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Abstract 

New network models of complex systems use layers, state nodes, or hyperedges 
to capture higher-order interactions and dynamics. Simplifying how the higher-order 
networks change over time or depending on the network model would be easy 
with alluvial diagrams, which visualize community splits and merges between net-
works. However, alluvial diagrams were developed for networks with regular nodes 
assigned to non-overlapping flat communities. How should they be defined for nodes 
in layers, state nodes, or hyperedges? How can they depict multilevel, overlapping 
communities? Here we generalize alluvial diagrams to map change in higher-order 
networks and provide an interactive tool for anyone to generate alluvial diagrams. We 
use the alluvial diagram generator in three case studies to illustrate significant changes 
in the organization of science, the effect of modeling network flows with memory 
in a citation network and distinguishing multidisciplinary from field-specific journals, 
and the effects of multilayer representation of a collaboration hypergraph.

Introduction
Complex systems are inherently dynamic. Their components influence each other 
through various informational and physical processes, changing interaction patterns 
over time. Researchers represent these interactions with networks (Edler et al. 2017; Cal-
atayud et al. 2020; Farage et al. 2021; Calatayud et al. 2021; Neuman 2022; Edler et al. 
2022a; Rojas et  al. 2022) and simplify their organization with community-detection 
algorithms (Rosvall and Bergstrom 2008; Fortunato 2010; Schaub et al. 2017; Traag et al. 
2019; Peixoto 2019). For example, community-detection algorithms that model the vari-
ous processes as flows on networks assign nodes to possibly nested modules of typically 
densely connected nodes, among which the network flows persist relatively long (Rosvall 
and Bergstrom 2008). Identifying modules in multiple networks with shared nodes ena-
bles exploring organizational changes when the systems they represent change over time 
or between states: Modules merge and split when groups in students’ social networks 
form and dissolve during school days, or new research fields emerge when old fields 
fuse or break and move apart. Various summary statistics can quantify these structural 
changes (Danon et  al. 2005; Amelio and Pizzuti 2017; Newman et  al. 2020), but they 
destroy essential information about how the networks change.
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Alluvial diagrams with modules represented as stacks of blocks joined by stream 
fields were introduced to reveal network organizational changes by depicting merg-
ing and splitting modules (Rosvall and Bergstrom 2010). Researchers have successfully 
used them to map shifting regional tendencies in urban networks (Liu et al. 2013), study 
dynamics of hot topics in research fields (Ruan et al. 2017; Pal et al. 2022), track chang-
ing bitcoin user activity (Cazabet et al. 2017), and explore evolving media channel pref-
erences across crisis phases (Petrun Sayers et  al. 2021). Generating alluvial diagrams 
requires dedicated software to remove tedious manual work. However, current appli-
cations to generate alluvial diagrams work only for standard networks partitioned into 
modules.

Today researchers use temporal, multilayer, and memory networks to capture interac-
tions in complex systems with higher accuracy (Kivelä et al. 2014; Rosvall et al. 2014; De 
Domenico et al. 2015, 2016; Xu et al. 2016; Lambiotte et al. 2019) and multilevel mod-
ular solutions to reveal more regularities in their organization (Rosvall and Bergstrom 
2011; Peixoto 2014). Multilayer networks can represent networks over time with links 
in time-windowed layers. Memory networks can represent higher-order network flow 
models where the transition rates depend on the current node and previously visited 
nodes. Both representations enable overlapping modules. Mapping change in these rich 
network representations requires generalizing alluvial diagrams and their generators to 
higher-order networks with multilevel and overlapping modular solutions.

Here we introduce alluvial diagrams for multilayer and memory networks with mul-
tilevel and overlapping modular solutions. We demonstrate a new alluvial generator for 
higher-order networks available for anyone to use at https://​www.​mapeq​uation.​org/​
alluv​ial (Holmgren et al. 2022a), and illustrate how we use it in three case studies reveal-
ing: significant changes in the multilevel organization of science over six years using 
parametric bootstrap resampling, multidisciplinary journals in a second-order network 
representation of citation flows, and the effects of multilayer representation of a collabo-
ration hypergraph.

Methods
Alluvial diagrams depict changes in the modular composition between networks with 
stacks of blocks representing the modules (Fig. 1). Each block’s height is proportional to 
the flow volume of the corresponding module—the total visit probability of all nodes in 
the module. To highlight structural change between multiple networks, a vertical stack of 
blocks represent each network’s modular structure, and horizontal stream fields connect 
blocks that share nodes across neighboring networks. Like block heights, stream-field 
heights are proportional to the flow volume of the node overlap between corresponding 
modules. To reduce clutter, we order stream fields to minimize their overlap.

We use Infomap to search for multilevel modular structures with nested submod-
ules (Edler et  al. 2022b; Rosvall and Bergstrom 2011). Throughout the paper, we use 
multilevel to denote partitions with nested submodules as illustrated in Fig. 1d–e, and 
multilayer to denote the network type that stratifies connections between nodes into dif-
ferent layers. Infomap optimizes the map equation, the average per-step codelength on a 
modular description of a random walk modeling network flows (Rosvall and Bergstrom 
2008). The modules are groups of nodes where the random walker spends a relatively 

https://www.mapequation.org/alluvial
https://www.mapequation.org/alluvial
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long time compared to exiting it and entering other modules. While we focus on mod-
ules derived from Infomap, alluvial diagrams work with output from any community 
detection or hierarchical data clustering method.

Mapping change in networks with multilevel communities

We extend alluvial diagrams to multilevel network partitions by nesting submodules in 
super-modules with adaptive module distances. The right multilayer stack of the sche-
matic alluvial diagram in Fig. 1c illustrates. In the spirit of cartography, we put blocks 
corresponding to the top-level modules in a bottom layer to highlight the large-scale 
organization and provide a cleaner visualization. Optionally, we display finer-level struc-
tures in layers above the bottom layer. The right multilayer stack in Fig. 1c expands the 
left stack’s single layer with one such extra layer corresponding to the four submodules 
of the multilevel modular solution. To show that deeper submodules are more closely 
related than their larger parent modules, we draw sibling submodules closer together 
than other modules. Specifically, we halve the distance between two adjacent modules 
for each level down in the multilevel solution.

Multilevel significance clustering

To separate trends from mere noise in the module assignments, we extend the signifi-
cance clustering method described in ref.  Rosvall and Bergstrom (2010) to multilevel 
partitions. The approach has three main steps: First, we search for optimal multilevel 
partitions for each network using Infomap. Then, to assess these partitions’ robustness 
to slight perturbations in the data, we create a large number of independent bootstrap 
networks. For each bootstrap network, we search for the optimal multilevel partition 
using Infomap as for the original network. Finally, we summarize the variability in 
the bootstrap partitions by applying the significance clustering method introduced in 

Fig. 1  Schematic alluvial diagram of a multilevel network structure. a A weighted network with modular 
structure, organized into a two-level solution in b. c An alluvial diagram representation of the solutions in 
panels b and d using the same colors. Columns of blocks represent modules with heights proportional to 
the contained flow volume. The leftmost column is an ordinary two-level alluvial diagram representation. 
The multilevel representation to the right shows multiple levels, with the background showing the top-level 
organization. Stream fields connect modules in the left and right columns that share nodes. d Multilevel 
solution of the network in e 
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ref. Rosvall and Bergstrom (2010) extended to multilevel partitions. For each level in the 
multilevel solution of the original network, we search for the largest subset of nodes in 
each module or submodule that are also clustered together in at least a fraction  p of 
solutions obtained from the parametric bootstrap procedure.

Searching for significant subsets in multilevel solutions is computationally more 
demanding than for ordinary two-level partitions. To improve the performance, we trivi-
ally parallelize the algorithm by running each module or submodule in separate threads.

Mapping change in higher‑order networks

We generalize alluvial diagrams to multilayer and memory networks. Multilayer net-
works can model different modes of interaction or interactions that change over time 
in different layers. Memory networks can model dynamics that depend on from where 
the flows come. Infomap represents both higher-order networks with so-called state 
nodes (Edler and Bohlin 2017). In higher-order networks, we call ordinary nodes physi-
cal nodes to distinguish them from state nodes. In a multilayer network, one state node 
for each physical node and layer represents the physical node in the layer (De Domenico 
et al. 2015). In a second-order memory network with memory of the previous step, one 
state node for each physical node and incoming link represents the physical node for 
flows incoming along that link (Rosvall et al. 2014) In this way, the order of a memory 
network corresponds to the order of a Markov process, the first order being regular 
memoryless Markov dynamics. Physical nodes with multiple state nodes and different 
outgoing links can model higher-order dynamics on the network.

In theory, using alluvial diagrams for higher-order networks is no different than for 
ordinary networks. In practice, the many possible combinations of first- and higher-
order networks, memory networks with different memory, and multilayer networks with 
different layers make it challenging to determine node equality in different networks 
because we need to match nodes across networks to draw stream fields between mod-
ules. While alluvial diagrams require networks to share a significant fraction of physical 
nodes, we also need their state nodes to match since they are the smallest components of 
higher-order networks. With no universal solution to this node-matching problem, we 
discuss some challenges and how we choose to solve them.

First‑ and higher‑order networks

Alluvial diagrams with first- and higher-order networks require matching different node 
types: First-order networks have only physical nodes, but higher-order networks have 
physical nodes and state nodes. We illustrate this schematically in Fig.  2 with a first-
order network in Fig. 2a and a higher-order network with state nodes as smaller circles 
inside the physical nodes in Fig. 2c. We consider only hard module boundaries in the 
first-order network, whereas modules overlap in the higher-order network when physi-
cal nodes’ state nodes are assigned to different modules. In Fig. 2c, the modules overlap 
in the physical nodes containing the purple and blue state nodes.

As we need a one-to-one match across networks to draw stream fields, we cannot match 
all state nodes in the higher-order network to one first-order node. To overcome this prob-
lem, we first split the first-order nodes into pseudo-state nodes, which we depict with small 
dashed circles in Fig. 2a. We create as many pseudo-state nodes as there are state nodes in 
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the matching physical node in the higher-order network. Then, we divide first-order node 
i’s flow volume π(1)

i  among its pseudo-states α proportionally to their matching state nodes’ 
fraction of the flow π(2)

iα  as

This procedure gives a one-to-one match between nodes in first- and higher-order net-
works, and we can draw multiple stream fields from a single first-order node (Fig. 2b).

Memory networks

Drawing alluvial diagrams for memory networks requires matching state nodes represent-
ing corresponding memory in different networks. We match state nodes across networks 
by encoding their memory in their ids such that state nodes representing the same mem-
ory share the same id in different networks. As long as the networks are not too large, we 
can encode memory of order n into a single binary number by dividing the binary number 
into n parts: We divide the number into two parts in a second-order memory network with 
memory of the previous step. With N physical nodes, we use the b = ⌈log2N⌉ most signifi-
cant bits of the state id to encode the previously visited node i and the b least significant bits 
to encode the currently visited node j, resulting in the state id

where ≪ is the arithmetic left-shift operator and ∨ is the logical or. For example, we 
encode the link from physical node 2 to physical node 3 along the path represented by 
the trigram 1 → 2 → 3 as

resulting in the directed link 10 → 19 between state nodes 10 and 19. This encoding 
scheme works for up to N = 216 = 65, 536 physical nodes with 32-bit ids and second-
order memory.

(1)π
(1)
iα = π

(1)
i

π
(2)
iα

π
(2)
i

.

(2)αi→j = i ≪ b+ 1 ∨ j,

α1→2 = 1 ≪ 2+ 1 ∨ 2 = 10002 ∨ 102 = 10102 = 10,

α2→3 = 2 ≪ 2+ 1 ∨ 3 = 100002 ∨ 112 = 100112 = 19,

Fig. 2  Schematic first-order and higher-order networks and alluvial diagram representation. a A first-order 
network with pseudo-states (white dashed circles) matching the state nodes in c. b An alluvial diagram 
representation. c A higher-order network with state nodes (small blue and purple circles) in the physical 
nodes. We only show the state nodes whose physical nodes are present in two modules
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Multilayer networks

When comparing multiple multilayer networks with N layers, we encode the physical 
node i in layer l with id

where N is the largest layer id represented with b = ⌈log2N⌉ bits. For multilayer net-
works, this encoding scheme is available in Infomap using the flag --matchable-
multilayer-ids N.

Alluvial diagrams can also visualize the layers of multilayer networks, each as a sep-
arate network. In this case, node matching is trivial as physical nodes are unique in 
each layer. The stream fields then connect modules that span layers.

Alluvial diagram generator

We have implemented an interactive web application that generates alluvial diagrams, 
available for anyone to use at https://​www.​mapeq​uation.​org/​alluv​ial. We implemented 
it as a client-side web application to enable researchers to use our application without 
programming experience or those working with sensitive data. All code runs locally 
in the user’s web browser, and the web application does not store or upload network 
data to any server. We implemented it using TypeScript and React, and we display the 
diagrams using scalable vector graphics (SVG) (see Additional file 1: Fig. S2 in the SI 
for how we model the data structures).

While the most efficient community detection pipeline is to run the stand-alone 
C++ version of Infomap and load the resulting partitions, we have embedded a ver-
sion of Infomap compiled to JavaScript with Emscripten (Zakai 2011). This embed-
ded Infomap version supports the same network inputs as C++ Infomap, but only a 
subset of Infomap’s features, including reading directed or undirected input, choosing 
the number of optimization trials, and searching for multilevel or two-level solutions 
(Fig. 3). We defer the specification of input formats to Additional file 1:  section SI.1. 
We also support loading solutions from Infomap Online (Holmgren et  al. 2022b), a 
fully featured web-based version of Infomap.

With loaded networks, the interface shows the user a top-level view of the alluvial 
diagram (Additional file 1: Fig. S1). The user can manipulate the diagram in several 
ways: expand modules to reveal their submodules, reorganize networks and modules 
for clarity, highlight modules or individual nodes with different colors, and change 
the diagram width and height. While we have implemented the features and use cases 
we think most researchers use, we can imagine feature requests for specific use cases. 
By supporting export to SVG, researchers can modify the diagrams to their needs in 
any vector graphics application.

(3)αi,l = i ≪ b+ 1 ∨ l,

https://www.mapequation.org/alluvial
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Results
We highlight different visualization challenges in three case studies using multilevel, 
higher-order, and multilayer networks. In all cases, we use Infomap to identify opti-
mal multilevel solutions using unrecorded teleportation to links with minimal impact 
from the teleportation rate on the results (Lambiotte and Rosvall 2012).

Robust multilevel citation networks

First, we highlight the multilevel organization of science into research areas and 
fields. We use data from Thomson-Reuters Journal Citation Reports (Rosvall and 
Bergstrom 2010). The data include citations between journals published from 2001–
2007, divided into four two-year periods. The networks have, on average, 7, 490 nodes 
representing journals and 586,  295 integer-weighted links representing the citation 
flow between them. For each year, we use Infomap with 100  optimization trials to 
search for the optimal multilevel solution. We use the multilevel significance cluster-
ing approach described in the “Methods” section to assess the solution’s robustness to 
slight perturbations in the data. First, we create 1000 independent bootstrap networks 
by sampling each citation weight wuv from a Poisson distribution, ŵuv ∼ Poisson(wuv) . 
Then, we use Infomap to search for the optimal multilevel solution for each bootstrap 
network. The bootstrap solutions have similar codelengths, with a variance of around 
10−5 . Finally, we use the significance clustering algorithm to search for the largest 
fraction of nodes clustered together in at least a fraction  p = 0.95 of the bootstrap 
solutions.

The resulting multilevel partitions organize science into research areas, further 
divided into research fields (Fig. 4). With the multilevel solution and unrecorded tel-
eportation scheme, we do not exactly reproduce the results presented in Ref. Rosvall 

Fig. 3  Loading networks in the alluvial diagram generator. Three networks are loaded in different stages, 
shown as gray rectangles. The leftmost network has communities detected by Infomap. Infomap runs on the 
second network and has completed two out of five optimization trials. Infomap has yet to start identifying 
communities in the rightmost network. When all have finished, or when loading networks with communities 
from C++ Infomap, the user can select “Create Diagram” to create an alluvial diagram
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and Bergstrom (2010). The life sciences show higher diversification, with more signifi-
cant research fields and lower citation flows in molecular- and cell biology containing 
J. Biol. Chem., Nature, PNAS, Science, Cell, and so on.

First‑ and second‑order citation networks

In the second case study, we visualize the effects of using higher-order network models 
with alluvial diagrams. We organize the citation data from the Thomson-Reuters Journal 
Citation Reports into citation pathways (Persson et al. 2016; Wang and Waltman 2016). 
The data contain citations between articles published from 2007 to 2012 in the 10 000 
journals with the highest impact factor, and all citation pathways contain at least one 
article published in 2009. When aggregated to journals, we are left with 69,  738,  205 
weighted trigrams.

To study the effect of a second-order model, we model the data using both first- and 
second-order Markov chains. We create a first-order network by discarding the first 
step from each trigram. For example, the trigram i → j → k with weight w becomes 
the directed link j → k with the same weight, resulting in 69 million links between the 
10, 000 nodes. Using the complete trigram data, we create a second-order network. For 
each trigram i → j → k with weight w, we create two state nodes if they do not already 
exist:

•	 αi→j in physical node j representing the memory of coming from i,
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Fig. 4  Multilevel organization of science, 2001–2007. The journals organize into five large research fields, 
further divided into research areas. We show the top-level organization of earth sciences, economics, and 
computer science (the three small modules at the top), and the finer division into research fields for the 
physical and life sciences. The fields or areas are sorted by their citation flow and show the top-ranking 
journal in each research field or area. Finally, we highlight the insignificant assignment of journals clustered 
with Ecology in 2001 to a significantly distinct research field since 2003. At the top level shown in the inset, 
the same journals cluster significantly with the life sciences since 2007
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•	 αj→k in physical node k representing the memory of coming from j.

We connect the state nodes with a directed link αi→j → αj→k with weight w. The result-
ing second-order network has around 3.9 million state nodes connected by 69 million 
links.

Because the second-order network has two orders of magnitude more state nodes 
than the first-order network has physical nodes, the community detection search 
space is much larger, significantly impacting the computational time. The first-order 
network takes around two minutes for ten optimization trials, while the second-order 
network takes around nine hours for the same task on a 2021 MacBook Pro with the 
M1  Max CPU and 32  GB of RAM. The resulting first-order partition has codelength 
L(1) = 8.44  bits, five top modules, and four levels. The second-order partition has 
codelength L(2) = 7.83  bits, around 4,  700 top modules, and five levels. Although the 
second-order partition has many top modules, most are tiny, containing only one or a 
few state nodes. To downplay small modules at the fringe of the citation data, we com-
pare the partition’s effective number of top modules using the perplexity Meff = 2H(M) , 
with Shannon entropy

where πm = i∈m πi is the total flow volume of the nodes i in module m. With this met-
ric, the first- and second-order partitions are similar with M(1)

eff = 2.35 and M(2)
eff = 2.73 

effective top modules, respectively.
After detecting communities, we aggregate redundant state nodes in the second-order 

network before visualization for better performance. We lump state nodes in the same 
physical node and leaf module and aggregate their flows, reducing the number of states 
to visualize from 3.9 million to 355 thousand. After lumping, we remove any state nodes 
with zero flow that would not contribute to the alluvial diagram layout, further reducing 
the number of states to 271 thousand. Then, we create pseudo-states in the first-order 
network to match the higher-order state nodes. After this step, both networks contain 
271  thousand state nodes. In the first-order network, all state nodes are in the same 
module as their physical node.

The alluvial diagram shows how the second-order model separates cosmology and 
astrophysics—journals clustered together with Astrophys J. and Phys. Rev. D. – from the 
physical sciences (Fig. 5). The cell- and molecular biology submodule containing Nature, 
PNAS, and Science grows, and the multidisciplinary journals’ submodules in the life sci-
ences divide into smaller modules.

Above all, Nature, Science, and PNAS are all recognized as multidisciplinary jour-
nals represented in multiple research fields. To quantify how a higher-order model cap-
tures their citation flows, we investigate in how many research fields journals are present. 
Since a single research field dominates most journals’ citation flows, we measure the 
effective number of research fields. With journal i’s module-aggregated state node flow 
πππ i = {πiα} , we calculate its effective number of research fields ri = 2H(πππ i) with the entropy 
H(πππ i) = −

∑

α πiα log2 πiα . With this metric, the most overlapping journals are Bratislava 
Medical J., Quality and Quantity, and Harvard Business Review – tiny journals with only 

(4)H(M) = −
∑

m

πm log2 πm,
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around 10−4 percent of the total citation flow. To highlight prominent, multidisciplinary 
journals and mesoscale changes in the citation flows, we weigh each journal’s effective 
number of research fields with its total citation flow πi =

∑

α πiα for a weighted overlap

(5)
oi = riπi.

Fig. 5  A second-order Markov model results in overlapping multidisciplinary journals. The leftmost network 
is first-order, and the rightmost is second-order. Colors indicate the journal’s weighted overlap in the 
second-order network

Fig. 6  Influential multidisciplinary journals. The weighted overlap is the product of the journal’s citation flow 
and its effective number of research fields. We limit the x-axis to six fields, but some small journals are in more 
than 30 research fields
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The journals with the highest weighted overlap are Nature, Science, and PNAS (Fig. 6).
The life sciences contain more of the multidisciplinary citation flow than the other 

research areas. By aggregating the weighted overlap oi on the leaf modules m,

around 60 percent of the 1000 most overlapping leaf modules are in the life sciences, fol-
lowed by the physical sciences with 18 percent.

Collaboration hypergraph using different representations

Finally, we study how a hypergraph’s different first-order and multilayer network rep-
resentations affect the detected communities. We use a collaboration hypergraph 
extracted from the 734 references in the review article “Networks beyond pairwise 
interactions: structure and dynamics” (Eriksson et al. 2021; Battiston et al. 2020). The 
referenced articles form hyperedges linking their authors. These hyperedges overlap 
in those authors who authored multiple papers, with the largest connected compo-
nent containing 361 author nodes V in 220 hyperedges E. We illustrate a small, sche-
matic hypergraph in Fig. 7a, where the white circles represent authors and the larger, 
orange circles represent papers.

To model the flow of ideas among collaborators, we model a random walk on the 
hypergraph. Each hyperedge e has a weight ω(e) , and each node u has a hyperedge-
dependent weight γe(u) . We denote u’s total incident hyperedge weight

and hyperedge e’s total node weight

A random walker moves from node u to v with these weights in three stages by Chitra 
and Raphael (2019): First, choosing hyperedge e among node u’s hyperedges E(u) with 
probability ω(e)d(u) . Then, choosing one of the hyperedge e’s nodes v with probability γe(v)

δ(e)  . 
And finally, moving to v.

(6)om =
∑

i∈m

oi,

(7)d(u) =
∑

e∈E(u)

ω(e)

(8)δ(e) =
∑

u∈e

γe(u).

Fig. 7  Schematic hypergraph with edge-dependent node weights (a) and flow-equivalent network 
representations. b A bipartite representation where hyperedges form hyperedge-nodes connecting all 
nodes in the hyperedge. c A multilayer representation where each hyperedge forms a layer containing the 
hyperedge’s nodes. The figure is adapted from Ref. Eriksson et al. (2021), licensed under CC BY 4.0
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For the collaboration hypergraph, we use article hyperedge weights 
w(e) = ln(c + 1)+ 1 where c is the number of citations for that article in December 
2020 (Eriksson et al. 2021). To model the author’s unequal contributions to articles, we 
use hyperedge-dependent node weights (Chitra and Raphael 2019).

We weigh alphabetically sorted authors uniformly because their contributions are hard 
to determine.

From this hypergraph, we generate bipartite and multilayer hypergraph representa-
tions with identical node visit rates using the method described in Ref. Eriksson et al. 
(2021) (Fig. 7b–c). We represent walks on hypergraphs as a bipartite network by repre-
senting the hyperedges with hyperedge nodes, and the three stages become a two-step 
walk between the nodes at the bottom and the hyperedge nodes at the top in 7b. First, a 
step from a node u to a hyperedge node e,

and then a step from the hyperedge node to a node v,

To represent the random walk on a multilayer network, we project the three-stage ran-
dom-walk process down to a one-step process on state nodes in separate layers. Each 
hyperedge e with weight ω(e) forms a layer α with weight ω(α) . A state node uα rep-
resents u in each layer α ∈ E(u) that contains the node (Fig.  7c). The transition rate 
between state node uα in layer α and state node vβ in layer β is

With one state node per hyperedge layer that contains the node, the multilayer represen-
tation requires more nodes and links than the bipartite representation.

We also generate a multilayer network using a so-called hyperedge-similarity model 
that increases the probability of a random walk staying among similar hyperedges (Eriks-
son et  al. 2021). This model reinforces community structure with modules formed by 
similar sets of collaborators. We let Infomap search for optimal multilevel solutions in 
the three network representations. As before, we create pseudo-state nodes in the bipar-
tite network to match them with the multilayer networks’ state nodes.

The resulting partitions have effectively three or four levels. The top-level organization 
is most coarse-grained for the bipartite representation and most fine-grained for the 
hyperedge-similarity representation (Fig. 8). Only the multilayer representation assigns 
the submodule “Peixoto” together with the top module in which Bianconi is the high-
est-ranking author. It also assigns Fortunato to a different top module than the hyper-
edge-similarity partition. Finally, Bocaletti overlaps as the highest-ranking author in two 
submodules in the hyperedge-similarity partition in the same top module as Bianconi.

(9)γe(i) =

{

2 if i is first or last author,
1 otherwise.

(10)Pue =
ω(e)

d(u)
,

(11)Pev =
γe(v)

δ(e)
.

(12)Pαβ
uv =

ω(β)

d(u)

γβ(v)

δ(β)
for β ∈ E(u, v).
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Conclusions
We have extended alluvial diagrams to higher-order networks with multilevel and 
overlapping communities and implemented an interactive web application available 
for anyone to use. In three case studies, we have used alluvial diagrams to show how 
the multilevel organization of science changes over time, how a second-order model 
compares to a first-order model, and how different hypergraph-flow equivalent net-
works influence the flow of ideas among network scientists.

We have focused on flow-based community detection using the map equation 
framework and the search algorithm Infomap. The generalized alluvial diagrams 
apply to any community-detection algorithm and are particularly relevant for simpli-
fying and highlighting complex multilevel and overlapping modular descriptions of 
large higher-order networks.
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