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Abstract 

Hypergraph is a graph structure that can efficiently express the relationship of multiple 
nodes and has attracted attention in recent years. As with normal graphs, the struc-
ture changes every moment, and it is an important research topic in graph min-
ing to capture structural changes. Many existing graph embedding methods focus 
on prediction tasks, and few focus on the visualization of structural changes. In this 
study, we aim to output embeddings for effective visualization in terms of spatial 
efficiency, node classification accuracy, graph structure maintenance, computational 
efficiency, and structural change detection performance. Our proposed method gets 
inspired by modularity maximization, quantifies connection strength between hyper-
nodes and hyperedges, and embeds hypernodes on the surface of concentric 
spheres with a radius equal to the timestep, where a spherical surface has a wide area 
in the middle range. These devices are expected to correspond to the following two 
characteristics: (1) a graph has more node pairs whose distances are middle-range 
than short- and long-range; (2) a growing graph generally has an increasing number 
of nodes. Evaluation experiments using multiple real hypergraphs show that the pro-
posed method is superior to existing visualization methods in the abovementioned 
terms.

Introduction
In graph theory, a graph represents usually a connection relation between two nodes, 
while hypergraphs can represent not only two nodes but also an arbitrary number 
of node connectivity relationships and have attracted attention because they are 
more expressive than general graphs (Feng et al. 2019; Do et al. 2020). To distinguish 
graphs that represent the connection relationship between two nodes from hyper-
graphs, we refer to them as normal graphs in the following. Since graph structure is 
difficult to numerically handle, many methods for obtaining vector representations 
of nodes and/or edges have been developed and using embedded vectors to solve 
link prediction, node classification, and clustering problems is becoming a stand-
ard methodology (Perozzi et  al. 2014; Grover and Leskovec 2016; Tang et  al. 2015; 
Cao et  al. 2015). Therefore, methods for obtaining vector representations of nodes 
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and edges by embedding have become popular (Peng et  al. 2017). Node embedding 
is a technique for converting a node to a low-dimensional vector while preserving 
its structural information. In particular, one method to uncovering the structure and 
inherent properties of complex real data is to embed it into a 2- or 3-dimensional vec-
tor and visualize it in Euclidean space. But, since the performance tends to degrade 
when directly acquiring 2- or 3- dimensional vectors by these embedding techniques, 
it is common to use t-SNE (Maaten and Hinton 2008). As embedding methods spe-
cialized in visualizing, although somewhat dated, Spring-Force embedding (Kamada 
and Kawai 1989) and Laplacian-Eigenmap embedding (Belkin and Niyogi 2003; von 
Luxburg 2007) exist. However, these embedding techniques and visualization meth-
ods cannot be directly applied to hypergraphs. Therefore, in this study, we propose 
an embedding method specialized in visualizing the representation of hypergraph 
structures.

In addition, graphs observed in the real world often change their structure. Changes 
in graph structure consist of the addition or deletion of nodes and edges or the rewir-
ing of edges by combining them. Most existing studies on dynamic graphs focus on 
the pattern and frequency of structural changes, but few have focused on visualiza-
tion of the impact of structural change. The addition or deletion of edges between dif-
ferent communities is considered to have a greater impact than that of edges within a 
single community. For example, a co-author network can be represented by a hyper-
graph as shown in Fig. 1.

In Fig. 1, hypernodes ABCD and EFGH are densely connected. Such a set of hyper-
nodes or hyperedges is called a community. In many cases, co-authors are researchers 
in the same research field, and researchers in the same field are considered to be in a 
co-authoring relationship, so it can be regarded that a community is a research field. 
Suppose that hyperedge b is added later. This hyperedge represents a co-authoring 
relationship of different field researchers. Therefore, this is considered to be a large 
structural change, and the embedding vector is expected to drastically change.

The purpose of this study is to output embedding vectors for visualization that can 
detect important structural changes that undermine the community structure in 
dynamic hypergraphs. To this end, we propose a method that embeds the hypernodes 
of each snapshot in the dynamic hypergraph onto the spherical surface of concentric 
spheres. The features of the proposed method are shown below. The sphere surface is 

Fig. 1  Example of a co-author network 3: Persons with the uppercase character are (hyper) nodes, and gray 
lines with the lowercase character are (hyper) edges
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suitable for visualizing many graph structures with a large number of middle-range 
node pairs because the near-range and far-range regions are narrow, and the middle-
range region is wide. Since the radius is the time step, it is suitable for visualizing 
dynamic graphs in which the number of nodes increases with growth, and space-
efficient embedding can be expected. In addition, since it is embedded in concen-
tric spheres, it can be expected that it will be easy to detect large structural changes 
that affect the community structure. The proposed method quantifies the connection 
strength between hypernodes and hyperedges based on a matrix that plays a simi-
lar role to the modularity matrix in community extraction by double-centering the 
incidence matrix of the hypergraph, so a high accuracy of node classification can be 
expected. When obtaining the embedding vectors, it is calculated from the sparse 
incidence matrix instead of using the dense double-centered incidence matrix, so it 
is expected that the vector can be output at high speed with good computational effi-
ciency. Our contribution in this study is listed below:

•	 We extend our existing hypergraph embedding method so as to apply it to dynamic 
hypergraphs.

•	 We reveal the relation between our method and the conventional community detec-
tion method based on modularity maximization.

•	 We quantitatively evaluate our method in terms of spatial efficiency, classification 
accuracy, graph structure maintenance, computational efficiency, and structural 
change detection performance.

The rest of this paper is organized as follows. "Related work" section  reviews related 
work, and "Methodology" section explains our proposed method. "Experiments settings" 
section describes the experimental datasets and settings, and "Evaluation results" section 
reports and discusses the experimental results using real-world data. Finally, "Conclu-
sion" section concludes and addresses future work.

Related work
This study proposes a novel embedding method of hypergraph intended for visualiza-
tion. Our method uses a double-centered incidence matrix which is similar character-
istics to the modularity matrix used for community detection. Therefore, we overview 
the existing studies in terms of embedding and visualization, clustering and community 
detection, and dynamic graph embedding.

Normal graph embedding

The embedding of nodes or graphs has been extensively studied over time. A classical 
approach involves utilizing the eigenvectors of the Laplacian matrix, which is called 
spectral clustering (von Luxburg 2007). This method proves effective for graphs with 
well-separated communities, as the Laplacian matrix is known for its clustering capa-
bilities. Additionally, being a linear method, it can be executed relatively quickly. For 
arbitrary metric space objects, Laplacian Eigen Map constructs a neighborhood graph 



Page 4 of 29Ito and Fushimi ﻿Applied Network Science            (2023) 8:41 

such as a k-Nearest Neighbor graph on the distance between objects and performs low-
dimensional embedding based on its Laplacian matrix (Belkin and Niyogi 2003).

There are specialized techniques for graph visualization, such as spring-force model 
(Fruchterman and Reingold 1991; Hu 2005) and cross-entropy method (Takeshi et  al. 
2003). The former aims to embed nodes in a way that matches the distance between 
them in the graph and their coordinates. The latter focuses on embedding pairs of nodes 
that are adjacent in the graph closer to each other. However, in recent years, alterna-
tive methods such as DeepWalk, Node2Vec, LINE, GraRep, and SDNE have emerged 
(Perozzi et al. 2014; Grover and Leskovec 2016; Cao et al. 2015; Tang et al. 2015; Wang 
et  al. 2016). These methods focus on representing the structural features of nodes as 
vectors rather than visualizing graphs. For instance, DeepWalk and Node2Vec generate 
node sequences by conducting random walks starting from each node. They treat these 
sequences as sentences and apply Skip-Gram or CBoW to obtain node representation 
vectors. On the other hand, GraRep decomposes the adjacency matrix considering not 
only directly adjacent nodes but also nodes that are two or three hops away to obtain 
representation vectors.

Since these methods are designed for conventional graphs, some preprocessing steps, 
such as clique expansion to convert hypergraphs into normal graphs or star expansion 
to convert them into bipartite graphs, are necessary before applying them to the hyper-
graphs addressed in this paper. These methods are designed for the same or similar pur-
pose of graph visualization or embedding, thus, in our experiments, we compare ours 
with some of these existing methods.

Hypergraph embedding

As an embedding method for hypergraphs, a method based on the Laplacian matrix of 
the clique-expanded graph has been proposed (Zhou et  al. 2006). Although it adjusts 
the degree of the node after clique expansion, it is essentially equivalent to the above-
mentioned spectral clustering and laplacian eigenmap, As shown in the evaluation 
experiments in this paper, there are cases where the results are of poor quality due to the 
limitations of the linear method.

In a method called NetVec proposed in Maleki et al. (2021), the hypergraph is con-
verted into a bipartite graph, the vector of the hyperedge is defined by composing the 
vectors of the adjacent hypernode, and the vector of the hypernode is defined by com-
posing the vectors of the adjacent hyperedges. Although NetVec is common with our 
method in that the vectors of hypernodes and hyperedges are fixed and updated alter-
nately and these update processes are iteratively repeated, NetVec differs in that vectors 
are not normalized by their norm and that it considers the vector one iteration before by 
a certain rate.

As a method for learning the embedding representation of hypergraphs derived from 
Location Based Social Networks, LBSN2Vec has been proposed (Yang et  al. 2019). In 
LBSN2Vec, as with Node2Vec, the relationship between hypernodes is regarded as 
sequence data based on a random walk on the graph, and an embedding representa-
tion is acquired. When learning the embedding vector, the regression line that maxi-
mizes the cosine similarity with each node vector is obtained from the composite vector 
of the representation vectors of the nodes included in a certain hyperedge. Then, the 
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embedding vector is learned so that the cosine similarity is the maximum for these 
nodes and the cosine similarity is the minimum for the negatively sampled nodes. It is 
common with our method in that the embedding vector is obtained so that the cosine 
similarity between the vectors is maximized, but it differs from this study in that it is 
sequenced by a random walk and negative sampling is used. Our method attempts to 
embed both nodes and edges into the same spherical surface as these methods (Maleki 
et al. 2021; Yang et al. 2019) do.

HGNN (Hypergraph Neural Networks) and its generalization, HGNN+, are neural 
network architectures designed to address node classification problems on hypergraphs 
(Feng et  al. 2019; Gao et  al. 2023). Specifically, they utilize a specialized tensor struc-
ture to represent hypergraphs. In hypergraphs, multiple nodes can simultaneously share 
an edge, requiring a specific tensor structure to capture the hypergraph representation 
effectively. This tensor is shared across hyperedges of different sizes and captures impor-
tant information. Using this tensor, convolutional operations are performed to update 
node features, and node classification is carried out using these features. The main con-
tribution of HGNN+ is providing a neural network architecture for problems on hyper-
graphs. This architecture can be applied to different types of graphs and demonstrates 
high performance. Moreover, it can handle different types of hyperedges, allowing for 
flexible application depending on the problem at hand.

In this study, the objective is not to estimate node labels from node features and graph 
structure for classification problems. Instead, the goal is to acquire embeddings that ena-
ble effective visualization solely from the graph structure. Therefore, direct comparisons 
cannot be made.

Graph clustering and community detection

Graph clustering and community extraction have been studied for a long time, and many 
methods have been proposed. In community extraction, the concept/measure called 
modularity is important and has been adopted in many methods (Clauset et  al. 2004; 
Blondel et al. 2008). Modularity is a measure showing how many edges in a cluster are 
larger than those in the case of a random graph based on the configuration model (New-
man 2003). In other words, clustering that maximizes modularity is realized by decid-
ing the cluster so that the number of edges closed in the cluster is relatively larger than 
the number of edges that span some clusters. However, in a large-scale graph, it is dif-
ficult to obtain an exact solution because the number of combinations is very large. Vari-
ous approximation algorithms have been proposed to realize modularity maximization. 
Newman shows that the modularity can be expressed in terms of the eigenvectors of a 
characteristic matrix for the network, which is called the modularity matrix (Newman 
2006).

Some studies generalize the modularity measure for normal graphs to apply to hyper-
graphs (Kumar et  al. 2018; Kamiński et  al. 2019). Kumar et  al. (2018) calculated the 
modularity using the adjacency matrix in which the degree of each node was modified 
in response to the degree increasing due to the clique expansion. To achieve maximum 
modularity, the method repeats two phases: the phase of fast clustering of nodes based 
on the Louvain method (Blondel et al. 2008) and the phase of updating the weight for 
each hyperedge. The weight of the hyperedge that spans some clusters in a well-balanced 
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manner is reduced and updated so that it is easily cut in the next phase. The iteration is 
terminated when the updated amount of the weight matrix becomes sufficiently small, 
and the clustering result is output. Kamiński et  al. (2019) generalized the Chung-Lu 
model and defined an exact modularity measure based on the model. To achieve clus-
tering results that maximize modularity CNM (Clauset et  al. 2004) like algorithm is 
employed.

In our study, we propose a method using a matrix similar to the modularity matrix, 
based on the idea that it is important to reflect the information of community structure 
in visualization. Unlike these studies, our method does not use the modularity matrix 
directly, but uses a double-centered incidence matrix, so we can realize a high-speed 
algorithm that takes advantage of the sparsity of the incidence matrix.

Dynamic graph embedding

Visualization of dynamic graphs has been attempted for a long time and is summarized 
in the literature (Beck et al. 2017). In Beck et al. (2017), the timelines are classified into 
animation, timeline, and hybrid, and the timelines are further classified into juxtaposed, 
superimposed, and integrated. Our method embeds hypernodes of each timestep into 
a concentric sphere, which allows us to know how much the angle from the origin has 
changed due to structural changes by embedding hypernodes at different time steps on 
spheres of different radii. Therefore, it can be said that our visualization method is classi-
fied as a timeline-juxtaposed visualization method.

Kang et al. propose a dynamic hypergraph neural network framework that focuses on 
key hyperedges (Kang et al. 2022). The authors introduce the concept of key hyperedges, 
which are selected based on their significance and impact on the overall hypergraph 
structure. These key hyperedges serve as critical elements for capturing and modeling 
the temporal dynamics of the hypergraph. The proposed framework leverages graph 
neural networks and attention mechanisms to effectively incorporate the information 
from key hyperedges and update node representations over time. By focusing on key 
hyperedges, the dynamic hypergraph neural network can adaptively learn the evolving 
patterns and dynamics in the hypergraph structure. This approach enables more accu-
rate and informative analysis of dynamic hypergraphs in various applications, such as 
social networks, recommendation systems, and knowledge graphs. The experimen-
tal results demonstrate that the proposed method outperforms existing approaches in 
terms of both node classification accuracy and the ability to capture temporal dynamics 
in dynamic hypergraphs. Although Kang et al.’s method has excellent expressive power, it 
is not a method specialized for visualization, in fact, the authors did not present visuali-
zation results of dynamic hypergraphs.

Methodology
In this section, we formally explain the proposed method, its computational complexity 
and its relationship to the maximization of modularity.

Preliminary

First, we give the definition and notation. For a given hypergraph H = (V , E) which 
consists of sets of hypernodes V and hyperedges E , we propose a method embedding 
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hypernodes v ∈ V and hyperedges e ∈ E into ( D − 1)-dimensional hypersphere man-
ifold. Especially for the visualization, we set the dimension as D = 3 , i.e., spherical 
surface. Here, since we express the number of dimensions of embedding vectors 
in Euclidean space as D, the number of dimensions of the manifold is D − 1 . Let xv 
denote the embedding vector of hypernode v and ye denote the embedding vector 
of hyperedge e. The incidence matrix of the hypergraph of N = |V| hypernodes and 
M = |E | hyperedges is represented as N ×M matrix, H , whose (v, e)-th element hv,e is 
1 if hypernode v is included in hyperedge e, otherwise 0. Other notations are given in 
Table 1.

Revisit of static hypergraph embedding

Since the method proposed in this study is based on our existing one (Ito and Fushimi 
2021), we revisit it. The method attempts to output the embedding vectors so that the 
connectivity among hypernodes and hyperedges is expressed as angles among vectors 
on a unit hypersphere. Formally, for the hypernodes and the hyperedge that are con-
nected, u, v,w ∈ e , they are embedded in the same direction as viewed from the origin so 
that the cosine similarity among their embedding vectors xu, xv , xw and ye are large. That 
is, under the situation that the embedding vectors x of hypernodes are given, the embed-
ding vector of hyperedge e that has the highest cosine similarity to the hypernodes v ∈ e 
is found by

(1)ye = arg max
y∈RD ,||y||=1 v∈e

cos(y, xv) ∝
v∈e

xv .

Table 1  Notation

Notation Description

H = (V ,E) Static hypergraph with sets of hypernodes V and hyperedges E

G = (V ,C) Normal graph with sets of normal-nodes V and normal-edges C

B = (V ,E ,R) Bipartite graph with sets of bipartite-nodes V ,E and bipartite-edges R

N = |V| Number of hypernodes, number of normal-nodes

M = |E | Number of hyperedges

L = |R| Number of bipartite-edges

K = |C| Number of normal-edges

D Number of dimensions of embedding vectors

X = [xv ]v∈V Embedding vectors of hypernodes

Y = [ye]e∈E Embedding vectors of hyperedges

H Incidence matrix of a hypergraph, adjacency matrix of a bipartite graph

H̃ Double-centered incidence matrices of a hypergraph

A Adjacency matrix of a normal graph

IN N × N identity matrix

JN N × N centering matrix

1N N-dimensional vectors whose elements are all 1

H(T ) Dynamic hypergraph, sequence of T static hypergraphs

T Number of hypergraph stnapshots
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Similarly, given embedding vectors y of hyperedges, the embedding vector of hyper-
node v that has the highest cosine similarity to the hyperedges Γ (v) = {e ∈ E |v ∈ e} is 
obtained by

To represent the connectivity among N hypernodes and M hyperedges, the method 
focuses on the N ×M incidence matrix H . By using the value hv,e , update formulae (1) 
and (2) turn to be ye ∝

∑
v∈V hv,exv and xv ∝

∑
e∈E hv,eye.

Since matrix H only represents the connection or not by 0 or 1, to express the strength 
of connectivity by continuous scores ranging from −1 to +1 , the method multiplies 
the centering matrices JN = IN − 1

N 1N1
T
N and JM = IM − 1

M1M1TM from the left and 
the right, respectively, in the manner of the Young-Householder transform (Torgerson 
1952):

By using the value h̃v,e as a weight of connectivity strength between hypernode v and 
hyperedge e, the direction of the embedding vectors of more strongly connected hyper-
nodes and hyperedges becomes more closely. As a result, update formulae (1) and (2) 
turn to be as follows:

These can be rewritten with a matrix–vector representation as follows:

Therefore, by multiplying the centered embedding vectors JNX and JMY by a sparse 
matrix H , and re-centered them by JM and JN , we can obtain exactly the same results as 
multiplying a dense matrix H̃.

Computational complexity

We show the whole algorithm of the method in Algorithm 1. Starting from the initial-
ized vectors with random values, we repeat updating the vectors until convergence.

(2)xv = arg max
x∈RD ,||x||=1

∑

e∈Γ (v)

cos(x, ye) ∝
∑

e∈Γ (v)

ye.

(3)H̃ = JNHJM .

(4)ye ←
ỹe

||ỹe||
, ỹe ←

∑

v∈V
h̃v,exv ,

(5)xv ←
x̃v

||x̃v||
, x̃v ←

∑

e∈E
h̃v,eye.

(6)Ỹ ← H̃TX = JMHT JNX, X̃ ← H̃Y = JNHJMY.
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Algorithm 1 static hypergraph embedding: sHG embed(H,D,X =
[−1,+1]N×D)
1: Input: hypergraph H = (V, E), N = |V|, M = |E|
2: Input: number of dimensions D
3: Input: initial vectors X If not given, random values are set.
4: Output: embedding vectors X = [xv ]v∈V
5: Normalizing: ∀v ∈ V, xv ← xv

||xv||
6: while until convergence do
7: x̄ ← 1

N v∈V xv centroid vector
8: Centering: ∀v ∈ V, x̃v ← xv − x̄
9: Merging: ∀e ∈ E, ye ← v∈e x̃v

10: ȳ ← 1
M e∈E ye centroid vector

11: Centering: ∀e ∈ E, ỹe ← ye − ȳ
12: Normalizing: ∀e ∈ E, ye ← ˜ ye

||ỹe||
13: ȳ ← 1

M e∈E ye centroid vector
14: Centering: ∀e ∈ E, ỹe ← ye − ȳ
15: Merging: ∀v ∈ V, xv ← e∈Γ (v) ỹe

16: x̄ ← 1
N v∈V xv centroid vector

17: Centering: ∀v ∈ V, x̃v ← xv − x̄
18: Normalizing: ∀v ∈ V, xv ← ˜ xv

||x̃v||
19: end while

Figure 2 shows the embedding vectors when applying each step of the proposed algo-
rithm to the sample graph in Fig. 1. In figures, uppercase and lowercase letters indicate 
hypernodes and hyperedges, respectively. The caption of each subfigure stands for the 
line number in Algorithm  1. First, hypernodes are embedded in a random manner in 
the unit circle (Fig. 2a), centering, merging, and normalizing are performed (Fig. 2b–h), 
at the end of the one iteration, nodes ABCD are overlapped, nodes EF are overlapped 
(Fig. 2i). Since these nodes are relatively strongly connected, they are embedded in the 
same direction as viewed from the origin. Conversely, nodes ABCD and nodes EFGH are 
embedded in opposite directions from the origin.

We consider the computational complexity of the method. As shown in Algorithm 1, 
the method takes O(ND) to center the D-dimensional vectors of N hypernodes, O(LD) 
to merge the D-dimensional vectors of L =

∑
e∈E |e| connected hypernodes, O(MD) to 

center the D-dimensional vectors of M hyperedges, and O(MD) to normalize them. A 
similar amount of time complexity is required when calculating the embedding vectors 
of a hypernodes. Therefore, the total complexity becomes O(αD(N + L+M)) , where α 
is the number of iterations until convergence. On the other hand, when we straightfor-
wardly calculate the double-centered incidence matrix and use it, the total complexity 
gets to be O(αDNM) because H̃ is full-matrix.

Relation to modularity maximization

The double-centered incidence matrix quantifies the relative strength of connectivity 
between hypernodes and hyperedges. Also, the modularity matrix proposed by New-
man (2006) represents the difference between actual connections and those in the ran-
dom null model. Here, we discuss the relation between these two matrices.

The (v, e)-th element of the double-centered incidence matrix can be written as
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where 1 ≤ |e| ≤ N  and 1 ≤ |Γ (v)| ≤ M are the numbers of hypernodes connected to 
hyperedge e and hyperedges connected to hypernode v, respectively. Since the final term 
in Eq. (7) is constant independent from hypernodes and hyperedges, the value h̃v,e holds 
a larger value when a hypernode with a small degree is included in a small-size hyper-
edge, which rarely occurred, than when a hypernode with a large degree is included in a 
large-size hyperedge.

Similarly, we consider the modularity matrix. Let B = (V , E ,R) be a bipartite graph 
obtained by applying the star-expansion to hypergraph H = (V , E) , where R ⊂ V × E 
is a set of bipartite edges. The adjacency matrix of the converted bipartite graph 
is equal to the incidence matrix of the hypergraph, so we use the same symbol H . 

(7)
h̃v,e =

(
hv,e −

1

N

∑

u∈V
hu,e

)
−

1

M

∑

c∈E

(
hv,c −

1

N

∑

u∈V
hu,c

)

=hv,e −
(
|e|
N

+
|Γ (v)|
M

)
+

L

MN
,

Fig. 2  Example of updating vectors
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According to the literature (Barber 2007), the (v,  e)-th element of the modularity 
matrix Q for the bipartite graph is defined as

where |Γ (v)|·|e|
L  is the expected probability that bipartite-nodes v with degree |Γ (v)| and e 

with degree |e| are connected in the null model. Therefore, qv,e is a large value, when v 
and e are actually connected even though the expected connection probability is low. In 
this way, since our double-centered incidence matrix and the modularity matrix widely 
used in community detection are closely related, our method can be expected to pro-
duce the embedding vectors effective for clustering.

Next, we focus on the similarity of the algorithms. Now we define the matrices 
� = H̃H̃T and � = H̃T H̃ . Our method calculates the embedding vectors by iteratively 
multiplying matrices X and Y by the double-centered incidence matrices H̃T and H̃ as 
follows:

where subscript s denotes the number of iteration steps. Thus, our algorithm is equal 
to conducting the power iteration for finding eigenvectors corresponding to the larg-
est eigenvalue of � and � , excluding the normalizing operation of vectors. Maximizing 
modularity also often uses spectral approaches such as spectral decomposition or singu-
lar value decomposition.

Dynamic hypergraph embedding

We extend the abovementioned embedding method for static hypergraphs so as to apply 
it to dynamic hypergraphs. We define a dynamic hypergraph H(T ) = (H (1), . . . ,H (T )) , 
which is a sequence of T snapshots of a hypergraph, where H (t) = (V(t), E (t)) denotes 
a snapshot of hypergraph at time step t. As shown in Algorithm  2, when inputting a 
dynamic hypergraph H(T ) and the number of dimensions of embedding vectors D, first 
the vectors of hypernodes v ∈ V(1) are initialized as x(0)v ← [−1,+1]D and normalized 
so as to whose norms are 1. Then, the algorithm calls function sHG_embed() with argu-
ments X(0) to obtain the vectors X(1) of hypernodes v ∈ V(1) . In the same way, embedding 
vectors X(t−1) are passed as the initial vector to the argument of function sHG_embed() 
to find the vector X(t) according to Algorithm  1. The vectors of newly added hyper-
nodes v ∈ V(t)\

⋃
t ′<t V

(t ′) are initialized with random values. By setting the norm of 
embedding vectors of time step t as t, all snapshots are embedded into the concentric 
hypersphere. Our method that widens the embedding areas according to the time step 
naturally treats an evolving hypergraph whose number of hypernodes tends to increase.

(8)qv,e = hv,e −
|Γ (v)| · |e|

L
,

(9)

Y1 ←H̃TX0

X1 ←H̃Y1 = H̃H̃TX0 = �X0

Y2 ←H̃TX1 = H̃T H̃Y1 = �Y1

X2 ←H̃Y2 = H̃H̃TX1 = �
2X0

Y3 ←H̃TX2 = H̃T H̃Y2 = �
2Y1

Xs ←�
sX0, Ys ← �

s−1Y1,
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Algorithm 2 dynamic hypergraph embedding: dHG embed(H(T ), D)
1: Input: hypergraphs H(T ) = (H(1), . . . , H(T ))
2: Input: number of dimensions D
3: Output: embedding vectors X = (X(1), . . . ,X(T ))
4: Initializing: X(0) ← [−1,+1]N1×D

5: Normalizing: ∀v ∈ V(1), x(0)
v ← x(0)

v

||x(0)
v ||

6: for 1 ≤ t ≤ T do
7: Updating: X(t) ← t · sHG embed(H(t), D,X(t−1))
8: end for

In principle, the algorithm requires more iterations if the structures of H (t) and H (t+1) 
are significantly different, but converge in a few iterations if there are no significant 
changes.

Structural change extraction

In this section, we explain how to quantify the magnitude of structural change by focus-
ing on the angle between embedding vectors. When there is a large structural change in 
the target hypergraph, it is desirable that the distance between the embedding vectors 
before and after the change is large. Conversely, it is desirable that the distance between 
the embedding vectors before and after a trivial structural change is small. Therefore, for 
each hypernode, we measure the circular distance (angle) between the vectors at time 
step t and t + 1 to extract the magnitude of structural change:

The average angle of variation for all hypernodes is θ̄ (t) = 1
N

∑
v∈V θ

(t)
v  , and the struc-

tural changes with a large average angle of variation are extracted as important changes.

Experiments settings
Datasets

In our experimental evaluations, we employed the four real hypergraphs collected from 
LINQS,1 and show their basic statistics in Table 2, where #HN, #HE, #BN, #BE, #NN, 
and #NE stand for the numbers of hypernode, hyperedge, bipartite-node, bipartite-edge, 

(10)θ(t)v = arccos

〈
x
(t)
v

||x(t)v ||
,

x
(t+1)
v

||x(t+1)
v ||

〉
.

Table 2  Basic statistics

Dataset #classes #HN #HE #BN #BE #NN #NE

Coracoci 7 1330 1503 2833 9198 1330 8288

Coracoau 7 1676 723 2399 6926 1676 25,560

Citeseer 6 1019 819 1838 5616 1019 7734

Pubmed 3 3824 7951 11,775 69,210 3824 247,638

1  https://​linqs.​org/​datas​ets/.

https://linqs.org/datasets/
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normal-node, and normal-edge, respectively. In each hypergraph, we extracted the max-
imum connected components. The Cora dataset consists of scientific papers classified 
into seven fields. We construct a citation hypergraph by taking each paper as a hyper-
edge and the set of papers cited by the paper as a hyperedge and extracting the maxi-
mum connected components of the hypergraph.

Compared methods

We explain the existing methods developed for visualizing and clustering normal graphs. 
Before applying the existing methods, we convert the target hypergraph to a normal 
graph by the clique expansion or a bipartite one by the star expansion.

For a given hypergraph H = (V , E) , the clique expansion converts it to a normal graph 
G = (V , C) by connecting all the hypernodes in a hyperedge e by normal edges,

Similarly, for a hypergraph H = (V , E) , the star expansion converts it to a bipar-
tite graph B = (V , E ,R) by treating the hyperndoes V and hyperedges E as bipar-
tite-nodes U = V ∪ E , and belonging relationships of hypernodes and hyperedges as 
bipartite-edges,

Cross‑entropy embedding

Cross-Entropy embedding (CE) calculates the vectors so as to minimize the binary cross 
entropy between the actual edge existence au,v and the edge existence probability based 
on embedding vectors (Takeshi et al. 2003): pu,v = exp

(
− 1

2 ||xu − xv||2
)
 . As for the nor-

mal graph, the loss function is defined as:

and as for the bipartite graph, it is defined as:

where C̄ = (V × V)\C and R̄ = (V × E)\R . Since these loss functions are used for link 
prediction tasks, we can expect to obtain the embedding vectors where connectivities 
are well considered. We optimize the loss function via the quasi-Newton method, and 
the computational complexity is O(βN 2D) for a normal graph and O(β(N +M)2D) for 

C = {(u, v) ∈ e × e; e ∈ E ∧ u �= v}.

R = {(v, e) ∈ V × E; v ∈ e}.

CE(X) =−
∑

(u,v)∈V×V

au,v log
(
pu,v

)
− (1− au,v) log

(
1− pu,v

)

=−
∑

(u,v)∈C
log

(
pu,v

)
−

∑

(u,v)∈C̄

log
(
1− pu,v

)
,

CE(X) =−
∑

(u,v)∈U×U

au,v log
(
pu,v

)
− (1− au,v) log

(
1− pu,v

)

=−
∑

(v,e)∈R
log

(
pv,e

)
−

∑

(v,e)∈R̄

log
(
1− pv,e

)

−
∑

(u,v)∈V×V

log
(
1− pu,v

)
−

∑

(c,e)∈E×E

log
(
1− pc,e

)
,
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a bipartite graph because the method needs to consider the connectivity of all the node 
pairs. Here β is the number of iterations, and the value tends to be very large.

Spring‑force embedding

Spring-Force embedding (SF) calculates the vectors so as to minimize the difference 
between the graph distance gu,v and the Euclidean distance based on embedding vectors 
(Kamada and Kawai 1989): du,v = ||xu − xv|| . As for the normal graph, the loss function 
is defined as:

and as for the bipartite graph, it is defined as:

where κu,v is a spring constant which is normally set to 1/2g2u,v . Here, we emphasize that 
the graph distance of u, v ∈ V in a bipartite graph is twice that in a normal graph, so 
almost the same results are to be obtained. We optimize the loss function via the quasi-
Newton method, and the computational complexity is O(γN 2D) for a normal graph and 
O(γ (N +M)2D) for a bipartite graph because the method needs to consider the dis-
tance of all the node pairs. Here γ is the number of iterations, and the value tends to be 
large but not so large as that of CE, β.

Laplacian‑eigenmaps embedding

Laplacian-Eigenmaps embedding (LE) also known as Spectral embedding calculates the 
vectors so as to minimize the distance between the embedding vectors of adjacent node 
pairs (Chung 1997). As for the normal graph and bipartite graph, the loss function is 
defined as:

and as for the bipartite graph, it is defined as:

Since this minimization problem can be solved as an eigenvalue problem, we find the 
eigenvectors via the power-iteration method. The computational complexity is O(δKD) 
for a normal graph and O(δLD) for a bipartite graph because the method only needs to 
consider the degrees of adjacent node pairs. Here δ is the number of iterations, and the 
value tends to be small.

DeepWalk

DeepWalk (DW) is a graph embedding technique that learns representations for nodes 
in a graph by treating random walks as sentences and applying word2vec-like algorithms 

SF(X) =
∑

(u,v)∈V×V

κu,v(gu,v − du,v)
2,

SF(X) =
∑

(u,v)∈U×U

κu,v(gu,v − du,v)
2,

LE(X) =
∑

(u,v)∈V×V

au,v||xu − xv||2,

LE(X) =
∑

(u,v)∈U×U

au,v||xu − xv||2.
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to learn node embeddings (Perozzi et  al. 2014). Specifically, it performs multiple ran-
dom walks and records the order in which nodes are visited. Using the sequences 
obtained from these random walks, techniques like Skip-gram or Negative Sampling are 
employed to learn the node embeddings. These embeddings capture relationships and 
similarities between nodes, allowing for the representation of graph structure in a lower-
dimensional space. In this study, we set the values of parameters as follows according to 
the default settings:

•	 Dimensions: 64
•	 Walk length: 40
•	 Number of walks: 10
•	 Workers: 1
•	 Seed: 1
•	 Window size: 5

Node2Vec

Node2Vec (NV) is a slight modification of DeepWalk’s random walk method (Grover 
and Leskovec 2016). It introduces two parameters, p and q, where p determines the 
probability of returning to a previously visited node during a random walk, and q deter-
mines the probability of exploring an unvisited node. The parameter p adjusts the prob-
ability of finding a small fraction of the node’s local neighborhood, while q adjusts the 
probability of finding a larger fraction of the node’s global neighborhood. The remaining 
steps of the embedding process are the same as in DW. In this study, we set the values of 
parameters as follows according to the default settings:

•	 Dimensions: 128
•	 Walk length: 50
•	 Number of walks: 5
•	 p and q: 1
•	 Workers: 1
•	 Seed: 1
•	 Window size: 10
•	 Batch words: 4

GraRep

GraRep (GR) is a graph embedding technique that captures higher-order proximity 
information by decomposing the adjacency matrix into a series of matrices (Cao et al. 
2015). It factorizes these matrices to obtain node embeddings in a low-dimensional 
space, incorporating both local and global structural information. The resulting embed-
dings capture complex patterns and dependencies, improving performance in tasks like 
node classification and link prediction. In this study, we set the values of parameters as 
follows according to the default settings:
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•	 Dimensions: 16
•	 Number of adjacency matrix powers: 5
•	 Seed: 1
•	 Number of iterations: 20

After obtaining node embeddings using DeepWalk (DW), Node2Vec (NV), and GraRep 
(GR), we performed T-distributed Stochastic Neighbor Embedding (t-SNE) with the fol-
lowing settings: n_components=2, perplexity=30, n_iter=1000.

Evaluation results
In this section, we show the evaluation results of our proposed method (HM: Hyper-
sphere-Manifold embedding) and six existing methods (CE, SF, LE, DW, NV, and GR). 
We apply HM to original hypergraphs and the existing methods to normal graphs and 
bipartite graphs. As for the bipartite graph, we only show the results of hypernode 
embeddings without those of hyperedges.

Visualization of static hypergraph

First, we show the visualization results in Figs. 3, 4, 5, 6 and 7. Here, the embedding vec-
tor of the existing method is adjusted so that it fits in the range of 0 to 1. In each figure, 
only hypernodes are plotted, and their colors are based on their classes shown in Table 2. 
Also, the title of each figure describes the name of embedding and expansion methods, 
e.g., CE-Star means the results of the cross-entropy embedding for the bipartite graph 
obtained by the star expansion.

From Figs. 3, 4, 5 and 6, the followings can be observed. CE-Cliq and CE-Star output 
rich visualization, where nodes are scattered in space and nodes with different colors 
are well-separated. The number of nodes in CE-Cliq looks somewhat smaller than that 
of CE-Star, this is because the clique expansion converts a hyperedge to a clique where 
all nodes are structurally equivalent and the CE embedding outputs the same vectors for 
structural equivalent nodes. SF-Cliq and SF-Star output almost the same results, where 
nodes are distributed in concentric circles according to the distance from the latent root 
node. LE-Cliq and LE-Star output poor visualization, where many nodes are overlapped. 
DW-* and NV-* output similar results with each other; and output poor results such 
as different colored nodes located nearby. GR-Cliq and GR-Star output good results in 
terms of classification because different colored nodes are relatively separated, but many 
nodes are embedded into nearby positions, so spatial efficiency seems to be bad. From 
Fig. 7, HM outputs rich visualization, where nodes are scattered in space and nodes with 
different colors are well-separated as well as CE. In what follows, we quantitatively com-
pare them in terms of spatial efficiency, classification accuracy, correlation to the graph 
distance, and execution time.

Spatial efficiency

In visualization, if the nodes overlap each other, it becomes difficult to visually grasp the 
relationship between the nodes. Therefore, it is necessary to be able to represent the graph 
using the full space. In order to quantify whether the nodes are embedded all over the 
space, the spatial efficiency is measured by the ratio of the random points that have at least 
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one node within the radius of r. We generated 100 uniform random points o ∈ O , and set 
the radius based on the minimum Euclidean distance for existing methods:

and based on the minimum circular distance for our method:

r =
1

100

∑

o∈O
min

o′∈O,o′ �=o

√
2− 2�xo, xo′ �,

r =
1

100

∑

o∈O
min

o′∈O,o′ �=o
arccos �xo, xo′ �.

Fig. 3  Visualization results by existing methods (coracoci)



Page 18 of 29Ito and Fushimi ﻿Applied Network Science            (2023) 8:41 

Table 3 shows the spatial efficiency, where the bold one is the best and italic one is the 
second best. From Table 3, as seen in the visualization results in the previous section, 
CE and SF, which are specialized for graph visualization, and HM, which is the proposed 
method, can embed all nodes with spatial efficiency. Although it is not as good as CE 
and SF, DW and NV output the visualization result with good spatial efficiency. On the 
other hand, linear methods such as LE cannot fully use the space. GR gave visualization 
results with poor spatial efficiency, though not as bad as LE.

Fig. 4  Visualization results by existing methods (coracoau)
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Classification accuracy

The community structure is one of the characteristics of graphs, and how effectively 
the community structure can be expressed in visualization is an important point of 
view. In other words, it is an essential condition that nodes with the same label are 
located nearby. In this study, we performed a classification task for the embedding 
vectors, and evaluated the extent to which nodes with the same label are located in 
the neighborhood by classification accuracy. In order to quantify the classification 
accuracy, we employed Support Vector Machine (SVM), Random Forests (RF), and 
Light Gradient Boosting Machine (LGBM) as a classifier, and use the embedding 

Fig. 5  Visualization results by existing methods (citeseer)
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vector as a feature. In SVM, we used the polynomial kernel (SVM-POL) and radial 
basis function kernel (SVM-RBF). We conducted 5-fold cross-validation and the 
accuracy is shown in Table 4.

From Table  4, we observed the following. HM outperforms the existing methods 
although not in all the datasets. Especially in the case of SVM-POL, the difference from 
the second best is large in coracoci and pubmed datasets. It was found that CE and SF 
not only achieve efficient spatial visualization like HM but also demonstrate high classifi-
cation accuracy. In contrast, LE and GR exhibit high classification accuracy despite hav-
ing lower spatial efficiency, in other words, it was quantitatively confirmed that nodes 
with the same label exhibited overlap. In addition, while not all, CE-Cliq achieves higher 

Fig. 6  Visualization results by existing methods (pubmed)
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Fig. 7  Visualization results by proposed method

Table 3  Spatial efficiency

Coracoci Coracoau Citeseer Pubmed

HM 0.90 0.95 0.67 0.80

CE-Cliq 0.72 0.71 0.71 0.83
CE-Star 0.77 0.74 0.83 0.75

SF-Cliq 0.75 0.59 0.64 0.75

SF-Star 0.75 0.59 0.64 0.75

LE-Cliq 0.17 0.08 0.15 0.15

LE-Star 0.17 0.25 0.26 0.27

DW-Cliq 0.61 0.54 0.64 0.74

DW-Star 0.65 0.64 0.66 0.70

NV-Cliq 0.69 0.47 0.51 0.69

NV-Star 0.64 0.55 0.53 0.76

GR-Cliq 0.45 0.53 0.39 0.61

GR-Star 0.32 0.39 0.35 0.46
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accuracy compared to CE-Star, and GR-Cliq performs better than GR-Star in terms of 
accuracy. DW and GR did not achieve high accuracy in any of the classifiers.

Correlation to graph distance

In order to quantify the maintenance degree of the graph structure, the distance between 
embedding vectors for all node pairs was calculated, and the average value was plotted 
for each graph distance. In the upper row of Fig. 8, the average of the circular distance 
for HM is represented by a black line and the averages of the Euclidean distances for 
existing methods are represented by colored lines. The lower row of Fig. 8 depicts the 
distribution of the graph distance. Here, since the distance between hypernodes in the 
bipartite graph is twice the distance in a normal graph and the results are very similar, 
we omitted the results of *-Star.

From Fig.  8, the following observations can be seen. In SF, the average distance 
increases linearly according to the graph distance, that is, indicating a strong correlation. 
CE is as not as SF, but is correlated with the graph distance. LE also shows a weak corre-
lation. HM has a strong correlation in short distances but has no correlation in long dis-
tances. On the other hand, looking at the distribution of the graph distance, we can see 

Table 4  Classification accuracy

Coracoci Coracoau Citeseer Pubmed Coracoci Coracoau Citeseer Pubmed

SVM-POL SVM-RBF

HM 0.66 0.48 0.52 0.74 0.65 0.53 0.53 0.74
CE-Cliq 0.50 0.46 0.54 0.59 0.64 0.44 0.64 0.72

CE-Star 0.43 0.32 0.46 0.68 0.56 0.45 0.55 0.74
SF-Cliq 0.45 0.38 0.54 0.64 0.61 0.49 0.63 0.73

SF-Star 0.45 0.34 0.49 0.68 0.61 0.48 0.58 0.74
LE-Cliq 0.33 0.30 0.31 0.57 0.39 0.36 0.56 0.68

LE-Star 0.32 0.29 0.50 0.63 0.34 0.38 0.60 0.73

DW-Cliq 0.26 0.27 0.25 0.40 0.26 0.27 0.24 0.39

DW-Star 0.26 0.27 0.25 0.41 0.26 0.27 0.23 0.41

NV-Cliq 0.26 0.27 0.25 0.41 0.26 0.27 0.23 0.40

NV-Star 0.26 0.27 0.25 0.41 0.26 0.27 0.26 0.40

GR-Cliq 0.46 0.40 0.51 0.65 0.54 0.52 0.57 0.73

GR-Star 0.41 0.41 0.5 0.59 0.53 0.52 0.57 0.72

RF LGBM

HM 0.67 0.57 0.56 0.76 0.66 0.68 0.56 0.74

CE-Cliq 0.66 0.58 0.66 0.73 0.67 0.71 0.65 0.74

CE-Star 0.56 0.48 0.57 0.74 0.58 0.61 0.56 0.75
SF-Cliq 0.60 0.51 0.62 0.73 0.55 0.53 0.56 0.72

SF-Star 0.59 0.48 0.58 0.75 0.56 0.55 0.54 0.72

LE-Cliq 0.48 0.51 0.56 0.71 0.51 0.66 0.55 0.68

LE-Star 0.49 0.51 0.62 0.73 0.55 0.64 0.60 0.71

DW-Cliq 0.27 0.26 0.22 0.39 0.18 0.17 0.18 0.38

DW-Star 0.26 0.27 0.24 0.40 0.17 0.18 0.20 0.38

NV-Cliq 0.25 0.26 0.20 0.40 0.16 0.15 0.16 0.39

NV-Star 0.26 0.26 0.25 0.41 0.18 0.18 0.20 0.40

GR-Cliq 0.56 0.56 0.61 0.73 0.66 0.67 0.58 0.75
GR-Star 0.58 0.56 0.60 0.72 0.63 0.67 0.59 0.74
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that there are many medium-distance node pairs, and there are few short- or long-dis-
tance node pairs. In other words, it can be said that it does not have a significant effect 
on seeing the graph structure even if there is no correlation between a node pair that is 
too far away. Furthermore, on a sphere, the space around each node is narrow, the space 
farthest from each node is also narrow, and the space in the center is the largest, which is 
consistent with the distance distribution of the graph, making it suitable for graph plot-
ting. In DW and NV, there is no correlation between the graph distance and the distance 
between embeddings, and it can be said that the graph structure cannot be reflected. GR 
tends to be similar to HM. This is probably because GR considers both local and global 
proximity information.

Execution time

Table 5 shows the execution time of each method after expansions. From Table 5, it can 
be said that CE, which can produce rich visualization, needs much computational load; 
LE, which is a linear method, needs less computational load; HM is superior to existing 
methods in that it can output results of the same quality as CE and at the same speed as 
LE. In addition, *-Star takes more time than *-Cliq, this is because the number of nodes 
in a bipartite graph obtained by the star expansion is larger than that in a normal graph 

Fig. 8  Correlation to graph distance



Page 24 of 29Ito and Fushimi ﻿Applied Network Science            (2023) 8:41 

by the clique expansion. However, although not included in execution time, the execu-
tion time for the clique expansion is generally larger than that for the star expansion 
because of the number of edges.

Visualization of dynamic hypergraph

Next, we evaluate the ability to embed dynamic hypergraphs. Figure 9 depicts visuali-
zation results of a dynamic hypergraph H(3) = (H (1),H (2),H (3)) artificially synthesized, 
where nodes represented by circles are V(1) , crosses are V(2) , triangles are V(3) , and edges 
represented by dotted lines connect the same nodes. We set the original of coracoci 
as H (1) , construct H (2) by adding rewirings for 1% bipartite-edge of H (1) , and H (3) by 
adding further rewirings for 1% bipartite-edges of H (2) . Edge-rewiring is according to 
the configuration model (Newman 2003). From Fig. 9, we can see that HM embeds the 
nodes of each timestep as vectors of corresponding radii in concentric spheres so that 
we can distinguish the nodes of different timesteps and detect some structural changes; 
CE, SF, and GR produce rich visualization results even for the dynamic hypergraphs but 
it isn’t easy to distinguish a node-set from those of different timesteps. In LE, DW, and 
NV, the same node is placed in completely different places depending on the timestep. 
Although the random number seed is fixed and the vector of the previous time step is 
taken into consideration, the embeddings of the nodes that are not directly related to the 
edge-rewiring have also changed significantly. Although not shown, the results of *-Star 
for other hypergraphs have a similar tendency to those of *-Cliq. Figure 10 presents the 
visualization results obtained by the effective embedding methods, HM, CE, SF, and GR, 
at different timesteps.

Structural change extraction

To quantitatively evaluate the extraction ability of structural changes in a dynamic 
hypergraph, we measure the distance of embedding vectors before and after adding 
structural changes. Structural changes are artificially added according to the configura-
tion model as same as in the previous section. We generated 100 rewired hypergraphs 
with certain rewiring probability p ∈ {0.1, 0.2, . . . , 0.9}.

Table 5  Execution time (s)

Coracoci Coracoau Citeseer Pubmed

HM 1.22 4.99 1.19 2.04
CE-Cliq 131.75 329.62 89.94 606.93

CE-Star 2273.03 1293.17 660.86 19989.00

SF-Cliq 8.63 28.78 6.36 91.85

SF-Star 30.20 27.07 17.84 409.00

LE-Cliq 0.38 2.86 1.10 11.80

LE-Star 1.64 0.36 0.14 7.91

DW-Cliq 17.03 22.67 12.33 52.98

DW-Star 37.28 29.40 23.71 183.05

NV-Cliq 15.37 19.89 10.54 135.91

NV-Star 33.33 26.03 19.59 159.00

GR-Cliq 4.87 5.62 2.69 44.57

GR-Star 5.32 3.80 3.37 52.44
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Figure 11 shows the average circular distance for HM and the average Euclidean dis-
tance for the existing methods, where the horizontal axis is the rewiring probability. 
Due to the complication of the figure, only the results of *-Cliq are shown, but similar 
results were obtained with *-Star. The distances are normalized by being divided by the 

Fig. 9  Visualization of dynamic hypergraph (coracoci)
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Fig. 10  Visualization of snapshots of dynamic hypergraph (coracoci)
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theoretical maximum distance π and 
√
2 . From Fig. 11, we can see that the average dis-

tance by HM, CE, SF, and GR increases in proportion to the rewiring probability, that is 
the embedding vectors by HM, CE, and SF moved in proportion to the scale of structural 
changes. In other words, it can be seen that the embedding vector of each node does not 
change much with a small structural change, while the embedding vector of each node 
moves greatly with a large structural change that affects the community structure. In 
LE, the vector of nodes changes regardless of the magnitude of the change. Two random 
walk-based methods (DW and NV) showed that the larger the structural change, the 
smaller the change of the node vector.

Conclusion
In this study, we proposed a dynamic hypergraph embedding method based on our exist-
ing method of embedding static hypergraphs. We formally redefined the base method of 
our method and clarified its relationship with community extraction based on modular-
ity maximization. In the base method, a static hypergraph is embedded in the hyper-
sphere. For visualization, it is a method of embedding on a 2-dimensional manifold in 

Fig. 11  Distance between before and after structural changes
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3-dimensional Euclidean space, that is, on a sphere. Similar to a normal graph, a hyper-
graph has a small number of nodes at short and long distances from each node, but has 
many nodes at intermediate distances, so it can be embedded on a sphere to achieve 
visualization with good spatial efficiency. Furthermore, since the objective function and 
solving algorithm are similar to those of modularity maximization, embedding with high 
node classification accuracy can be realized. An extended method embeds the hyper-
graph of each timestep on the sphere of concentric spheres. The proposed method, 
which uses the timestep as the radius, enlarges the drawing area toward the outside, so 
it is suitable for drawing a dynamic hypergraph that grows with the number of nodes 
increasing with the passage of time. In addition, since the algorithm does not explicitly 
multiply the double-centered incidence matrix and the embedding vectors, the results 
can be obtained quickly.

To confirm the usefulness of our proposed method, we compared it with existing 
embedding methods by using four real hypergraphs. As a result, it was confirmed that 
the spatial efficiency is good, the classification accuracy is high, and the embedding vec-
tor that can easily capture structural changes can be output at high speed.

In future work, we plan to confirm the applicability to a wider variety of hyper-
graphs with different structures and to consider an efficient visualization method for 
hyperedges.
Acknowledgements
Not applicable.

Author contributions
SI performed the research and wrote the article. TF contributed to designing the proposed method and part of experi-
mental evaluations. All authors read and approved the final manuscript.

Funding
The first author is grateful for the financial support by JSPS KAKENHI Grant Number JP22K12279.

Availability of data and materials
The Julia, Python codes and raw datasets used and analysed during the current study will be available at https://​github.​
com/​fuppo​27/​HHME.​git.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors declare no financial and non-financial competing interests.

Received: 12 March 2023   Accepted: 27 June 2023

References
Barber M (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:066102. https://​doi.​org/​10.​

1103/​PhysR​evE.​76.​066102
Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. Comput Graph 

Forum 36(1):133–159. https://​doi.​org/​10.​1111/​cgf.​12791
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 

15(6):1373–1396
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 

Theory Exp 2008(10):P10008

https://github.com/fuppo27/HHME.git
https://github.com/fuppo27/HHME.git
https://doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.1103/PhysRevE.76.066102
https://doi.org/10.1111/cgf.12791


Page 29 of 29Ito and Fushimi ﻿Applied Network Science            (2023) 8:41 	

Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: Proceedings of 
the 24th ACM international on conference on information and knowledge management, CIKM ’15. Association for 
Computing Machinery, New York, NY, USA, pp 891–900. https://​doi.​org/​10.​1145/​28064​16.​28065​12

Chung FRK (1997) Spectral graph theory. American Mathematical Society, New York
Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E. https://​doi.​

org/​10.​1103/​physr​eve.​70.​066111
Do M, Yoon S, Hooi B, Shin K (2020) Structural patterns and generative models of real-world hypergraphs. In: Proceedings 

of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, KDD 20. Association for 
Computing Machinery, New York, NY, USA, pp 176–186. https://​doi.​org/​10.​1145/​33944​86.​34030​60

Feng Y, You H, Zhang Z, Ji R, Gao Y (2019) Hypergraph neural networks. In: Proceedings of the AAAI conference on artifi-
cial intelligence, vol 33(01), pp 3558–3565. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33013​558. https://​ojs.​aaai.​org/​index.​
php/​AAAI/​artic​le/​view/​4235

Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164
Gao Y, Feng Y, Ji S, Ji R (2023) Hgnn+: general hypergraph neural networks. IEEE Trans Pattern Anal Mach Intell 

45(3):3181–3199. https://​doi.​org/​10.​1109/​TPAMI.​2022.​31820​52
Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD 

international conference on knowledge discovery and data mining, KDD ’16. Association for Computing Machinery, 
New York, NY, USA, pp 855–864. https://​doi.​org/​10.​1145/​29396​72.​29397​54

Hu Y (2005) Efficient and high quality force-directed graph drawing. Math J 10:37–71
Ito S, Fushimi T (2021) High-speed and noise-robust embedding of hypergraphs based on double-centered incidence 

matrix. In: Benito RM, Cherifi C, Cherifi H, Moro E, Rocha LM, Sales-Pardo M (eds) Complex Networks & Their Applica-
tions X. Springer, Cham, pp 536–548

Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31:7–15
Kamiński B, Poulin V, Pralat P, Szufel P, Théberge F (2019) Clustering via hypergraph modularity. PLOS ONE 14(11):1–15. 

https://​doi.​org/​10.​1371/​journ​al.​pone.​02243​07
Kang X, Li X, Yao H, Li D, Jiang B, Peng X, Wu T, Qi S, Dong L (2022) Dynamic hypergraph neural networks based on key 

hyperedges. Inf Sci 616:37–51. https://​doi.​org/​10.​1016/j.​ins.​2022.​10.​006
Kumar T, Vaidyanathan S, Ananthapadmanabhan H, Parthasarathy S, Ravindran B (2018) Hypergraph clustering: a modu-

larity maximization approach. CoRR abs/1812.10869. arxiv:​1812.​10869
Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
Maleki S, Wall D, Pingali K (2021) Netvec: a scalable hypergraph embedding system. CoRR. arxiv:​2103.​09660
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582. https://​

doi.​org/​10.​1073/​pnas.​06016​02103
Peng C, Xiao W, Jian P, Z, W (2017) A survey on network embedding. CoRR abs/1711.08752. arxiv:​1711.​08752
Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM 

SIGKDD international conference on knowledge discovery and data mining, KDD ’14. Association for Computing 
Machinery, New York, NY, USA, pp 701–710. https://​doi.​org/​10.​1145/​26233​30.​26237​32

Takeshi Y, Kazumi S, Naonori U (2003) Cross-entropy directed embedding of network data. In: Proceedings of the 20th 
international conference on machine learning. AAAI Press, pp 832–839

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: large-scale information network embedding. In: Proceedings of 
the 24th international conference on world wide web. ACM, pp 1067–1077. https://​doi.​org/​10.​1145/​27362​77.​27410​
93

Torgerson W (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17:401–419
von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416
Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD international 

conference on knowledge discovery and data mining, KDD ’16. Association for Computing Machinery, New York, 
NY, USA, pp 1225–1234. https://​doi.​org/​10.​1145/​29396​72.​29397​53

Yang D, Qu B, Yang J, Cudre-Mauroux P (2019) Revisiting user mobility and social relationships in LBSNs: a hypergraph 
embedding approach. In: The World Wide Web conference, WWW ’19. Association for Computing Machinery, New 
York, NY, USA, pp 2147–2157. https://​doi.​org/​10.​1145/​33085​58.​33136​35

Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: clustering, classification, and embedding. In: Proceed-
ings of the 19th international conference on neural information processing systems, NIPS’06. MIT Press, Cambridge, 
MA, USA, pp 1601–1608

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2806416.2806512
https://doi.org/10.1103/physreve.70.066111
https://doi.org/10.1103/physreve.70.066111
https://doi.org/10.1145/3394486.3403060
https://doi.org/10.1609/aaai.v33i01.33013558
https://ojs.aaai.org/index.php/AAAI/article/view/4235
https://ojs.aaai.org/index.php/AAAI/article/view/4235
https://doi.org/10.1109/TPAMI.2022.3182052
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1371/journal.pone.0224307
https://doi.org/10.1016/j.ins.2022.10.006
http://arxiv.org/abs/1812.10869
http://arxiv.org/abs/2103.09660
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
http://arxiv.org/abs/1711.08752
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/3308558.3313635

	Dynamic hypergraph embedding onto concentric hypersphere manifold intended for effective visualization
	Abstract 
	Introduction
	Related work
	Normal graph embedding
	Hypergraph embedding
	Graph clustering and community detection
	Dynamic graph embedding

	Methodology
	Preliminary
	Revisit of static hypergraph embedding
	Computational complexity
	Relation to modularity maximization
	Dynamic hypergraph embedding
	Structural change extraction

	Experiments settings
	Datasets
	Compared methods
	Cross-entropy embedding
	Spring-force embedding
	Laplacian-eigenmaps embedding
	DeepWalk
	Node2Vec
	GraRep


	Evaluation results
	Visualization of static hypergraph
	Spatial efficiency
	Classification accuracy
	Correlation to graph distance
	Execution time
	Visualization of dynamic hypergraph
	Structural change extraction

	Conclusion
	Acknowledgements
	References


