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Abstract 

Characterizing a public transportation network, such as an urban network with 
multiple lines, requires the origin–destination trip counts during a given period. Yet, if 
automatic counting makes the embarkment (boarding) and disembarkment (alighting) 
counts in vehicles known, it often happens that pedestrian transfers between lines are 
harder to track, and require costly and invasive devices (e.g., facial recognition system) 
to be estimated. In this contribution, we propose a method, based on maximum 
entropy and involving an iterative fitting procedure, which estimates the passenger 
flow between origins and destinations solely based on embarkment and disembark-
ment counts. Moreover, this method is flexible enough to provide an adaptable frame-
work in case additional data is known, such as attraction poles between certain nodes 
in the network, or percentages of transferring passengers between some lines. This 
method is tested on toy examples, as well as with the data of the public transportation 
network of the city of Lausanne provided by its Transportation Agency (tl), and gives 
arguably convincing estimations of the transportation flow.

Keywords: Multiline bus network, Origin–destination flows, Boarding and alighting 
counts, Maximum entropy estimation, Iterative proportional fitting

Introduction
Transportation networks determine our mobility, require a considerable amount of 
planning and resources, and elicit much public hopes and critics. They also constitute an 
endless source of inspiration in formal modeling and optimization, as attested in opera-
tions research (classical optimal transportation, maximum flow problem), quantitative 
geography and spatial econometrics (spatial navigation, multimodality, gravity models 
for flows), and machine learning (recent developments in regularized optimal transpor-
tation, such as color transfer or images interpolation; see e.g. Peyré and Cuturi 2019).

This contribution addresses a straightforward, yet central question in public transpor-
tation networks: given a network made of many train, bus, subway, or tram lines, how 
can one estimate the real trips made by the travelers, on the sole basis of the embark-
ment (boarding) counts and disembarkment (alighting) counts in each vehicle? Although 
estimating origin–destination flows is a much addressed issue in transportation mod-
eling (see e.g Bell and Lida 1997; Hazelton 2000; Ashok and Ben-Akiva 2002; Cui 2006 
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and references therein), the specific problem addressed in this contribution seems, to 
the best of our knowledge, original.

Pedestrian transfers of travelers between different lines here constitute the missing 
information, which planners traditionally attempt to estimate using census, or more 
recently with costly and invasive devices located at station, such as mobile phone track-
ing or facial recognition systems. In this article, we take a different approach, which is to 
produce the optimal estimation of transportation trajectories without additional data, 
using the principle of maximum entropy. The proposed solution consists of three con-
secutive steps: a maximum-entropy computation of the trip distributions, obeying mar-
ginal constraints and with a given prior; an update of the prior distribution by shrinking 
the components responsible for transfer overflow; and an update of marginal distribu-
tions. This iterative procedure clearly evokes the EM algorithm (see e.g. Dempster et al. 
1977; Bavaud 2009), with the first step corresponding to the “expectation step” and last 
two steps to the “maximization step”. The first step only is required for solving the single 
line case, naturally much simpler but yet not trivial, and exhibiting a disembarking prob-
ability independent of the embarking stop (Markov property). This method also offers 
some flexibility, as it is possible to set a prior distribution taking into account attrac-
tion or repulsion poles among stops, and to fix hyperparameters limiting the number of 
transfers between lines.

As case studies, we test the proposed method on toy examples as well as with the data 
of the public transportation network1 of the city of Lausanne, in Switzerland. Toy exam-
ples offer some kind of validation, as a transportation flow can be entirely set on toy 
networks and compared to the solution given by our algorithm. The real case scenario 
with the data from the Lausanne public transportation network demonstrates that this 
method is applicable on a real transportation network and can yield pertinent insights 
about traveler habits.

“ Notations and formalism” Section introduces the notations and the formalism, as 
well as the statement of the problem and the proposed solution. “Case Studies” Section  
contains case studies with toy examples and the Lausanne public transportation net-
work.  “Conclusion” Section concludes the article. Data, codes and extensive results can 
be found in the GitHub repository of the article.2

Notations and formalism
Lines, stops and junctions

Consider a transportation network made of lines numbered ℓ = 1, . . . , q , of respective 
lengths (number of stops) lℓ . Opposite lines, that is parallel lines running in the back and 
forth directions are considered as distinct.

The l = q
ℓ=1 lℓ stops constitute the nodes of the transportation network. Each stop 

i = 1, . . . , l belongs to a single line, and defines a unique next or forward stop F(i) (unless 
i is the line terminus) and a unique backward stop B(i) (unless i is the line start), both on 
the same line.

1 https:// www.t- l. ch/.
2 https:// github. com/ sliun il/ tl_ study.

https://www.t-l.ch/
https://github.com/sliunil/tl_study
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Let Si denotes the set of stops which can be reached from stop i outside lines connection 
(with, e.g., an acceptable walking distance), excluding i itself. A stop i is referred to as an 
isolated stop if Si = ∅ , and to as a junction otherwise.

Edges, trips, and the incidence matrix

Two sorts of oriented edges are involved in the transportation network:

• Intra-line edges (i, j) = (i, F(i)) belonging to a single line ℓ(i) = ℓ(j)

• Inter-line or transfer edges (i,  j) connecting different lines ℓ(i)  = ℓ(j) , involving walks 
from junction i to j ∈ Si . The set of transfer edges is denoted by T.

A st-trip, noted [s, t], consists of entering into the network at stop s, and leaving the network 
at t, by following the shortest-path (i.e. achieving the minimum distance, minimum time, or 
minimum cost), supposed unique, leading from s to t.

The succession of edges (i, j) belonging to the st-trip, noted (i, j) ∈ [s, t] , is unique. Define 
the edge-trip incidence matrix as

Note that we can also forbid some aberrant trips across the network, for example, trips 
[s, t] where (s, t) is a transfer edge (travelers making this trip do not actually do not use 
the transportation network). The set of permitted trips across the network is denoted by 
P, and can be defined following some conditions (see, e.g., “Construction”).

Transportation flows

Let xij count the number of travelers using edge (i, j) in a given period, such as a given hour, 
day, week or year. The edge flow xij is denoted by yij for an intra-line edge (i, j), and by zij for 
a transfer edge (i, j). By construction, xij = yij + zij , where yij zij = 0.

Let ai , respectively bi , the number of passengers embarking, respectively disembarking at 
stop i. By construction,

Also, a and b must be consistent, in the sense that AB(i) ≥ Bi , where Ai (respectively Bi ) 
is the cumulated number of embarked (resp. disembarked) passengers on the line under 
consideration, recursively defined as AF(i) = Ai + ai (resp. BF(i) = Bi + bi ). Moreover, 
Ai = Bi at a terminal line stop i. This common value yields the total number of passen-
gers transported by the line.

Let the transportation flow nst denotes the number of passengers following an st-trip, that 
is entering the network at s and leaving the network at t by using the shortest-path. One 
gets from (1)

(1)χ st
ij =

{
1 if(ij) ∈ [s, t],
0 otherwise.

(2)





yi,F(i) = ai and bi = 0 if i is a line start,
yB(i),i = bi and ai = 0 if i is a line terminus,
yi,F(i) = yB(i),i + ai − bi otherwise.

(3)xij =
∑

st

χ st
ij nst
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Among the passengers embarking in i, some transfer from another line, and some others 
enter into the network:

where “ • ” denotes the summation over the replaced index, as in ni• =
∑l

j=1 nij . Simi-
larly, among the passengers disembarking in i, some transfer to another line, and some 
others leave the network:

By construction

where n•• counts the number of passengers, and z•• counts the number of transfers. 
z••/n•• is the average number of transfers per passenger.

As explained in “Lines, stops and junctions” Section, transfers can only occur at junc-
tions, that is zij > 0 implies (i, j) ∈ T  . In particular, zii = 0 : no traveler is supposed to 
disembark and re-embark later at the same stop.

Statement of the problem and solution method

Automatic passenger counters measure the number of passengers entering and leaving 
lines at each stop [Boyle, 1998], that is a and b , which provide the basic raw data of the 
present study, kindly provided by the Lausanne Transportation Agency (tl) for the case 
study in “Real Data” Section. We will suppose here that this data obeys the necessary 
consistency conditions for embarkment and disembarkment counts, even if, in real case 
studies, a rescaling must usually be performed to balance in and out-flows on each lines 
(given in the appendix).

Intra-line edge flows Y = (yij) can be determined by (2), but transfer edge flows 
Z = (zij) are, here and typically, unknown. The objective is to estimate the l × l trans-
portation flow matrix N = (nst) . Many consistent solutions coexist in general, even for a 
single line with no transferts (“Markov property for a single line” Section). This issue of 
incompletely observed data can be tackled by the maximum entropy formalism Jaynes 
(1957), which has often been invoked in transportation modeling research Wilson (1967) 
Erlander and Stewart (1990).

Let fst = nst/n•• be the distribution of st-trips (empirical distribution) and let gst be 
some prior guess on its shape (theoretical distribution). Assuming some reasonable ini-
tial prior gst , 

(1) We first suppose that the empirical margins αs = fs• and βt = f•t are known. Then 
fst can be determined as the maximum entropy solution (“Maximum entropy esti-
mate of st-trips” Section), i.e. as the distribution closest to gst in the Kullback–Lei-
bler divergence sense under the margin constraints, to be calibrated by an iterative 
fitting inner loop

(2) Then (“Updating the prior distribution” Section), the prior is updated to g̃st by 
shrinking, if necessary, the priors gst , thus avoiding transfer overflow exceeding the 
embarking and disembarking counts at each stop. Moreover, an hyperparameter 

(4)ai = z•i + ni•

(5)bi = zi• + n•i

a• = b• = z•• + n••
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θ ∈ [0, 1] is used at this stage in order to control the minimum proportion of pas-
sengers entering/leaving the network at each stop.

(3) Finally (“Updating the margin distributions” Section), the margins are updated to α̃s 
and β̃t.

With the new prior distribution g̃st and the new margin distributions α̃s , β̃t , we can iter-
ate the above steps, until convergence. The only free parameter is θ , whose effect is stud-
ied on toy examples in “Toy Examples” Section.

The above iterative solution method is somewhat reminiscent of the EM algorithm. As 
a matter of fact, the first step (maximum entropy) exactly correspond to the “expectation 
step” of the EM algorithm (see e.g. Dempster et al. 1977; Bavaud 2009), but steps two 
and three, aiming at calibrating parameters gst , αs and βt , do not follow the maximum 
likelihood rationale of the “maximisation step”. Pseudocode of the algorithm is shown in 
Algorithm 1.

Maximum entropy estimate of st‑trips

As announced, the proportion of st-trips fst = nst/n•• (empirical distribution) will be 
estimated from some prior guess gst (theoretical distribution) and margin constraints αs 
and βt for fst by maximum entropy, i.e. by solving the problem

The Lagragian is

which gives, after deriving and setting to zero,

Using constraints in (6), we find

which yields the following iterative fitting algorithm: starting with some ψ(0)
t > 0 , one 

performs the iteration

(6)

min
f∈F

∑

st

fst log
fst

gst
,

s.t.
∑

t

fst = αs,

∑

s

fst = βt .

L =
∑

st

fst log
fst

gst
−

∑

s

�s

(
αs −

∑

t

fst)−
∑

t

µt(βt −
∑

s

fst

)
,

(7)fst = φsψt gst with φs := exp(−1− �s), ψt := exp(−µt).

(8)φs =
αs∑
t ψt gst

, ψt =
βt∑
s φsgst

,
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until convergence to φs and ψt obeying (8).3

In view of (4) and (5), the postulated margins must satisfy, for each isolated stop i

permitting to determine the total flow as n•• = ai
αi

 , or n•• = bi
βi

 for any isolated stop i, and 
thus the st-flow itself as

whose plugging into (3) yields the intra-line edge flows Y = (yij) and the transfer edge 
flows Z = (zij) . Only the latter is required for subsequent algorithm steps and can be 
computed with

where I(.) denotes the 0/1 indicator function.

Initialization of the prior and the margins

The geometry of the network permits to define the set of permitted st-trips across 
the network denoted by P. The initial prior was chosen as the uniform distribution on 
admissible paths, that is as

The initial margins were chosen to initially match gst , namely αs = gs• and βt = g•t for all 
stops. However, gst could be chosen more carefully in case of additional data. As a mat-
ter of fact, gst represent prior attractions between nodes in equation (7), before margin 
correction given by φs and ψt and subsequent algorithm steps. An urban planner could 
choose to increase or decrease some of these values in order to take into account prior 
knowledge on commuting habits of inhabitants.

Embarkment, disembarkment constraints and hyperparameter θ

After a single iterative fitting step, the resulting transportation flow N = (nst) and trans-
fer flow Z = (zij) have little chance to fulfill constraints (4) and (5) defined by a and b , 
and prior distributions gst , αs and βt must be corrected accordingly.

When z•i > ai , or zi• > bi , the found solution typically predicts that there are more 
passengers entering, respectively exiting, at a stop i than the actual measured quantity. 
One could be tempted to correct prior distributions in order to have z•i = ai , or zi• = bi , 
on every problematic nodes i, but the latter solution would mean that all passengers 

(9)φ(ι)
s =

αs∑
t ψ

(ι)
t gst

, ψ
(ι+1)
t =

βt∑
s φ

(ι)
s gst

,

(10)αi =
ai

n••
βi =

bi

n••

(11)nst = n••fst = n••φsψt gst

(12)zij = I((i, j) ∈ T )
∑

st

χ st
ij nst

gst =

{
1
|P| [s, t] ∈ P,

0 otherwise.

3 with possibly a small quantity ǫ > 0 added on null components of gst.
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entering (resp. exiting) the line at this stop are transiting, which seems unrealistic in 
most real life scenarios.

We define here the hyperparameter θ ∈ [0, 1] as the minimum proportion of passengers 
(among ai and bi ) entering/leaving the network at each stop (in other words, not transfer-
ring), that is

or equivalently

and updates of distributions will be made accordingly.
Note that, if additional data were known, we could set a particular value of θ for every 

node, and differing for embarkments and disembarkments. However, without additional 
information, we will restrain to this simpler case.

Updating the prior distribution

Overflow occurs in transfer edge (i,  j) if zi• > (1− θ)bi or z•j > (1− θ)aj . To avoid it, 
components gst of the prior distribution will be shrinked by a suitable ratio whenever 
edge flows (i, j) ∈ [s, t] exhibit overflow. For any edge (i, j), let us compute the flow ratio 
rij as

where rij > 1 denotes an overflow through edge (i, j). For a given origin–destination [s, t], 
define the orgin-destination flow ratio r̄st as the largest rij among edge flows (i, j) ∈ [s, t] , 
that is as

By construction, r̄st > 1 denotes an overflow on some transfer edge between s and t. To 
adjust the flow, we shall divide the previous flow by this ratio

and define the new prior distribution as

where φs and ψt are the values (8) obtained in the previous maximum entropy step.

Updating the margin distributions

By construction, the corrected flow ñst found in (17) now respects embarkment and dis-
embarkment constraints. We can compute the new transfer flow on edges with

(13)ns• ≥ θas n•t ≥ θbt

(14)z•s ≤ (1− θ)as zt• ≤ (1− θ)bt

(15)rij = max

(
1,

zi•

(1− θ)bi
,

z•j

(1− θ)aj

)
≥ 1 ,

(16)r̄st = max
ij

χ st
ij rij ≥ 1 .

(17)ñst =
nst

r̄st

(18)g̃st =

(
ñst
φsψt

)

∑
s′,t ′

(
ñs′ ,t′

φs′ψt′

) .
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and, with (4) and (5), updating margin distributions is straightforward

Markov property for a single line

A “network” made of a single line contains no transfers, and flow estimates can be 
obtained at once by the maximum entropy step only.

Let i = 1, . . . , l enumerate the stops in increasing order, that is F(i) = i + 1 . The ini-
tial prior is simply gst = c I(s < t) and captures solely the unidirectional nature of trips, 
where c = 1

(l−1)(l−2) . The margins of the empirical distribution fst , as well as the total 
flow, are here known

Following (7) maximum entropy flows are of the form

where (setting �s :=
∑

t>s ψt and �t :=
∑

s<t cφs ) the constraints (8) equivalently read

(19)z̃ij = I((i, j) ∈ T )
∑

st

χ st
ij ñst

(20)α̃s =
as − z̃•s∑
s′(as′ − z•s′)

β̃t =
bt − z̃t•∑
t ′(bt ′ − zt ′•)

.

(21)αs =
as

a•
βt =

bt

b•
n•• = a• = b• .

(22)nst = n•• c I(s < t) φs ψt
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to be solved by iterative fitting.
Interestingly enough, the form (22) for the flows is reminiscent of the gravity flows 

of quantitative Geography Wilson (1967) Erlander and Stewart (1990) Bavaud (2002) 
Thomas-Agnan and LeSage (2021), where φs is the push factor, ψt is the pull factor, and 
I(s < t) the distance deterrence function. Yet, instead of being symmetric in s,  t and 
decreasing with the distance |s − t| , the distance deterrence function is here asymmetric 
due to the line orientation, but otherwise constant.

This constancy entails the following Markovian behaviour for flows: let mst be the 
number of travelers embarking at stop s and still inside the line at stop t > s , and let ρst 
the probability that travelers embarking at s will disembark at t. By (22),

The empirical estimate of ρst is given by the proportion, among the travelers embarking 
at s and still present at t > s , of travelers disembarking at t, that is

which depends on t only: it appears that the disembarkment probability ρt = ψt
ψt+�t

 at 
t is independent of the embarkment stop s. Said otherwise, a traveler embarking at any 
stop s (and thus necessarily in the line at F(s) = s + 1 ) experiences the same disembark-
ment probability at each further stop t > s.

This Markov property, enjoyed by maximum-entropic flows, contrasts other possible 
solutions, such as the “first in, first out” (FIFO) flows (homogenizing the traveled dis-
tances among users) or the “last in, first out” (LIFO) flows (tending to generate maxi-
mally contrasted traveled distances).

Case studies
Case studies are divided in two sections. In the first section, we test the algorithm on 
toy examples, which are artificial networks where the transportation flow Nref = (nrefst ) 
is randomly drawn. These examples enable some kind of validation of the algorithm, as 
the ”real” transportation flow is known and can be compared to the solution N = (nst) 
given by our method. This setup differs from the second section, which is dedicated to 
applying the algorithm to the real case of the public transportation network of the city 
of Lausanne (tl), where embankment and disembarkment flows are measured but the 
real transportation flow is unknown. This second case study shows that the algorithm is 
applicable on large, real datasets and can give insights about passengers probable routes 
in the network.

(23)φs =
αs

c
∑

t>s ψt
=

as

n•• c�s
ψt =

βt

c
∑

s<t φs
=

bt

n•• c�t

mst =
∑

u≥t

nsu = n•• c φs
∑

u≥t

I(s < u) ψu = n•• c φs(ψt +�t)

ρst =
nst

mst
=

n•• c φs ψt

n•• c φs(ψt +�t)
=

ψt

ψt +�t
≤ 1
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Error measurements

In all case studies, we obtain a estimation of the transportation flow with the algorithm, 
noted N = (nst) , starting from the real embarkment flow aref and disembarkment flow 
bref . In toy examples, we also have access to the real transportation flow Nref . There are 
two types of dissimilarity measures between the data and the solution proposed by the 
algorithm: (1) if we have access to Nref , how much N differs from it, and (2) how well 
constraints defined by aref and bref are respected. The first dissimilarity is measured 
through the mean transportation error, denoted by MTE(N) , and computed as

and the second one with the mean margin error, noted MME(N) , defined as

where zij = I((i, j) ∈ T )
∑

st χ
st
ij nst is the flow on transfer edges T. Both errors can be 

interpreted as a weighted mean of error percentages.
Note that, by construction, the MME should be zero when the algorithm converges. 

However, it can be informative to track down this error along iterations and, in some 
practical cases where margin constraints are impossible to fulfill, the algorithm conver-
gence criterion is reached with MME > 0.

Toy examples

Construction

All constructed toy examples are built following the same approach, which aims at being 
simple but somewhat realistic. We fix a number of round trips p ≥ 2 , each of which 
is constituted of a forward line and a backward line, for a total of q = 2p lines. Every 
line has a starting and an ending node, which are isolated nodes, and possesses p− 1 
intermediary nodes which allow transfers to the other round trips, yielding a total of 

(24)MTE(N) =
∑

st

nrefst

nref••

|nst − nrefst |

nrefst

=

∑
st |nst − nrefst |

nref••

(25)

MME(N) =
1

2

∑

i

arefi

aref•

|z•i + ni• − arefi |

arefi

+
1

2

∑

i

brefi

bref•

|zi• + n•i − brefi |

arefi

=

∑
i(|z•i + ni• − arefi | + |zi• + n•i − brefi |)

2nref••

A1 A2

A3 B1

B2 B3

C1C2

C3D1

D2D3

p=2

A1

A2 A3

A4
B1

B2B3

B4

C1
C2

C3

C4

D1

D2

D3
D4 E1

E2

E3

E4

F1

F2

F3
F4

p=3

A1 A2

A3

A4

A5
B1

B2

B3

B4
B5

C1

C2
C3

C4
C5

D1D2

D3
D4

D5

E1

E2

E3
E4

E5 F1

F2
F3

F4F5

G1

G2

G3

G4 G5

H1
H2

H3

H4

H5

p=4

Fig. 1 3 toy examples, with the number of round trips p ∈ {2, 3, 4} . Trips are displayed in the same color, lines 
possess a unique letter, and each stop correspond to a unique combination of a letter and a number. Clusters 
of nodes represent positions where transfers between round trips are possible
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n = 2p(p+ 1) nodes in the network. Examples of these toy networks can be found in 
Fig. 1.

In order to be realistic, the permitted st-trips set P is constructed by considering all 
shortest-path between pair of nodes, excluding:

• s and t that are on the same line but with t preceding (or equal to) s in the line order.
• s and t that are on the same round trip but on opposite lines.
• s and t whose shortest-path starts with a transfer edge, ends with a transfer edge, or 

possesses two (or more) consecutive transfer edges.

A transportation flow Nref = (nrefst ) is drawn by setting a fixed number of passengers nref••  , 
and each passenger is assigned randomly to a (s, t) pair drawn uniformly among P. From 
this reference transportation flow Nref , using the edge-trip incidence matrix χ and equation 

RealReal It=1
MTE=0.478
MME=0.322

It=1
MTE=0.478
MME=0.322

It=2
MTE=0.573
MME=0.062

It=2
MTE=0.573
MME=0.062

It=4
MTE=0.329
MME=0.025

It=4
MTE=0.329
MME=0.025

It=7
MTE=0.266
MME=0.006

It=7
MTE=0.266
MME=0.006

It=15
MTE=0.256
MME=0

It=15
MTE=0.256
MME=0

Fig. 2 Real transportation flow (green arrows) obtained by randomly drawing 50 passengers on the graph 
toy example with p = 2 round trips, along with iterations 1, 2, 4, 7, 15 of the algorithm with θ = 0.001 . MTE 
and MME errors are computed, and embarkment and disembarkment counts are represented respectively by 
the red and blue colors on nodes
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(3), we can compute flow on edges Xref and, in turn, the number of passengers embarking 
aref and the number of passengers disembarking bref at each stop.

Algorithm iterations

First, we exhibit some algorithm iterations on a toy example with p = 2 , where 50 passen-
gers were drawn uniformly across the |P| = 20 possible st-trips. Some iterations of the algo-
rithm with θ = 0.001 , along with MTE and MME errors, are shown in Fig. 2.

On this small example, we can see that the algorithm quickly find an estimation giving 
a small MME error, but still give a MTE of 0.256. This result is due to the fact that only 50 
passengers are drawn, giving a large deviation compared to the optimally found solution 
which maximizes the entropy.
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Fig. 3 Mean transportation error (MTE) vs the number of randomly drawn passengers, in toy examples with 
numbers of round trips p varying from 2 to 8. The hyperparameter is set to θ = 0.001 and 10 different draws 
are performed for each data point
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Fig. 4 Mean transportation error (MTE) vs hyperparameter θ , in toy examples with numbers of round trips 
p varying from 2 to 8. The dot on each curve denotes the minimum. The number of drawn passengers is 
different for every network size and is set to 5 · |P| , in order to keep an (almost) constant variance. 10 different 
draws are performed for each data point
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MTE study

The main goal of toy examples, since we have access to the real transportation flow, is 
to study how the resulting MTE behaves regarding passenger st-trips distribution and 
hyperparameter θ , on different network sizes.

The randomness of the st-trips distribution is controlled by the number of drawn pas-
sengers and we can see that the algorithm performs better if this number increases, as 
seen in Fig. 3. This behavior can be expected as the method is constructed to find the 
solution maximizing the entropy while respecting embarkment and disembarkment 
constraints. In fact, all MTE should converge to 0 eventually, however this rate of con-
vergence seems to be low.

As for the hyperparameter study, found in Fig. 4, we see that the optimal parameter 
seems to decrease as the network size increases, reaching value close to 0 for 8 round 
trips. However, this is not the only factor which helps to calibrate this parameter. As 
a matter of fact, it seems unrealistic, in some real life scenarios, that all passengers 
embarking or disembarking at junctions are all transiting, and this value will be kept at 
0.1 for our real life study.

Real data

The dataset and algorithm setup

The dataset was constructed from data collected by the public transportation agency in 
the city of Lausanne (tl), in Switzerland. Automatic passenger counters were used to col-
lect data on the number of passengers entering and leaving buses and subways at each 
stop. The dataset comprises 44 lines, 1361 stops, and over 115 million passengers per 
year. Each round trip forms two separate lines, which often have stops that correspond 
to both the inbound and outbound directions, but this is not always the case. Some stops 
may be unique to either the inbound or outbound direction. The initial dataset contained 
13 million data rows, which were aggregated for the year 2019, and the passenger data 
was filtered to include only passengers who embarked and disembarked at each stop. 
Lines with the most errors were removed, resulting in a final dataset of 35 transportation 
lines and 1216 stops. The threshold for invalid lines was set when a difference between 
total embarkment and disembarkment counts differs more than 15% of their means. For 
the rest all other lines, the correction found in the appendix was applied to ensure con-
sistency conditions.

Line edges were built from the given data, and to obtain the full network structure, 
we added transfer edges between different lines if the estimated walking time (using 
Open Trip Planner4Morgan et al. (2019)) was less than 120 s. Shortest-paths between all 
pairs of stops were computed using the breath-first search algorithm West (2001) imple-
mented in the igraph5 R library Csardi and Nepusz (2006), thus giving χ . The matrix 
P, containing permitted st-trips, was built using the same conditions found in the toy 
example experiments (“Construction” Section) with an additional one. If the estimated 
pedestrian time between two stops s and t was shorter than the estimated time by tak-
ing the public transportation network, this st-trip was also removed from P. The graph 

4 https:// docs. opent rippl anner. org/ en/ v2.2. 0/.
5 https:// igraph. org/.

https://docs.opentripplanner.org/en/v2.2.0/
https://igraph.org/
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structure, consisting in the edge-trip incidence matrix χ , the permitted st-trips set P, 
and the transfer edges set T, was constructed beforehand testing the method.

The algorithm was run with hyperparameter θ = 0.1 . Tracking the mean margin error 
(MME) showed a rapid decrease ( < 0.001 after 13 iterations) but the (conservative) con-
vergence criterion (chosen as when 

∑
st |f

prev
st − fst | < 10−6 ) was reach after 316 itera-

tions, which corresponds to approximately one hour of computing time with a single 
thread on a AMD Epyc2 7402 with 32GB of RAM.

Results

As the result of our algorithm consists in the (1216× 1216) matrix N = (nst) , it is diffi-
cult to present them succinctly. We chose here to focus on two aspects: (1) mapping the 
origin and destination profiles of stops with the help of Correspondence Analysis (CA) 
Benzécri (1977); and (2) mapping the aggregated transfers between lines.

The first and second factorial dimensions of the destination and origin profiles of 
stops, obtained with CA applied on N , can be found on Fig. 5. We can see that origin and 
destination coordinates of each stop are quite similar when displayed on the first two 
factorial axes. This result can be explained if we understand that, in fact, origin and des-
tination profiles are, to some extent, symmetrical: at the beginning of a line, stops have 
several choices of destinations, but very few origins “point” at them, which is exactly 
the reverse for stops at the end of a line. Intermediary stops are generally located near 
the city center, and have a similarly rich origin and destination profiles. Concerning the 
dimensions, we can see that the first component divides the city stops between west and 
east, a known dichotomy in the public transportation usage in Lausanne: the east of the 

Fig. 5 Color representations (positive values in red, negative values in blue) of the first two factorial 
coordinates of stops, obtained from Correspondence analysis (CA) performed on the transportation matrix N . 
Top row maps stops as “origin profiles” (“where passengers are going”), bottom row maps stops as “destination 
profile” (“where passengers are coming from”). Left column depicts the first factorial dimension, right 
column the second factorial dimension. Ring sizes correspond to the number of embarkments (top) and 
disembarkments (bottom)
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city is less well served by public transport and inhabitants often use cars, while the west 
intensively uses public transports. The second component is harder to interpret, but 
seems to highlight the radial structure of the transportation network in Lausanne.

Figure  6 maps predicted transfer hubs, obtained by aggregating every transfer 
counts zij between lines when they occurs between stops located in the same spatial 
cluster (same “superstop” name in the dataset). As expected, most transfers occur 
in the city center, with the top 5 largest hubs located at St-FranÃ§ois (2,132,597 
transfers), Lausanne-Gare (2,035,543 transfers), Bel-Air (1,908,168 transfers), Ours 
(1,057,282 transfers), and Chauderon (969,789 transfers). When taken individually, 
four of the top 5 transfer counts are predicted between line 1 and line 72 occurring 
at the train station (Lausanne-Gare). Line 72 is actually a subway line connecting the 
northern and southern regions of the city, and is by far the most used line in the net-
work. Line 1 is also a highly frequented line and operated toward the western region 
of the city. It is not surprising to see most transfers occurring between these two 
lines, as they permit to connect the region with a high density of public transporta-
tion network users (the western part of Lausanne), to the main artery of the network 
(line 72).

Conclusion
At first glance, the task of estimating the origin–destination trip counts of public 
transportation networks on the sole basis of embarkments and disembarkments stop 
counts might appear as too ambitious. The project is indeed challenging, but we hope 
to have convinced the reader that meaningful estimates can be obtained by applying 
a succession of carefully chosen, principled yet flexible steps. Some of the ingredients 

Fig. 6 Localization and size of transfer hubs, obtained by aggregating estimated transfer flows between lines 
zij in “superstops”
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(maximum entropy, iterative fitting) are familiar in transportation theory, and some 
others (shrinkage of priors, minimal amount of entering and leaving the network) 
seem original. Possible theoretical and algorithmic improvements are still under 
investigation. Due to length constraints, the exploitation and interpretation of the 
estimated flow has been kept to a minimum. Yet, many issues, such as disaggregating 
data and regimes (week days, week-ends or holidays; time in the day), assessing the 
centrality of stops and junctions, or characterizing the imbalance between uphill and 
downhill flows (Lausanne is known for its slopes) are of primary interest for urban 
planning and transportation geography, and will be developed in a forthcoming work. 
Also, visualizing the numerous and various quantities of interest, on a spatial map 
or else, constitutes a challenge in itself, requiring a particular blend of creativity and 
rigor.

Appendix
Correction of the embarkment and disembarkment counts in a single line

It may happen that, in a line ℓ with stops indexed in order as 1, . . . , l , raw data a = (ai) 
and b = (bi) do not obey the following necessary consistency conditions

where Ai (respectively Bi ) is the cumulated number of embarked (resp. disembarked) 
passengers on the line at stop i, i.e. Ai =

∑i
j=1 aj and Bi =

∑i
j=1 bj . The first condition 

is easy to correct (by setting both quantities to 0), and we will assume that they are valid. 
The last two require an iterative procedure, explained here.

We first identify all stops i where Ai−1 < Bi and store them, along with stop 1 and l, in 
a order set S. Let Prev(i) be the item right before i in the set S. For all i ∈ S \ {1} , we do:

Before the last step, all conditions A(i−1) ≥ Bi should be respected except for node l. 
The last step ensures that Al = Bl . However, as this last step can sometimes lower the 
embarkment count and increase the disembarkment count on previous nodes (if Al > Bl 
before correction), some new nodes can now violate A(i−1) ≥ Bi . This is why this proce-
dure must be iterated until all stops on the line verify consistency conditions.
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al = 0, b1 = 0

A(i−1) ≥ Bi ∀i ∈ {1, . . . , l − 1}

Al = Bl for terminal stop l

âj =

(
1−

(A(i−1) − A(Prev(i)−1))− (Bi − BPrev(i))

(A(i−1) − A(Prev(i)−1))+ (Bi − BPrev(i))

)
aj ∀j ∈ {Prev(i), . . . , i − 1}

b̂j =

(
1+

(A(i−1) − A(Prev(i)−1))− (Bi − BPrev(i))

(A(i−1) − A(Prev(i)−1))+ (Bi − BPrev(i))

)
bj ∀j ∈ {Prev(i)+ 1, . . . , i}
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