whether anti-popularity could help overcome those 
biases. First, they revealed that decreasing popularity biases and even introducing low 
anti-popularity biases helps reduce the impact of luck in the fairness of the outcome for 
most CCs. However, too much visibility of low-popularity items can negatively impact 
the chances of ex-post fairness, especially for the top-quality CCs. This is mainly caused 
by realistic time constraints, as more exploration of unpopular CCs requires increased 
search times for seekers. In fact, quality-oriented seekers are the most satisfied under 
recommendation processes with medium popularity biases. From there, larger impor-
tance of popularity or introducing anti-popularity biases boost their dissatisfaction.

Altogether our results indicate that the optimum with respect to both seeker satisfac-
tion and time to convergence is for a preferential attachment (PA)-like process. However, 
CCs have more chances of being treated fairly under anti-PA recommendations. Thus, in 
essence, decreasing the level of popularity biases in recommendations trades the satisfaction 
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and search time of seekers for more probable CC-fair outcomes. This makes the interven-
tion of introducing anti-popularity biases unlikely to be introduced by platforms. Moreover, 
extreme care is needed even if platforms decide to implement such an intervention: The 
optimum level of bias depends largely on when they want to improve fairness and for whom.

Before concluding this final section of the paper, we want to underline what we believe to 
be the main limitations of our work, paired with the most promising directions for future 
work. At the core of the enclosed research lies the simplicity of the model, which presents 
itself both as an opportunity and a limitation. While some level of simplicity is both inevita-
ble for a feasible theoretical analysis and valuable in preserving the interpretability of simu-
lation results, real-world systems do sometimes depart from our assumptions. Three such 
examples are assuming that (a) CCs can be described through a single dimension (i.e., an 
ordinal attribute that we call quality), (b) seekers exhibit a consistent and unanimous quality-
based decision function, and (c) the recommender system is solely based on popularity. As 
argued by prior work (Pagan et al. 2021), the resulting model is simple (as it models one com-
munity of users with an agreement and consistency in content evaluation) yet confirmed by 
data to produce realistic outcomes. We persisted with these assumptions in order to isolate 
and better understand the individual role of popularity biases in recommendations and mod-
eration in the observed lack of individual fairness. More precisely, thanks to this simplicity, 
we showed that even when all users agree on their evaluation of CCs, for many CCs it is still 
a matter of luck whether or not they reach a fair outcome. The lack of fairness guarantees is 
thus not the sole byproduct of a complex system characterized by audiences with various 
tastes whose attention is steered by complicated recommender systems. Instead, it is stem-
ming from the randomness in the initial phases of the exploration process and is possibly 
exacerbated by the exploitation in PA-like network formation processes.

Future work could thus extend the model to account for multi-dimensional attribute 
spaces, which contain not only ordinal but also nominal attributes (Spiller and Belogolova 
2017) (e.g., being serious versus funny, the gender or race of CCs). Moreover, extensions 
might target the decision-making function of seekers, which could differentiate in taste 
by making noisy decisions, weighting attributes differently, or showing various levels of 
trust in recommendations. Such an analysis would help us better understand the inter-
play between different communities of possibly disproportionate sizes (e.g., creators and 
seekers of different music genres). The plurality of attributes also opens the door to inves-
tigating personalized recommendation processes (e.g., collaborative filtering), different 
notions of fairness (e.g., group fairness), and non-static seeker preferences (e.g., changes 
in taste through user inertia). When it comes to interventions, additional work could aim 
beyond the goal of understanding the effect of popularity biases with unique recommen-
dations and look at more nuanced approaches proposed for amortizing fairness over time 
(Biega et al. 2018). In short, recommender systems and moderation are manifold tech-
niques embedded within complex sociotechnical systems, and our work is just one piece 
of this elaborate puzzle. Although many questions remain unanswered, we believe our 
analysis bears one cornerstone message: Even when all seekers agree on their evaluation 
of CCs there are still significant chances that outcomes will not be fair for many CCs, and 
if we want to lower these chances, we must encourage the exploration of unpopular CCs. 
Yet, the benefit will become visible only after a sufficiently large time horizon.
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Appendix
Figure alternatives with 95% confidence intervals

Figure 11 is an alternative of Fig.   7 which also contains the CIs obtained via boot-
straping (1000 bootstraps and 95% CI). Similarly, Fig.  12 is an alternative of Fig.  9, 
which also contains the CIs similarly obtained. We do not make such an alternative 
for Fig. 10 as CIs are so small that they are mostly indistinguishable. Finally, Fig. 13 
shows our graphical abstract.

Fig. 11  This is an alternative version of Fig. 7 in which 95% confidence intervals are displayed. The plots show 
how different recommendation processes influence the chance of observing fair outcomes for different CCs. 
The x-axis is for CCs (from highest-quality, CC1 , to lowest-quality, CC100 ) while the y-axis is for the percentage 
of simulations which were CCi-fair after 1000 timesteps. a focuses on the effect of increasing the visibility of 
low-popularity CCs when starting from the realistic recommendation process (i.e., PA with α = 1 ). b and c 
look at the effects of further increasing or respectively decreasing the visibility of the most popular CCs

Fig. 12  This is an alternative version of Figure 9 in which 95% confidence intervals are displayed. This figure 
shows how the chances of observing fair outcomes for different CCs change thought time for different a 
PA-like and b Anti-PA-like recommendation processes
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Abbreviations
CC	� One content creator (i.e., a user on the platform who generates content)
RS	� Recommender system
PA	� Preferential attachment
MC	� Markov Chain
anti − PA	� Anti-preferential attachment
CI	� Confidence interval
iff	� If and only if
s.t.	� Such that
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