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Introduction
In the last 2 decades, the study of the organization of complex systems with concepts 
and methods of network science has been receiving considerable interest because of 
the ability of networks to well represent different kinds of real-world, natural, and 
technological systems (Barabási and Pósfai 2016). The Internet, the World Wide Web, 
transportation and power grid networks, biological, ecological, and social networks 
are just a few examples of networks deeply studied to understand their underlying 
arrangement (Girvan and Newman 2002; Lu et al. 2016; Battiston et al. 2020).

A critical aspect of networks is their ability to react to attacks, either targeted or due to 
random failures (Albert et al. 2000) because of the costs and impairments that damage 
to the structure could provoke. The research on approaches to enhance the robustness 
of networks is an active field that has been investigated in several application domains. 
Existing methods for improving robustness rely on some defense mechanisms that 
modify network topology, such as edge rewiring, edge addition, and edge protection 
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(Freitas et al. 2022; Wang et al. 2014). Each mechanism has a cost. Edge rewiring, for 
instance, that changes the connection between two nodes by using several strategies, has 
a lower cost than adding a new edge (Beygelzimer et al. 2005).

Several measures have been proposed for assessing the modifications to the network 
topology based on graph properties, such as the connectivity or the average betweenness 
of nodes or edges, and the spectrum of adjacency or Laplacian matrix (Freitas et  al. 
2022). However, the detection of the set of links or the single link that enhances the 
robustness of a network by optimizing the chosen criterion is a combinatorial search 
problem whose exact solution is computationally intractable. Thus greedy methods that 
obtain a suboptimal solution have been proposed.

In this paper, an investigation of several strategies of link selection for improving the 
robustness of a network G, by optimizing the well-known effective graph resistance 
measure, in the following denoted RG , proposed by Ellens et  al. (2011) is presented. 
This measure is based on the analogy between graphs and electrical circuits and has 
been shown to decrease when links are added to the graph and increase when links are 
removed (Ellens et al. 2011).

We study the problem of optimizing the effective graph resistance from two points of 
view: (1) adding the link that maximally decreases the effective graph resistance and (2) 
protecting the link whose removal would cause the maximum network damage, i.e. the 
link that maximally increases the effective graph resistance.

In Pizzuti and Socievole (2018, 2019), we proposed two methods based on genetic 
algorithms (Goldberg 1989), named RobGA and RobLPGA respectively, to find the 
best link in the network to either add or protect in order to optimize RG . As outlined 
in Pizzuti and Socievole (2023), the main drawback of these methods is that the 
computation of the effective graph resistance must be repeated each time a new 
candidate solution is evaluated, thus making the approaches computationally inefficient. 
A modification to RobGA that improves the computation of RG has been presented in 
Pizzuti and Socievole (2023) by introducing an incremental computation of RG . The 
modified approach, named RobGA{L+ }, provides a good trade-off between the slightly 
increased error of the effective graph resistance value obtained with the approximated 
approach and the simulation time.

In the following, we first recall the concepts introduced in Pizzuti and Socievole 
(2023) needed to perform the incremental computation of RG when adding a link and 
the results obtained by RobGA{L+ }. Then we present the method based on the Moore–
Penrose pseudoinverse of the Laplacian matrix for the incremental computation of 
RG when a link is deleted and extend RobLPGA to RobLPGA{L+ }, that performs the 
incremental computation of the effective graph resistance in the case of edge removal.

A comparative analysis with four single-link addition/removal strategies on both 
real and synthetically generated networks shows that the evolutionary approaches 
outperform the other strategies, and that the incremental computation of the effective 
graph resistance provides a good balancing between the increased percentage error 
value introduced with the approximate computation and the lower running times.

The paper is organized as follows. In “Related work” section the main works in this 
research area  are described. In “Effective graph resistance  RG” and “Incremental 
computation of  RG” sections, the concept of effective graph resistance and of 
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incremental computation of the pseudo-inverse of Laplacian are recalled, respectively. 
In “Optimising the effective graph resistance through link addition or link protection” 
section  the problems we tackle in the paper are defined. In “RobGA{L+}”  and 
“RobLPGA{L+}” sections, the RobGA and RobLPGA methods are briefly described, and 
the efficient computation of RG is introduced. In “Experimental setup” section, the real-
world and synthetic networks used in the experimentation and the strategies adopted 
for the comparison  are described. In “Results” section  the results of the comparative 
analysis are reported. Finally, “Conclusion and further works” section  concludes the 
paper and discusses the future directions.

Related work
The problem of robustness and how to quantify this measure in complex interconnected 
systems are extensively discussed by Freitas et  al. (2022). In this survey, classical and 
more recent graph robustness measures are reviewed along with the types of attacks 
that can affect network robutness, and the defense techniques required to mitigate 
such attacks. Other works surveying graph measures for network robustness can be 
found in Oehlers and Fabian (2021) and Ellens and Kooij (2013). Since in this work we 
are interested in a particular robustness measure, the effective graph resistance, which 
will be recalled in the next section, in the following subsections we focus on the state of 
the art in (1) robustness management through link perturbations and (2) evolutionary 
methods improving robustness.

Robustness management through link perturbations

The improvement of network robustness is usually achieved by inducing a perturbation 
on its topology. A perturbation is an event occurring on the network which can be 
decomposed in a temporal sequence of elementary changes affecting its topology 
(Mieghem et al. 2010). An elementary change is any change occurring at time t that alters 
the network in terms of the corresponding graph matrix, such as the adjacency or the 
Laplacian matrix (Van Mieghem 2011). Elementary changes includes: (1) node addition, 
(2) node removal, (3) link addition, (4) link removal, (5) link rewiring (i.e. changing one 
of the two end nodes of a link with another node),(6) node weight change and (7) link 
weight change.

Through targeted perturbations, the robustness of a network can be enhanced or 
preserved. Focusing on link perturbations and effective graph resistance as indicator 
of robustness, Wang et  al. (2014) demonstrate both experimentally and theoretically 
that network robustness can be improved by: (1) adding a new link that minimizes the 
effective graph resistance and (2) protecting a link (i.e. labelling this link as one of the 
most vulnerable) whose removal would maximize the effective graph resistance. Four 
methods that select a particular link to add or remove are evaluated on different types 
of networks, both real and modelled, showing the measurable consequences that the 
topology changes have on network robustness.

The strategies that add a link for mitigating degree-based targeted attacks appear 
promising also on interdependent networks and multilayer networks as shown in the 
work by Kazawa and Tsugawa (2020). Here, the authors analyze the performance of 
different link-addition strategies for single-layer networks like low degree (LD) and 
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random addition (RA), for interdependent networks (i.e., RIDD, random inter degree–
degree difference and LIDD, low inter degree–degree difference), and extensions of 
the aforementioned strategies referred to as low-degree IDD (LD_IDD), low-degree-
product IDD (LDP_IDD), and low-degree-sum IDD (LDS_IDD). The results suggest that 
methods for interdependent networks are also suitable for multiplex networks.

Schneider et al. (2011) use iterative ad-hoc rewirings that randomly choose couple of 
links and make link swaps only if robustness increases. This ensure a good robustness 
while preserving the number of links. In addition, focusing on the design of robust scale-
free networks, an onion-like structure, where at the core there are high-degree nodes 
and at the adjacent layers there are nodes with decreasing degrees, is proposed.

Buesser et al. (2011) use the simulated annealing optimization heuristic on scale-free 
networks subject to malicious attacks to hub nodes (i.e. highly connected nodes). The 
network is properly rewired through the elimination of some existing links and the 
addition of new links by preserving the degree distribution and node connectivity. As 
robustness measure, the R value defined by Herrmann et al. (2011) is optimized.

Carchiolo et  al. (2019) add a small number of new connections for enhancing the 
robustness of scale-free networks. Differently from most of the works in this direction 
that usually target hub nodes, the new links are added between nodes with a secondary 
role with respect to the most central ones. The aim is to set up long-range connections as 
backup paths in case of hub failures.

Louzada et  al. (2013), present a rewiring method based on a small number of 
perturbations, which is suitable for real-time actions under budget constrains. The 
method is based on the evolution of the network largest component during a sequence 
of targeted attacks. Differently from random rewirings (Schneider et al. 2011), this smart 
strategy drives the formation of a modular onion-like structure characterized by layers of 
nodes grouped by degree.

Evolutionary methods improving robustness

Evolutionary computation is a type of optimization technique inspired by biological 
evolution (Bäck et al. 1997), successfully used for the resolution of many challenging real 
world complex optimization problems, including robustness optimization. Evolutionary 
methods initialize a population of individuals/solutions, and  evolve it  by applying 
the genetic operators (mainly crossover, mutation, selection) to improve the value of  a 
fitness function, which is the function to optimize, while exploring the solution space. In 
principle, evolutionary methods are highly flexible since they can be applied to any kind 
of optimization problem.

Zhou and Liu (2014) propose a memetic algorithm for enhancing the robustness of 
scale-free networks through the optimization of the R value (Herrmann et  al. 2011). 
Similarly to Buesser et al. (2011), this work focuses on attacks to hub nodes by exploiting 
a proper link rewiring able to preserve the degree distribution of the network. The 
method applies a customized crossover operator performing both a global and a local 
search. In such a way, the algorithm is able to search the network structure which 
optimizes the robustness.

In another work, Wang and Liu (2017) study how to improve the robustness of Erdős–
Rényi networks and scale-free networks subject to attacks to links causing cascading 
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failures. First, a new robustness measure, namely Rce , based on the R value (Herrmann 
et al. 2011) and adapted to cascading failures is proposed. Then, a memetic algorithm 
labeled as MA− Rce exploiting the same genetic operators used in Zhou and Liu (2014) 
and a local search operator employing simulated annealing as in Buesser et al. (2011) is 
proposed. Also MA− Rce preserves the degree distribution.

In Pizzuti and Socievole (2018), we proposed RobGA, a genetic algorithm that 
improves network robustness by adding a link that minimizes the effective graph 
resistance of the network RG as robustness indicator. Similarly, in another work (Pizzuti 
and Socievole 2019), we focused on improving robustness through link protection 
by proposing RobLPGA, a genetic algorithm finding the link whose removal would 
maximally augment RG . In our last work (Pizzuti and Socievole 2023), we focused on the 
computational effort necessary to improve robustness through RobGA, by proposing a 
fast computation of RG through an approximation based on an incremental computation 
of the Moore–Penrose pseudoinverse matrix L+ of the Laplacian L of the network graph. 
Termed as RobGA{L+} , this method provides a good speedup with a low percentage 
error in the computation of the effective graph resistance.

Effective graph resistance RG
The effective graph resistance RG is a measure derived from the field of electric circuit 
analysis (Ellens et  al. 2011) and based on the analogy that exists between graphs and 
resistive electrical circuits measure, which can be used to characterize the overall 
robustness of a graph G. Intuitively, RG can be regarded as the overall difficulty of 
transport in a graph G. More specifically, given an undirected and connected graph G, 
an equivalent electrical network EEN can be composed by setting an edge eij with weight 
wij corresponding to an electrical resistance ωij = w−1

ij  Ohm. The effective resistance Rij , 
is thus defined as the voltage developed between two nodes i and j when a unit current 
flows from i to j. A notable feature of effective resistance is that its square root Rij  is an 
Euclidean measure.

Since the current from a node i to a node j can spread over multiple paths, Klein and 
Randić (1993) defined RG as a measure characterized by the “multiple-route distance 
diminishment”, differently from the classical distance measures using a single path from 
i to j. In the context of a graph, if there exists more than one path between two nodes 
i and j, link failures can be easily managed by selecting alternative paths bypassing the 
unavailable edge. The smaller RG , the higher the multiple routes and hence, the more 
robust the network is.

To compute RG , we consider a network described by the undirected and connected 
graph without self-loops G = (V ,E) , where V is the set of n nodes and E is the set of m 
links between node pairs.

The adjacency matrix A of the graph G is an n× n symmetric matrix where an 
element aij is wij or 0 depending on whether an edge between nodes i and j is present 
or not, and wij is the weight of the edge representing the affinity between nodes i and 
j. The Laplacian L of G is defined as the n× n symmetric matrix L = �− A where 
� = diag(di) represents the n× n diagonal matrix containing the nodes’ degrees and 
di =

∑n
j=1 aij . Specifically, Lij = di if i = j , Lij = −1 if (i, j) ∈ E , and Lij = 0 otherwise.
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For an undirected and connected graph, its Laplacian L is positive semi-definite, with 
eigenvalues that are all real and non-negative since the eigenvalues of the symmetric 
matrices � and A are real. In particular, the set of eigenvalues {�1, �2, . . . , �n} , named 
spectrum of L, has a unique smallest eigenvalue �1 = 0 with the rest of n− 1 eigenvalues 
that are all positives ( 0 = �1 ≤ �2 ≤ . . . �n ). Fiedler coined the second lowest eigenvalue 
�2 as algebraic connectivity, for this reason the associated eigenvector is also referred to 
as the Fielder vector (Fiedler 1973).

The inverse matrix of L can not be computed due to the zero eigenvalue which makes 
L rank deficient with rank(L) = n− 1 < n . However, it is possible to obtain a matrix 
which can act as the inverse of L through the Moore–Penrose pseudoinverse matrix of 
L, denoted with L+ . L+ shares with L the property of being positive semi-definite. In 
addition, the eigendecomposition of the pseudoinverse L+ = ��+� ′ has the same set 
of orthogonal eigenvectors of L. The eigenvalues of L+ , contained in the diagonal matrix 
�+ , include �+1 = 0 and the reciprocals of the positive eigenvalues of L, i.e. �+i = 1

�i
 , 

i = 2, . . . , n.
Ranjan et  al. (2014) showed that Rij can be computed through the elements of the 

Moore–Penrose pseudoinverse as:

Having the effective resistances between pairs of nodes, the formal definition of effective 
graph resistance is the sum of the effective resistances between all pairs of vertices in 
the graph. Klein and Randić (1993) have proved that this measure satisfies the following 
spectral expression:

Several studies consider the effective graph resistance a highly valuable robustness 
measure. In the work by Ghosh et  al. (2008), for example, RG is seen as a measure of 
the closeness between nodes indicating how well G is connected. The analogy between 
effective graph resistance and random walks is shown in Tizghadam and Leon-Garcia 
(2008) and Ellens et  al. (2011): the pairwise effective resistance is proportional to the 
time duration of a random walk between the two nodes. Translated into effective graph 
resistance, RG is proportional to the expected commute time averaged on all node pairs. 
Another interesting property is that RG strictly decreases when edges are added or 
weights are increased (Ellens et al. 2011). Intuitively, the complete graph is more robust 
than a star, for example, due to the existence of more alternative paths.

Incremental computation of RG
Despite the versatility offered by the Moore–Penrose pseudoinverse matrix of the 
Laplacian to practically compute the effective graph resistance, the computation of this 
pseudoinverse matrix is expensive, incurring an O(n3) computational time. In large 
networks, like online social networks composed of millions of nodes that change their 
connections over time, the dynamic evolution of the network topology obstacles the 
utility of this matrix. As the friendships change or user profiles are added or removed, 

(1)Rij = l+ii + l+jj − l+ij − l+ji

(2)RG = n

n
∑

k=2

1

�k
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like in Facebook networks for example, the topology of such networks changes and this 
would require regular and clearly expensive re-computations of the matrix. Similarly, 
even if a network is relatively small but an algorithm would require regular updates of 
the Moore–Penrose pseudoinverse matrix, incremental updates in the computations of 
the matrix would be desirable considering that most of the topology changes happens 
locally.

In the work by Ranjan et al. (2014), a method for the incremental computation of the 
Moore–Penrose pseudoinverse of the Laplacian in undirected graphs is proposed. First, 
they show that L+ can be efficiently computed through a rank(1) perturbation matrix, 
thus making L invertible, as

where J ∈ Rn×n is a matrix of ones. Even if Eq. (3) incurs also O(n3) computational time, 
on Erdős–Rényi graphs this L+ computation is much faster than the one exploiting 
the MATLAB pinv standard command, which uses the singular value decomposition 
(SVD) to compute the pseudoinverse of matrices. Then, based on a divide-and-conquer 
approach, Ranjan et  al. provide scalar forms for the computation of the elements of 
the pseudoinverse matrix through a two-stage and incremental process, both in case 
of topology modification through (a) edge addition and (b) edge deletion. In this last 
case, since the graph breaks up into disjoint components, the approach provides the 
submatrices pseudoinverse elements as well.

In the following, we recall the equations provided in Ranjan et al. (2014) for computing 
incrementally the Moore–Penrose pseudoinverse matrix. We will use these expressions 
for the incremental computation of RG . This will help our algorithm proposal, both in 
case of link addition and link removal, to efficiently compute RG when the topology is 
affected by an edge addition or removal without having to recompute L+ from scratch.

Given the graph G, we indicate with G + {eij} the modified graph when an edge e(i, j) is 
added to G and with G − {eij} the modified graph when a link is removed. The elements 
of the Moore–Penrose pseudoinverse matrix of the Laplacian of the modified graph can 
be computed incrementally as follows.

‑ Edge addition

Let l+uv and l+(1)
uv  denote the general entries of the Moore–Penrose pseudoinverses 

L+ of the Laplacian of G, and L+(1) of the Laplacian of the modified graph G + {eij} , 
respectively. According to Theorem 3 in Ranjan et al. (2014)

where ωij is the resistance of the edge between i and j (i.e. the inverse of its weight 
wij ) and Rij is their effective resistance in G. The general term of L+(1) is thus a linear 
combination of the elements of L+ , requiring O(1) computations per element in L+(1) if 
L+ is known.

(3)L+ =

(

L+
1

n
J

)−1

−
1

n
J

(4)l+(1)
uv = l+uv −

(

l+ui − l+uj

)(

l+iv − l+jv

)

ωij + Rij
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‑ Edge removal

Let l+uv and l+(1)
uv  denote the elements of the Moore–Penrose pseudoinverses L+ of the 

Laplacian of G, and L+(1) of the Laplacian of the updated graph G − {eij} when en edge is 
removed from G, respectively. In this case, there are two cases to address: the removal of 
a non-bridge edge which does not split into components the graph, and the removal of a 
bridge-edge whose removal yields to graph disconnection into two partitions.

According to Theorem 4 in Ranjan et al. (2014), when deleting a non-bridge edge:

According to Theorem  5 in Ranjan et  al. (2014), upon deleting a bridge-edge eij , we 
obtain two disjoint sub-graphs G1 = (V1,E1) and G2 = (V2,E2) with pseudoinverses of 
Laplacians L+(1) and L+(2) , respectively. The orders of these two subgraphs of the origi-
nal graph G are n1 and n2 , respectively. The expressions of the elements of the two sub-
matrices are:

Optimising the effective graph resistance through link addition or link 
protection
According to Theorem 2.7 in Ellens et al. (2011),  “the effective graph resistance strictly 
decreases when edges are added or weights are increased”. Conversely, this robustness 
measure increases upon link removal. Robustness could be thus optimised if the net-
work graph is expanded with a new edge (i.e. minimizing RG ) or also reinforcing the 
link whose attack would maximize RG . As outlined in Wang et al. (2014), these strate-
gies are suitable when network efficiency needs to be increased with new infrastructural 
connections.

In this paper, we thus consider the problem of optimizing the effective graph resist-
ance for improving the network robustness from two points of view: (1) adding a link 
and (2) protecting the link whose removal would cause the maximum network damage. 
Given a graph G with Ec the set of mc new links not included in E, we formally define the 
two distinct problems of enhancing robustness as follows.

Problem 1 (link addition). Find an edge eij ∈ Ec such that

for any other possible new edge ekl ∈ Ec.

(5)l+(1)
uv = l+uv +

(

l+ui − l+uj

)(

l+iv − l+jv

)

ωij − Rij

(6)l+(1)
uv =l+uv −

n1
∑

z∈V1(G1)

(

l+uz + l+zv
)

−
∑

u∈V1(G1)

∑

v∈V1(G1)
l+uv

n21

(7)l+(2)
xy =l+xy −

n2
∑

w∈V2(G2)

(

l+xw + l+wy

)

−
∑

x∈V2(G2)

∑

y∈V2(G2)
l+xy

n22

(8)RG+{eij} ≤ RG+{ekl}
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Problem 2 (link protection). Find an edge eij ∈ E such that

for any other existing edge ekl ∈ E.

To solve the first optimization problem, in Pizzuti and Socievole (2018) we proposed 
a genetic algorithm, namely RobGA, a method able to optimize the effective graph 
resistance. In RobGA, each possible individual of a population P, that is a link, is 
represented through a vector of 2 elements, where each element represents the ID of the 
end node of the link. Through this simple representation and ad-hoc defined crossover 
and mutation genetics operators, we showed that RobGA is able to provide solutions 
that in most of the cases match the ones found by the exhaustive search both on real-
world and synthetically generated networks. It is worth noting that exhaustive search 
checks all the solutions space to find which one offers the best effective graph resistance. 
Moreover, RobGA also showed a very good performance compared to a set of heuristics 
investigated in Wang et  al. (2014). With an analogous methodology, in Pizzuti and 
Socievole (2019) we solved the problem of link protection through RobLPGA, a genetic 
algorithm looking for the link to protect for optimizing the effective graph resistance. 
In this case, we used the same individual representation and fitness function used in 
RobGA, but crossover and mutation operators were redefined in order to adapt them to 
existing links.

However, both methods require the computation of the effective graph resistance every 
time a possible solution, a new link to add or an existing link to protect, is evaluated. 
In other words, when the genetic algorithm tests an individual eij , the effective graph 
resistance needs to be recomputed on G + {eij} or G − {eij} , for Problem 1 and Problem 2 
respectively. This means recomputing the Laplacian of a graph at each generation T 
for each element e of the population P, requiring T × P times. Over these schemes, 
RG is computed through Eq. 2 and hence, through the eigenvalues of the Laplacian of 
the modified graph, which has a complexity order of O(n3) . The overall complexity of 
the methods is thus O(T × P × n3) , i.e. O(n3) . It is worth noting that executing the 
methods over large networks leads to a notable increase of the computational time 
especially when using large population sizes. In this case, it would be preferable avoiding 
recomputing RG all over again.

To overcome this drawback, the incremental computation of RG , detailed in 
the previous section, can be a viable alternative to improve the performance of 
the two methods. In the following subsections, we describe how we solve the two 
aforementioned robustness optimization problems by using a more computationally 
efficient implementation of the effective graph resistance, by leveraging on the approach 
proposed by Ranjan et al. (2014) and the previous schemes RobGA and RobLPGA. We 
call these two approaches RobGA{L+ } and RobLPGA{L+}.

RobGA{L+}

RobGA{L+ } is an improved version of RobGA, initially proposed in Pizzuti and Socievole 
(2023). Like RobGA, this genetic algorithm creates a population of P individuals where 

(9)RG−{eij} ≥ RG−{ekl}
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each individual represents a non-existing edge. Each individual/chromosome that is 
an edge eij  ∈ E is represented as a vector of 2 genes where each element contains the 
value i and j, respectively. The crossover operator, given two parents e1 = ei,j = (i, j) and 
e2 = ekl = (k , l) , combines them to generate a child e3 such that the corresponding edge 
obtained by rewiring the parent nodes does not exist. Finally, given an individual eij , the 
mutation operator disconnects i from j and connects it to one of its neighbors chosen at 
random.

Differently from RobGA, the method exploits Eq.  1 and the Moore–Penrose 
pseudoinverse for computing the effective resistances of the links and then sums them 
for obtaining RG . Each effective resistance Rij is computed in terms of the Moore–
Penrose pseudoinverse matrix elements through Eq. 4. In this way, the general Laplacian 
element of the augmented graph, l+(1)

uv  , is computed using the corresponding Laplacian 
element previously computed over the graph without the edge (i,  j). It is worth noting 
that when initially computing RG on the input graph, we do not use the MATLAB 
pinv function but the approximate formula given by Eq.  3 to further speed up the 
computation.

In Fig. 1, the pseudo-code of the algorithm is presented. RobGA{L+ } receives in input 
a graph G, a maximum number of generations T, the populations size P and the genetic 
parameters crossover fraction cf and mutation rate mr. It initializes the population by 
randomly choosing P chromosomes that are non-existing links. Initially, the Laplacian 
L+ of G is computed. The elements of this matrix will be later used in the incremental 
computation of the Laplacian. Then, for each of the T generation, for each link e of P, 
the pseudoinverse of the Laplacian of G + {e} is computed and the fitness function (i.e. 
RG+{e} computed with Eq. 1) is evaluated. After this, the algorithm creates a new popula-
tion of individuals by applying crossover and mutation. At the end, the individual with 
the lowest value of RG+{e} is returned.

RobLPGA{L+}

With a similar logic, we solve Problem  2 by proposing an improvement of RobLPGA 
based on the incremental computation of RG . We call this new method RobLPGA{L+ }. 
RobLPGA{L+ } is a genetic algorithm sharing with RobLPGA individuals representation, 
ad-hoc genetic operators and effective graph resistance as the fitness function to maxi-
mize. Even when removing a link, the computational complexity depends by the fitness 

Fig. 1 The pseudo-code of the RobGA{L+ } algorithm
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computation. In the case of RobLPGA, it required the computation of the eigenvalues 
of the Laplacian matrix every time a link to remove was tested and for each genera-
tion, that is O(T × P × n3) . In RobLPGA{L+ }, RG is computed through Eqs. 5, 6 and 7, 
if the removed link is a non-bridge edge or a bridge-edge, respectively. In the first case, 
the elimination of a link does not disconnect the graph into components. In the sec-
ond case, when a link removal splits the graph into components, the two components 
have two separate Moore–Penrose pseudoinverse matrices. In this case, for simplify-
ing the search, we consider an infinite value for the effective graph resistance and hence 
a bridge-edge as the optimal solution. In Fig. 2, the various steps of the algorithm are 
reported. It is worth noting that from the set of the existing edges, the algorithm only 
considers the links where nodes i and j have a degree greater or equal to 2 (step 4). This 
ensures that the evaluated link does not contain leaf nodes and as a result, the network 
traffic can flow toward other nodes. Protecting a link whose removal would disconnect 
just one node from the entire network, even if the resulting effective graph resistance is 
high, does not significantly impact network robustness if we consider that the rest of the 
network with n− 1 nodes would still continue working.

Experimental setup
In this section, we describe the experimental setting used for the comparative evaluation 
of the robustness strategies. As simulation environment to implement and evaluate the 
strategies, we used MATLAB R2020a. In particular, for RobGA, RobGA{L+ }, RobLPGA 
and RobLPGA{L+ } we used the Genetic Algorithm solver implemented in the Global 
Optimization Toolbox by using as genetic parameters: P = 100 , T = 300 , cf = 0.9 and 
mr = 0.2 . In the following subsections, we describe the datasets, the other robustness 
strategies in comparison, and the performance indexes used.

Datasets

We consider both real and synthetic networks. The topological characteristics of such 
networks, alias (ID), number of nodes (n), number of links (m), average degree (<k>), 

Fig. 2 The pseudo-code of the RobLPGA{L+ } algorithm
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average clustering coefficient (<C>), and density (D) are shown in Tables 1 and 2. Real-
world networks are as follows.

Internet backbones:1 we selected 5 graphs from the Internet Topology Zoo repository, 
where each node represents a BGP (Border Gateway Protocol) router and the edges 
between them their physical connections. Such networks often experience network 
attacks such as traffic reroute or blackholing.

Facebook ego networks: these are three friendship networks of Facebook users, where 
the Facebook users are the nodes and two users are considered connected if they are 
friends. Typically, Facebook graphs are composed of several ego networks (i.e. the user 
with its one-hop friends connected to other egos through common friends). We only 
take into account the largest connected component (LLC) of each network and not the 
entire topology since there are isolated nodes/small components (i.e. 8 nodes in 3980, 2 

Table 1 Real-world networks topological features

Network ID n m <k> <C> D

Bell South BS 51 66 1.294 0.081 0.052

ASNET-AM AA 65 77 1.184 0.063 0.037

ITC Deltacom ITC 113 161 1.425 0.053 0.025

ION ION 125 146 1.168 0.006 0.019

US Carrier USC 158 189 1.196 0.002 0.015

Ego 3980 3980 44 138 3.136 0.227 0.072

Ego 686 686 168 1656 9.8572 0.266 0.059

Ego 3437 3437 532 4812 9.045 0.272 0.017

US Power Grid USPG 4941 6594 2.669 0.103 5.403e−04

Table 2 Synthetically generated networks topological features. The number of links and the density 
values are averaged over 10 network samples

Network type Network ID n m <k> <C> D

Erdős–Rényi ER_128 128 627.3 5.23 0.054 0.041

ER_256 256 1423.2 11.117 0.064 0.043

ER_512 512 3240.2 12.64 0.01 0.024

ER_1024 1024 6310.2 12.222 0.004 0.011

Watts–Strogatz WS_128 128 384 6 0.109 0.047

WS_256 256 768 6 0.104 0.023

WS_512 512 2560 10 0.036 0.019

WS_1024 1024 5120 10 0.039 0.009

Bárabasi–Albert BA_128 128 253.4 3.954 0.132 0.031

BA_256 256 510.2 3.984 0.129 0.015

BA_512 512 1529.7 5.996 0.017 0.011

BA_1024 1024 3065.2 5.986 0.012 0.005

1 http:// www. topol ogy- zoo. org.

http://www.topology-zoo.org
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nodes in 686 and 2 nodes in 3437). These online social networks are vulnerable to fake 
news propagation and profile hacking.

US power grid:2 the nodes represent transformers, substations or generators of the 
Western States Power Grid while the links are the high-voltage transmission lines. 
Cascading failures and blackouts are very common on these complex networks.

Figure  3 shows one of the 5 Internet backbones, the ASNET-AM, a network com-
posed by 65 nodes and 77 links. The best link to add, in this case, is the link high-
lighted in green ([32 37]). This link ensures a minimum effective graph resistance of 
RG + e(32, 37) = 5.38× 103 . Without the addition of this link, RG = 6.005× 103 . Fig-
ure 4 shows the Facebook Ego 3980: this network has originally 52 nodes (Fig. 4a) dis-
tributed over 4 components. We cut the components with few nodes and consider only 
the largest connected component depicted in Fig.  4b composed by 44 nodes and 138 
links. The colored links are examples of links to protect whose removal would maximally 
increase the effective graph resistance.

In this paper, we also synthetically generated the following graphs.
Erdős–Rényi random graph given n nodes, this graph is created by randomly assigning 

a link to two nodes with probability or link density pc . The graph is connected if the 
density is greater than the critical threshold pc ≈ ln(n)/n.

Fig. 3 ASNET-AM real-world network. The green link is the link added by the exhaustive search for having the 
optimal effective graph resistance

2 http:// konect. uni- koble nz. de/ netwo rks/ opsahl- power grid.

http://konect.uni-koblenz.de/networks/opsahl-powergrid
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Fig. 4 Facebook Ego 3980 real world-network. a The whole topology and b the largest connected 
component. The colored links are those whose removal would maximally increase the effective graph 
resistance
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Watts–Strogatz small-world graph this graph is created through a two-steps process. 
First, a ring lattice with n nodes and mean degree 2k is generated: at this step each 
node is connected to k neighbors on either side. Then, each edge is rewired at random 
with probability p. Here, we use the following generation parameters: for n = 128 and 
n = 256 , k = 6 and p = 0.5 , for n = 512 and n = 1024 , and k = 10 and p = 0.5.

Bárabasi–Albert power law graph starting from n0 nodes, this graph is generated by 
connecting at every time step t a new node j with with nk ≤ n0 links to k neighbors. 
This is done with a probability p = dj/2mt , where dj is the degree of node j and mt are 
the number of edges at time t. For 128-nodes and 256-nodes, we use n0 = 5 and nk = 2 , 
n0 = 10 and nk = 3 for the other networks.

All these graph models have features that can be found in real-world networks. Erdős–
Rényi graphs, for example, can model ad-hoc networks, collaboration networks and 
peer-to-peer networks. Social networks, contact networks built upon Wi-Fi or Bluetooth 
encounters are often connected as small-world Watts–Strogatz graphs. The degree 
distribution in the World Wide Web, to provide another example, obeys approximately 
a power-law.

Strategies for selecting a link

For analyzing our strategies, we compare them to other state-of-the art methods. We 
consider 4 strategies of link addition or removal (Wang et  al. 2014) that optimize the 
effective graph resistance and take into account the topological or the spectral features 
of the graph: S1 Semi-random, S2 Degree Product, S3 Fiedler vector, S4 Effective resistance. 
In addition to the above strategies, the exhaustive search, that finds the optimal solution 
by checking all the possible links. is also evaluated. This can be also considered the worst-
case scenario since the optimal link search analyzes all the possible new links, in case of 
link addition, or all the existing links in case of link removal. The main drawback of this 
strategy, however, is its complexity order which dramatically increases with n, having 
O(n5) . In this subsection, we briefly describe the strategies adapted to the link addition 
case. It is worth noting that these strategies can be applied to the link removal as well, 
just considering as edge set E and not Ec , and similarly, m instead of mc as number of 
links. Let be e(i, j) the link to select. The contestant strategies work as follows.

• S1 : node i has the lowest degree and node j is picked at random. The computational 
cost is O(n2 − n+mc + 1) , with O(n(n− 1)) the cost for computing the node 
degrees, O(mc) the cost for searching the node with the minimum degree and O(1) is 
required for selecting a random node.

• S2 : the product of the degrees didj between two nodes is the minimum. The 
complexity for S2 is O(n2 − n+ 2mc) , with O(n(n− 1)) for computing node degrees, 
O(mc) for their product and O(mc) for searching the minimum value of degree 
product.

• S3 : differently from the previous two strategies based on graph topology, this strategy 
analyzes the graph spectrum. Nodes i and j have the maximum difference |yi − yj| , 
where yi and yj are the i-th and j-th elements of the Fiedler vector y. The complex-
ity of S3 is O(n3 + 2mc) , where O(n3) is required for the Fiedler vector computation, 



Page 16 of 22Socievole and Pizzuti  Applied Network Science            (2023) 8:43 

O(mc) for the difference |yi − yj| of the mc links, and O(mc) for searching the maxi-
mum of the difference.

• S4 : the nodes i and j have the maximum effective resistance Rij , computed as in 
Eq. (1). The complexity of S4 is O(n3 + 4mc) , where O(n3) is needed for computing 
the Moore–Penrose pseudoinverse L+ , O(3mc) for Rij for the mc links, and O(mc) for 
finding the highest effective resistance value.

Performance indexes

The strategies are compared by measuring the following performance indexes.

• Percentage Error the percentage relative error between strategy Sx and the exhaustive 
search (*) in terms of effective graph resistance measured on the graph G modified 
with the addition or the removal of a link. 

• Speedup the ratio between the time required to run the strategy Sx and the strategy 
Sy . 

If the speedup has a value greater than 1, this means that Sy is faster than Sx . More 
precisely, if the speedup value is n, strategy Sy is characterized by an n-fold speedup.

Results
In this section, we report the findings of the comparative evaluation of the different 
strategies. In the first subsection, we first briefly recall the results of RobGA{L+ } 
obtained in our previous work (Pizzuti and Socievole 2023) by extending the discussion 
highlighting the strong points of the proposed scheme. Then, we discuss new results of 
further simulations carried on the algorithm which investigate the relationship between 
population size and speedup, and population size and percentage error. In the second 
subsection, we describe the results obtained with  RobLPGA{L+}.

Link addition

Table  3 shows the results of the performance comparison between the 4 strategies, 
RobGA and RobGA{L+ }, over the real-world networks in terms of percentage error 
�RG between a strategy and the exhaustive search. For RobGA and RobGA{L+ }, the 
results are averaged over 10 runs of the algorithm. We do not report the values of 
standard deviations since they are negligible. For RobGA{L+ } we report two values 
between braces, first the minimum value of �RG and then its average value.

(10)�RG =

∣
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∣

∣
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The percentage error of RobGA over the Internet backbones BS, AA, ITC, ION and 
USC is the lowest compared to the other strategies. For the networks BS, AA and 
ION, in particular, the genetic algorithm has an average �RG value equal to 0 mean-
ing that it is able to find the same optimal link provided by the exhaustive search (see 
Table 4). The approximation introduced by RobGA{L+ } in the computation of RG defi-
nitely results in a good performance: the average error is always less than any other 
strategy and in the best case, it matches the exhaustive search performance (UTC, 
AA, ITC).

A similar behavior has been found over Facebook networks: on network 3980, for 
example, the exhaustive search finds link [36 42], the same holds for S4 , RobGA and 
RobGA{L+ }. Also on networks 686 and 3437 the approximation of RobGA{L+ } works 
well being the second best in the strategies ranking.

Table 3 Comparison of percentage error �RG between effective graph resistances in the 
augmented network for S1 , S2 , S3 , S4 heuristics, RobGA and RobGA{L+ } over real-world networks. For 
RobGA{L+ }, the minimum and the average �RG+{e} values are reported

ID �R
S1

G+{e}
�R

S2

G+{e}
�R

S3

G+{e}
�R

S4

G+{e}
�R

RobGA

G+{e}
�R

RobGA

G+{e}
{L+}

BS 8.918 4.493 0.76 0 0 {0, 0.401}

AA 7.472 6.97 1.914 2.565 0 {0, 1.152}

ITC 15.062 10.591 1.235 1.231 0.184 {0, 0.985}

ION 9.484 7.669 1.749 3.834 0 {0.255, 0.292}

USC 19.869 15.765 5.692 10.453 0.159 {0.396, 0.7}

3980 8.938 3.018 0.386 0 0 {0, 0.77}

686 7.26 0.847 0.435 0.826 0 {0.021, 0.282}

3437 2.186 1.567 0.635 0.522 0.077 {0, 0.419}

Table 4 Links added by the several strategies over real-world networks for the best �RG value

ID e*
e
S1 e

S2 e
S3 e

S4 e
RobGA

e
RobGA{L+}

BS [43 47] [32 25] [14 24] [3 6] [3 6] [43 47] [43 47]

AA [32 37] [23 3] [27 52] [15 33] [7 36] [32 37] [32 37]

ITC [34 59] [48 19] [40 80] [40 109] [40 109] [34 59] [34 59]

ION [4 55] [30 20] [7 72] [5 55] [54 103] [4 55] [104 55]

USC [80 93] [78 67] [56 72] [116 148] [41 48] [79 77] [79 78]

3980 [36 42] [37 5] [4 39] [23 42] [36 42] [36 42] [36 42]

686 [26 62] [140 145] [62 89] [62 164] [88 153] [26 62] [7 62]

3437 [243 440] [388 165] [410 434] [366 477] [440 430] [440 503] [440 503]

USPG – [2847 3401] [1853 3148] [799 4463] – [3925 1776] [4432 2747]

Table 5 Comparison of effective graph resistance in the original network ( RG ) and in the 
augmented network resulting from the various strategies over USPG

ID RG R
∗
G+{e} R

S1

G+{e}
R
S2

G+{e}
R
S3

G+{e}
R
S4

G+{e}
R
RobGA

G+{e} R
RobGA{L+}

G+{e}

USPG 6.377e+07 – 6.242e+07 6.314 e+07 6.173e+07 – 6.105e+07 6.107e+07
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The values of RG on the US Power Grid are reported in Table 5. Considering that the 
number of non-existing edges is 1.2× 107 , the strategies are compared just using the 
effective graph resistance value since the computational time required by the exhaustive 
search is prohibitive. Also, S4 requires high computational time, for this reason, its RG is 
not computed. RobGA is again the top performing method followed by RobGA{L+}.

The results for the synthetic networks are shown in Tables 6, 7 and 8. For each net-
work type, 10 network samples have been generated and the genetic algorithms have 
been executed 10 times. Table 6 compares the strategies in terms of average percent-
age error over the 128-nodes networks. The best performance is achieved by RobGA, 
while its approximation, RobGA{L+ } has an error a bit higher if compared to the other 
strategies. However, despite the lower performance of RobGA{L+ } over ER_128 and 
WS_128 networks in terms of error, its computational time is lower, much more lower 
when compared to S4 . Table  7 shows the average speedup as the number of nodes 
increases: RobGA{L+ } is faster than its contestant strategies, especially over large net-
works. On the Erdős–Rényi networks with 1024 nodes, for example, RobGA{L+ } is 
around ten times faster than RobGA and even 1097 times faster than S4 . As the net-
work size increases, S4 would not be a suitable choice due to its computational cost, 
RobGA{L+ }, on the contrary, would be the best compromise between the percentage 
error value of effective graph resistance and execution time.

Table 6 Comparison of average percentage error �RG for RobGA{L+ } over synthetic networks with 
128 nodes

ID �R
S1

G+{e}
�R

S2

G+{e}
�R

S3

G+{e}
�R

S4

G+{e}
�R

RobGA

G+{e} �R
RobGA{L+}

G+{e}

ER_128 1.028 0.029 0.044 0.093 0.004 0.103

WS_128 0.694 0.055 0.083 0.038 0.027 0.122

BA_128 0.607 0.219 0.064 0.012 0 0.0426

Table 7 Average speedup of RobGA{L+ } over RobGA and S4 on synthetic networks

Network type Strategy n = 128 n = 256 n = 512 n = 1024

Erdős–Rényi RobGA 1.984 5.381 7.612 10.261

S4 1.985 101.993 401.451 1097.735

Watts–Strogatz RobGA 1.805 3.53 5.076 9.708

S4 1.311 97.859 216.135 885.474

Bárabasi–Albert RobGA 1.781 2.535 7.347 7.141

S4 2.933 59.4267 379.817 795.38

Table 8 Average speedup of RobGA{L+ } over RobGA and average percentage error �RG on synthetic 
networks with 128 nodes as the population size p varies

Network type p = 300 p = 500

ER_128 {2.726, 0.085} {3.015, 0.071}

WS_128 {2.747, 0.071} {4.121, 0.058 }

BA_128 {2.154, 0.027} {2.998, 0.011}
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In a new experiment (Table  8), we analyzed more in deep the behavior of the 
speedup of RobGA{L+ } over RobGA. In the experiment of Table  7, one can observe 
that the advantage of the approximation is more noticeable on the largest networks 
and with respect to S4 . For this reason, we compared RobGA{L+ } and RobGA meas-
uring the speedup and the average percentage error on synthetic networks with 128 
nodes as the population size varies. Generally, as the number of individuals of the 
genetic algorithm increases, the space of the solutions increases thus leading to better 
results. As expected, on the Erdős–Rényi networks, for example, with a population 
of 300 individuals, we found that the speedup of RobGA{L+ } over RobGA improves, 
achieving 2.726 while with a population of 100 the value was 1.984. Moreover, the 
error improves as well with a value of 0.085, in contrast to the previous value of 0.103. 
As the population size  increases to 500, the speedup and the error improve accord-
ingly. The advantage of increasing the population size is also visible on Watts–Stro-
gatz and Bárabasi–Albert networks. We can thus conclude that the population size 
parameter has an important impact on the performance of the approximation and can 
help to improve RobGA{L+ } behavior.

Link protection

Table 9 compares the various strategies in terms of percentage error �RG when robust-
ness is achieved through link protection. In this case, we analyze RobLPGA and 
RobLPGA{L+ } versus S1 , S2 , S3 , and S4 . For this experiment, we focused only on syn-
thetic networks since the more sparse structure of the real-world networks with many 
leaf nodes leads the various strategies to often select links that disconnect the network 
into a main giant component and an isolated node. Theoretically, RG is maximized since 
the network is disconnected, but in practice, protecting a link whose removal would 
result in isolating a node is less meaningful than situations in which the removed links 

Table 9 Comparison of average percentage error �RG for RobLPGA{L+ } over synthetic networks with 
128 nodes

ID �R
S1

G−{e}
�R

S2

G−{e}
�R

S3

G−{e}
�R

S4

G−{e}
�R

RobLPGA

G−{e} �R
RobLPGA{L+}

G−{e}

ER_128 0.049 0.049 0.049 0 0 0.782

WS_128 0.67 0.507 0 0 0.003 1.452

BA_128 1.008 0.365 0.0013 0.004 0 1.953

Table 10 Average speedup of RobLPGA{L+ } and S4 over RobLPGA on synthetic networks

Network type Strategy n = 128 n = 256 n = 512 n = 1024

Erdős–Rényi RobLPGA 5.409 4.155 6.244 5.543

S4 1.532 4.974 10.517 19.174

Watts–Strogatz RobLPGA 4.125 4.506 3.504 5.344

S4 0.934 3.096 5.596 11.323

Bárabasi–Albert RobLPGA 3.473 3.4257 5.848 5.27

S4 0.698 1.58 5.409 11.924
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disconnect dense network areas. Note in Tables 1 and 2 that the considered real-world 
networks have overall a low average node degree around 1 and an average density lower 
than the real-world networks. ION, for example, has 125 nodes, average degree 1.168 
and density 0.019, while 128-nodes Erdős–Rényi networks have average density 5.23 and 
density 0.041.

With the aforementioned network topologies, RobLPGA selected always a link 
disconnecting the network, resulting in infinite values of the effective graph resistance, 
as shown in Pizzuti and Socievole (2019). In this case, we can not compute an average 
percentage error of RG . As such, here we consider only synthetic networks also for 
this further reason. Differently from the link addition case, the error introduced by 
the approximation is lower on the Erdős–Rényi networks but sensibly higher on the 
Bárabasi–Albert networks as it can be observed in Table 9. RobLPGA is always the best 
performing, with S4 the second best. However, when looking at the speedup of Table 10, 
RobLPGA{L+ } is faster than RobLPGA and much faster than S4 as in the link addition 
case. Differently from this last case, the entity of the decrease in simulation time varies.

Compared to RobLPGA, RobLPGA{L+ } is faster but this does not seem to scale with 
the increase in the number of nodes. This happens because the population size is always 
100 even if n increases, and this lets the algorithm work always on a subset of 100 
existing links. In the link addition case, the 100 links of the population were non-existing 
and, thus, extracted from a wider solution space.  As the number of nodes increases, 
there is more variability in the population and hence, a higher probability of selecting a 
link giving a better effective graph resistance value.

Compared to S4 , RobLPGA{L+ } is much faster and the speedup increases with the 
number of nodes because S4 does not work only on a subset of 100 existing links and this 
requires more simulation time as n increases.

Table  11 makes a comparison between RobLPGA and RobLPGA{L+ } in terms 
of speedup and �RG as the population size varies from 100 to 300 and 500. The 
approximations benefit from the increment in population size providing faster solutions 
with lower errors. As the population size increases, both the two performance indexes 
improve.

Conclusion and further works
We introduced two robustness optimization methods based on the effective graph 
resistance measure of a graph. The two methods, namely RobGA{L+ } and RobLPGA{L+ }, 
improve this robustness measure by either adding a link or protecting a link in a com-
putationally efficient way through the Moore–Penrose pseudoinverse matrix of the 
Laplacian of the graph. We presented a comparative analysis of 6 different single-link 

Table 11 Average speedup of RobLPGA{L+ } over RobLPGA and average percentage error �RG on 
synthetic networks with 128 nodes as the population size p varies

Network type p = 300 p = 500

ER_128 {4.592, 0.701} {6.388, 0.682}

WS_128 {4.915, 1.377} {7.943, 1.356}

BA_128 {4.943, 1.93} {8.299, 1.892}
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addition/removal strategies on both real-world and synthetically generated networks 
with the goal of evaluating the more efficient strategy.

The results we obtained are promising: indeed, the proposed methodology of opti-
mizing the effective graph resistance through a genetic algorithm outperforms the 
other strategies and in some cases equals the exhaustive search. Moreover, computing 
the effective graph resistance through an approximation based on the Moore–Pen-
rose matrix provides a higher speedup, especially on large networks, and results closer 
to those provided by the exhaustive search. Reducing computational costs by exploit-
ing the approximate computation of the effective graph resistance value thus provides 
energy-efficient approaches while preserving good performance results. In the context 
of the very recent research activity of Green Artificial Intelligence that aims to design 
new methods that must take into account the saving of computation resources, our 
algorithms can be effectively extended to deal with dynamic networks that change their 
topology over time.

Further work will be devoted to the study of RobLPGA{L+ } on network topologies 
where the candidate link to be removed is a bridge-edge. This aspect needs further 
investigation since an open question is how to compare the value of effective graph 
resistance of two bridge-edge solutions, since a bridge-edge solution splits the graph into 
two components providing a graph resistance value for each subgraph. Currently, we 
randomly choose one of these as the best solution but a more appropriate strategy would 
be maybe that one combining the values of the robustness of the subgraphs providing a 
cumulative measure.
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