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Abstract 

While there have been numerous sequential algorithms developed to estimate 
community structure in networks, there is little available guidance and study of what 
significance level or stopping parameter to use in these sequential testing procedures. 
Most algorithms rely on prespecifiying the number of communities or use an arbitrary 
stopping rule. We provide a principled approach to selecting a nominal significance 
level for sequential community detection procedures by controlling the tolerance 
ratio, defined as the ratio of underfitting and overfitting probability of estimating 
the number of clusters in fitting a network. We introduce an algorithm for specifying 
this significance level from a user-specified tolerance ratio, and demonstrate its util-
ity with a sequential modularity maximization approach in a stochastic block model 
framework. We evaluate the performance of the proposed algorithm through exten-
sive simulations and demonstrate its utility in controlling the tolerance ratio in single-
cell RNA sequencing clustering by cell type and by clustering a congressional voting 
network.

Keywords: Community detection, Multiple testing, Sequential testing, Stochastic 
block model, Single cell RNA sequencing

Introduction
In the last few decades, there has been an increasing interest among physicists, com-
puter and social scientists to study network data. Identifying community structure in 
a networks has gained particular attention: the vertices in networks are often found to 
cluster into related groups where vertices within a community are more likely to be con-
nected [see, e.g., Newman and Girvan (2004), Newman (2006)]. The ability to detect 
such communities is crucial to understand the relationship between the structure and 
function of networks, such as the modeling of networks (Cheng et al. 2009), the evolu-
tion of networks (Zhang et al. 2008; Shen and Cheng 2010), the resilience of networks 
(Albert et al. 1999; Cheng et al. 2010), and the capacity of networks (Zhang et al. 2007a). 
The stochastic block model (Holland et  al. 1983) is a popular model for community 
structures in network data where edge probabilities between and within communities 
are constant conditional on community membership.

Many community detection methods begin with a null model of no community struc-
ture. Historically, the most common approach involving a null model is the use of a node 
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partition score that is large when nodes within a partition are highly interconnected, rel-
ative to what is expected under the null of no structure (Newman 2006; Fortunato 2010). 
Many sequential community detection algorithms perform this task by first dividing the 
network into two communities, and subsequently subdividing each community hierar-
chically, ideally terminating when the true number of communities, K, has been reached. 
One such algorithm that is widely used in literature is based on modularity maximization 
proposed by Newman (2006) and its different variants including fast greedy modular-
ity optimization (Clauset et al. 2004), exhaustive modularity optimization via simulated 
annealing (Guimera et  al. 2004; Massen and Doye 2005; Medus et  al. 2005; Guimera 
and Amaral 2005), fast modularity optimization (Blondel et al. 2008). Parallel commu-
nity detection algorithms have garnered some attention over the last decade that modify 
existing algorithms to make them more suitable for the analysis of large networks. Riedy 
et  al. (2011) modified the agglomerative community detection algorithm by choosing 
multiple contraction edges simultaneously as opposed to sequential contraction that is 
commonly done. Yang et al. (2016) compare several state-of-the-art algorithms on arti-
ficial networks in terms of accuracy and computing time. Que et  al. (2015) proposed 
a parallel community detection algorithm derived from Louvain modularity maximiza-
tion method using a novel graph mapping and data representation. A hypothesis testing 
framework based on modularity-based community detection has been studied by Zhang 
and Chen (2017) where they introduced a hypothesis testing procedure to determine the 
significance of the partitions obtained from maximizing the modularity function start-
ing from a null model with no graph structure. However, this neglects the sequential 
nature of the test, and ignores correlations among test statistics which we incorporate in 
our approach. Bickel and Sarkar (2016) provides an algorithm for finding the number of 
clusters in a stochastic block framework using the Tracy-Widom distribution as the lim-
iting distribution of the highest eigenvalue of the adjacency matrix, and therefore is not 
suitable for the small or moderate sized networks. While the Bayesian paradigm offers 
some remedy using the maximum aposteriori estimate of the number of clusters adjust-
ing for underfitting in increased Bayesian hierarchies, however, this requires the suitable 
choice of the prior distribution on the number of communities (Peixoto 2019) which 
itself is a daunting task. To make a sequential community detection algorithm effective, 
the significance level for rejecting the null hypothesis needs to be specified for each test 
given by H0 : K = j community against Ha : K > j starting with j = 1 and incrementing 
j over the integers until the test fails to reject H0 . The standard practice of setting the 
significance level arbitrarily to to 0.05 or 0.01 has drawbacks because it is susceptible to 
multiple testing leading to increased Type I error due to the repeated sequential tests.

To circumvent the multiple testing problem in sequential community detection proce-
dures, analogous to controlling family-wise error rate, specifying a nominal significance 
level accounting for multiple tests is necessary. We aim to instead control for the under-
fitting (overfitting) probability, defined as the probability that the estimated number of 
communities obtained by a sequential testing procedure is less than (greater than) the true 
number of communities K present in the network. Any given contexts specific tolerance for 
overfitting and underfitting probabilities ultimately dictates the nominal significance level 
that should be used. We address the problem of finding the nominal significance level and 
aim to provide an algorithm to determine it aligns with a context-specific user-specified 
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tolerance ratio, defined as the ratio of underfitting probability to overfitting probability in a 
generic sequential testing framework. Our algorithm hinges on finding a suitable estimate 
of the number of communities at a significance level that preserves the prespecified toler-
ance ratio.

The rest of this article is organized as follows. In “Sequential community detection” sec-
tion, we first describe sequential community detection procedures and subsequently intro-
duce our algorithm to choose a significance level guided by a pre-specified tolerance ratio. 
In “Example sequential community detection algorithm” section, we provide an example 
of our approach applied to Newman’s modularity maximization for sequential commu-
nity detection to select an appropriate significance level. “Simulations” section describes 
the performance of our algorithm through extensive simulation studies in stochastic block 
model frameworks. We derive appropriate significance levels in two real applications in 
“Real data analysis” section. Finally “Discussion” section concludes with a discussion of lim-
itations and next directions for our approach.

Sequential community detection
In this section, we first describe a generalizable sequential testing procedure to detect the 
number of communities in a network. Secondly, we describe the estimation of the tolerance 
ratio by deriving the expressions of underfitting and overfitting probabilities using an esti-
mate of the number of communities. This tolerance ratio estimate is a function of the nomi-
nal significance level, which we can then solve for to arrive at a desired prespecified level.

Sequential testing procedure

Assuming a network of size n, the sequential testing procedure can be described by the fol-
lowing hypotheses:

for each integer j ≥ 1 until a test fails to reject.

Significance level from tolerance ratio

A common problem faced in community detection is the choice of an appropriate sig-
nificance level α . Analogous to multiple testing problem (Benjamini and Hochberg 1995) 
where the goal is to control the family-wise error rate (FWER) through some procedures 
such as Bonferroni correction, Tukey’s range test etc., we focus on sequential community 
detection algorithms, where tests of the null hypothesis H0 : K = j against the alternative 
HA : K > j are performed sequentially for j = 1, 2, . . . until a test fails to reject H0 . We let 
p(j) be the p value of the jth such test T (j;α) defined as:

Using this sequential procedure, the estimated number of communities is:

(1)H0 : K = j, against HA : K > j,

T (j;α) =
1 for p(j) ≤ α

0 for p(j) > α

(2)K̂ (α) = inf{k ∈ N : T (k + 1;α) = 0},
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where K̂ (α) is a non-decreasing (step) function of α . Note that this details a generic 
sequential testing procedure, and applies generally to all sequential community detec-
tion methods that may have different forms of the test statistic that lead to the genera-
tion of pvalues p(j). For example, the test statistic could range from modularity (Zhang 
and Chen 2017) to eigenvalues from a spectral decomposition (Bickel and Sarkar 2015).

We define the underfitting probability to be pr (K̂ (α) < K ) = ηu and the overfit-
ting probability to be pr (K̂ (α) > K ) = ηo . The tolerance ratio is defined as γ = ηu/ηo , 
where K is the true number of communities. One can note that γ ∈ [0,∞) . In par-
ticular, γ = 1 implies underfitting and overfitting probabilities are equally likely. For 
unknown K, this also suggests one approach to estimate K that is independent of α : 
select K̂  to be the value of K that results from the widest subinterval of α in [0, 1]. We 
call this α-free estimator K ∗.

We assume a stochastic block model (SBM) which is a network of n nodes divided 
into K communities where Buv is the probability of an edge between a node from com-
munity u and a node from community v, where u, v ∈ {1, 2, . . . ,K } . If gi is the commu-
nity label of node i ( gi ∈ {1, 2, . . . ,K } ), then the probability of an edge between nodes 
i and j is the (gi, gj) entry of the matrix B . The adjacency matrix A = (Aij) is given by 
Aij = Bgi ,gj , i ∈ {1, 2, . . . , n}.

We propose the following iterative procedure to identify the correct marginal sig-
nificance level α to use from the user-specified tolerance ratio γ . 

Input: The original or estimated adjacency matrix A of a graph and user-specified tolerance γ

1. For a given α , perform sequential community detection to obtain K̂(α) : For each k ∈ {1, 2, . . . , n} , perform 
community detection given k communities to estimate community membership labels, and empirically esti-
mate the k by k matrix of edge probabilities ( ̃P ) between and within these communities. Next, we simulate 
networks of size n from P̃ as under an SBM while preserving the number of nodes in each of the k communi-
ties, and repeat this generation B times as in a parametric bootstrap to calculate p values from the empirical 
null distribution of the test statistic of choice in (2). For the bth bootstrapped adjacency matrix, the resulting 
estimator of K that results from the sequential testing procedure at the α level is defined to be K̂ (b)(α) for 
b = 1, 2, . . . ,B.

2. Determining K∗ : K̂(α) is a non-decreasing step function of α which can take integer values 
between 1 and n. Let α1 < α2 < ... < αm denote the values of α in [0, 1] which yield distinct values 
K̂(α1) < K̂(α2) < ... < K̂(αm) , where 1 ≤ m ≤ n . Let Ij = {α ∈ [0, 1] : K̂(α) = K̂(αj)} for j = 1, 2, ...,m , and 
M = argmax

1≤j≤m

length(Ij).

3.

For a given α , compute the tolerance ratio γ (α) : 
γ (α) =

1
B

∑

B
b=1 I{K̂(b)(α)<K∗}

1
B

∑

B
b=1 I{K̂(b)(α)>K∗)}

4. Return an α ∈ [0, 1] such that |γ (α)− γ | is minimized. When the minimizer is not unique, return the range of 
α that minimize |γ (α)− γ |.

remark In Step 1 of the algorithm, here we use the spectral clustering algorithm (Rohe 
et al. 2011) using the reg.SP function in R that performs a community detection with a 
given adjacency matrix and a given number of clusters. However, the above algorithm is 
general and applies equally to any sequential community detection method. It is possible 
that the denominator of γ (α) is 0, in which case γ (α) is undefined. In practice by adding 
a small ǫ > 0 to both the numerator and denominator of γ (α) , the procedure will remain 
stable and well defined by adding a small bias towards γ = 1.

Below we present a brief proof of the convergence of the algorithm which assumes 
the Lipschitz condition on γ , and exploits some key characteristics about the change 
of underfitting probability with respect to α.
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Theorem 1 Suppose the target value of the significance is α0 that corresponds to the tol-
erance ratio γ0 . Also assume that the function γ (α) satisfies the Lipschitz condition

where c > 0 is the Lipschitz constant, α,α∗ ∈ (0, 1) , and B tends to ∞ . Then if the algo-
rithm results in precision ǫ′ for the significance α , then the precision of the tolerance ratio 
is cǫ′.

Proof First note that γ (α) = P(K̂ (α) < K ∗)/P(K̂ (α) > K ∗) is an increasing function of 
the underfitting probability P(K̂ (α) < K ∗) , which in turn is a decreasing function of α . 
This implies γ (α) is a decreasing function of α . So, there exists a c (could be very large) 
so that the Lipschitz condition holds. Therefore, if we use the precision ǫ′ for α , the pre-
cision for γ is cǫ′ . 

Two remarks are in order.

Remark 1 In Theorem 1, we assume that γ (α) is a continuous decreasing function of 
α . However, in Step 3 of our algorithm, γ (α) is guaranteed to be a non-increasing step 
function of α because we are estimating it empirically and K̂ (b)(α) can take finitely many 
values in {1, 2, . . . , n} . Therefore the difference |γ (α)− γ (α∗)| can range over the entire 
real line, taking only finite values. The difference |α − α∗| can range in the interval (0, 1). 
It is instructive to note that when the difference in α is zero or small, the corresponding 
difference in γ is also zero. Therefore, one can always pick c > 0 so that the Lipschitz 
condition is satisfied.

Remark 2 Our algorithm takes the user-specified tolerance as input and is expected to 
return a significance level is close to the tolerance ratio as possible. By fixing ǫ′ before-
hand the algorithm returns a significance level that lies within the ǫ′ - neighborhood of 
the optimizing significance level.

Example sequential community detection algorithm
While our approach for identifying an α that corresponds with a prespecfied tolerance 
ratio is agnostic to which sequential community detection algorithm is used, we detail 
one example use case here. Aside various community detection algorithms such as spec-
tral clustering (White and Smyth 2005; Zhang et  al. 2007b), random walks (Pons and 
Latapy 2005), a popular approach to community detection is based on the idea of opti-
mizing modularity. Modularity metrics were introduced by Newman and Girvan (2004), 
and the idea of detecting communities by optimizing a modularity function was pro-
posed by Newman (2004) Nowadays, there are many variants of the modularity-based 
community detection approach to deal with directed or weighted networks (Leicht and 
Newman 2008). Also, some variants of the modularity-based community detection 
approach use modularity functions with a somewhat modified mathematical structure 
(Reichardt and Bornholdt 2006; Waltman et al. 2010; Traag et al. 2011).

|γ (α)− γ (α∗)| ≤ c|α − α∗|,

�
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Here we revisit Newman’s sequential algorithm (Newman 2006) of community 
detection which begins by first dividing the network into two communities and then 
subdividing into further communities by maximizing additional modularity; and we 
implement our approach to selecting an appropriate significance level in this context.

For a network with n vertices, let A denote the n× n adjacency matrix and 
s = (s1, s2, . . . , sn)

⊤ ∈ {−1, 1}n where si = 1 if the i-th vertex belongs to group 1 and -1 
otherwise. Let ki denote the degree of vertex i and m =

∑n
i=1 ki/2 be the total number 

of edges in the network. Then the modularity of the network is defined as

where the matrix B = (Buv) is defined as Buv = Auv −
kukv
2m  , a symmetric matrix of order 

n.
Let u1,u2, . . . ,un be the eigenvectors of B corresponding to the eigenvalues 

�1 ≥ �2 ≥ . . . ≥ �n . Then Q in (3) is maximized if si = 1 if the corresponding ele-
ment in u1 is positive and si = −1 otherwise rendering a network divided into two 
communities.

For further dividing a group j of size nj , the additional contribution to the modularity 
is

is maximized in the similar way for Q in (3), where B(j)
uv = Buv − δuv

∑

l∈j Bul , and δuv is 
the Kronecker δ-symbol.

If the total modularity of the network after splitting the network into j communities 
is Q(j) , then the gain in the modularity is defined by �Q(j) = Q(j+1) − Q(j) . Again, while 
we use this quantity �Q(j) as our test statistic for the jth step ( H0 : K = j vs HA : k > j ), 
we stress that any sequential community detection algorithm can be adopted to this 
framework.

Simulations
Homogenous case: stochastic block model

We perform extensive simulation study in various directions to assess the perfor-
mance of the proposed algorithm. In each set-up, networks of size n and 2n are sim-
ulated through SBM with K0 number of balanced communities of size n/K0 . We vary 
n ∈ {100, 200} corresponding to K0 = 5, 10 respectively for symmetric edge probability 
matrix P of dimension K0 of the form

where IK0 is the identity matrix of order K0 , 1K0 is the vector of 1 s of dimension K0 , so 
that the diagonal and off-diagonal entries of P are 0.5+ ǫ and 0.5− ǫ respectively imply-
ing that the difference between edge probability within and between community is 2ǫ . 
We vary ǫ = 0.195, 0.010 to represent two cases of (S) strong and (W) weak community 
structure, respectively (Table 1).

(3)Q =
1

4m
s
⊤
Bs,

(4)δQj =
1

4m
s
⊤
B
(j)
s

P = 2ǫIK0 + (0.5− ǫ)1K01
⊤
K0
,
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Estimated number of communities ( K̂α)

For a fixed α , we simulate 1000 parametric bootstrap sample values of the null test statis-
tic and calculate p values by comparing them with the observed test statistic value. We 
start from the number of communities K = 1 , and proceed by incrementing Kuntil the p 
value is greater than α . We replicate the procedure 100 times and finally report the value 
of the estimated number of communities K̂α by taking the mode of the 100 replications.

Next, we vary α ∈ {0.01, 0.05, 0.10, 0.20} and the corresponding K̂α s are reported in 
Sect. 1 and Table 2. Further, the estimates of pr(K̂α = K0) are reported in parenthesis 
by taking the proportion of times K̂α is equal to K0 over 100 replications. Note that 
the probability of recovery of the true number of communities is bounded from above 
by (1− α ). This follows because pr(K̂α = K0) ≤ pr(K̂α = K0|K̂α ≥ K0) = 1− α . In the 
presence of strong differences in communities, estimated communities are close to 
the true number for α = 0.01, . . . , 0.2 . For weak signals, the number of communities 
is under estimated for the aforementioned α . However, the number of communities is 
over estimated for larger value of the significance level. This indicates that the choice 
of α can greatly influence K̂  , which provides further incentivize for developing a rig-
orous approach to selecting an appropriate α.

Choice of significance level ( α)

In each simulation set-up, we use 1000 bootstrap samples for a wide range of α (typi-
cally in the range [0.001, 0.5]) and store the values of γ̂ (α) according to Step 3 of the 
algorithm.

We consider the value of tolerance ratio γ = 0.5, 1, 2 corresponding to the cases 
where underfitting probability is half, equal, and twice of overfitting probability. In 

Table 1 Mode of 100 independent replications ( ̂Kα ), and proportion of times true number of 
communities correctly estimated 

(

pr(K̂ = K0)
)

 shown in parenthesis for different choice of α , P , and 
n = 100

(n, K0) Signal α = 0.01 α = 0.05 α = 0.1 α = 0.2

(100, 5) S 5 (0.82) 5 (0.85) 5 (0.85) 6 (0.45)

W 3 (0.10) 3 (0.15) 4 (0.35) 4 (0.20)

(100, 10) S 8 (0.25) 8 (0.35) 10 (0.40) 10 (0.55)

W 2 (0.00) 2 (0.00) 3 (0.00) 3 (0.00)

Table 2 Mode of 100 independent replications ( ̂Kα ), and proportion of times true number of 
communities correctly estimated 

(

pr(K̂ = K0)
)

 shown in parenthesis for different choice of α , P , and 
n = 200

(n, K0) Signal α = 0.01 α = 0.05 α = 0.1 α = 0.2

(200, 5) S 5 (0.85) 5 (0.88) 5 (0.89) 5 (0.55)

W 4 (0.30) 4 (0.45) 5 (0.58) 5 (0.45)

(200, 10) S 9 (0.40) 9 (0.45) 10 (0.55) 10 (0.60)

W 3 (0.00) 6 (0.00) 6 (0.05) 7 (0.10)
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each case, we find the γ̂ (α) such that |γ̂ (α)− γ | is the minimum among the stored 
values, and report the corresponding value of α in Table 3. One can note that as γ  is 
increasing (i.e., the overfitting probability is increasing relative to the underfitting 
probability), the significance level decreases. This is consistent with the fact that for 
a smaller value of α , the test is getting accepted at an early step than a larger value of 
α.

Heterogenous case: degree-corrected block model

Here we perform another simulation study for the case of heterogenous networks 
following the framework of Gao et al. (2018). We generate a network of n nodes and 2 
communities where the sizes are n1 and n2 , and we vary n ∈ {300, 600}, n1 ∈ {100, 200} , 
and n2 ∈ {200, 400} respectively. The off-diagonal entries of the adjacency matrix 
A = (Aij) are simulated as

where p = 0.1, q = 3p/10 for strong signal (S) and 7q/10 for weak signal (W), 
θi = |Zi| + 1− (2π)1/2,Zi

i.i.d
∼ N (0, 0.25) for i = 1, 2, . . . , n so that E(θi) = 1.

Using 1000 parametric bootstraps as mentioned in the algorithm, we present the 
proportion of times the true number of communities correctly estimated and the 
values of α for different choices of tolerance ratio in the following two tables. Like 
the previous case, Tables  4 and  5 also demonstrate that while for strong signals 
the number of communities is almost correctly estimated, however, for weak sig-
nals, they are underestimated. This provides incentivize for developing a rigorous 
approach of selecting α.







Aij = Aji
indep
∼ Ber(θiθjp), if i and j belongs to the same community,

Aij = Aji
indep
∼ Ber(θiθjq), otherwise,

Table 3 Choice of α for different choices of tolerance ratio γ and network size n(n′ = 2n)

(n, K0) Signal γ = 1/2 γ = 1 γ = 2

(100, 5) S 0.06 (0.06) 0.01 (0.02) 0.005 (0.006)

W 0.10 (0.09) 0.05 (0.04) 0.02 (0.01)

(200, 10) S 0.07 (0.06) 0.01 (0.01) 0.005 (0.006)

W 0.10 (0.10) 0.05 (0.04) 0.01 (0.01)

Table 4 Mode of 100 independent replications ( ̂Kα ), and proportion of times true number of 
communities correctly estimated 

(

pr(K̂ = K0)
)

 shown in parenthesis for different choice of α , P , and 
(n, n1, n2) for DCBM

(n, n1, n2, K0) Signal α = 0.01 α = 0.05 α = 0.1 α = 0.2

(300, 100, 200, 2) S 2 (0.70) 2 (0.70) 2 (0.75) 2 (0.78)

W 1 (0.20) 1 (0.25) 1 (0.45) 1 (0.45)

(600, 200, 400, 2) S 2 (0.25) 2 (0.35) 2 (0.40) 2 (0.55)

W 1 (0.03) 1 (0.05) 1 (0.15) 2 (0.50)
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Real data analysis
Single cell RNA (scRNA-seq) data

We apply our algorithm to the scRNA-seq data generated from the retina cells of two 
healthy adult donors using the 10X Genomics ChromiumTM system. We should expect 
some clustering by cell type in networks derived from this data. Detailed preprocessing 
and donor characteristics of the scRNA-seq data can be found in Lyu et al. (2019). The 
data consists of 33694 genes sequenced over 92385 cells. The sequencing data were ini-
tially analyzed with R package Seurat (Satija et al. 2015) and each of the cells was identi-
fied as a particular cell-type. The virtual representation of the data in the t-SNE plot is 
given in Fig. 1.

Among different clusters in Seurat, we consider the data pertaining to five hierarchi-
cal clusters: “Astrocytes”, “Endothelium”, “Ganglion”, “Horizontal”, “Pericytes”. Before 
we perform the analysis, we process the data in three steps. First, genes whose vari-
ability was less than the 50th quantile are filtered out, and then cells whose total cell 
counts across all genes are less than 500 and greater than 2500 are also filtered out. 
Second, we compute the normalized score (row wise) and perform a log transforma-
tion ( log2(1+ x/10000)) as done in Booeshaghi and Pachter (2021) to convert the data 

Table 5 Choice of α for different choices of tolerance ratio γ and network size (n, n1, n2)

(n, n1, n2, K0) Signal γ = 1/2 γ = 1 γ = 2

(300, 100, 200, 2) S 0.08 0.05 0.01

W 0.15 0.10 0.08

(600, 200, 400, 2) S 0.09 0.05 0.02

W 0.15 0.11 0.09

Fig. 1 Virtual representation of the estimated number of clusters of the analyzed scRNA-seq data of 
human retina cells in the t-SNE plot obtained by selecting Seurat classified cell types namely: Astrocytes, 
Endothelium, Ganglion, Horizaontal, Pericytes in an equal manner of roughly 100 cells per cell type
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into a continuous scale. The rationale behind such a transformation is that that differ-
ent genes have different variances implying that genes that are highly expressed will 
have high variance whereas the genes that are barely expressed at all, will have almost 
zero variance. The transformed data is now used to compute correlations between the 
cells. Finally, for each cluster, we randomly select 100 cells ensuring that the within and 
between cluster correlations do not differ by more than 0.1 from those of the composite 
data. We use the correlation threshold ( τ ) to construct an adjacency matrix A , and vary 
τ ∈ {0.3, 0.5, 0.7} , and report the significance level along with estimated number of com-
munities in Table 6. We observe that estimated number of communities is larger as we 
increase the value of τ which gives rise to a denser network. The significance level ( α ) 
ranges over [0.01, 0.05] depending on the tolerance ratio. Also, for each choice of τ , the 
estimated number of communities is increasing with α.

It can also be noted from Table 6 that different values of α lead to different number of 
estimated communities. If one were to arbitrarily pick α as, say, 0.05, this choice can have 
a large impact on the analysis. For example, corresponding to τ = 0.3 , α changes from 
0.05 to 0.01 leading to different value of K̂  . Thus the choice of α is an impactful decision, 
and the tolerance ratio presents an intuitive measure that allows the practitioner to place 
a value of overfitting relative to underfitting when performing community detection.

United States House Votes 1984 (USHV) data

In this example, we consider a data set of 267 democrats and 167 republican congress-
men who has voted in 16 issues in 1984 in the United States of America. The data con-
tains yes/no answer for each congressman on 16 different questions with some missing 
values. After removing the congressman who has not voted in more than three of the 
sixteen questions, the data is represented by a 417× 17 matrix where the first column 
represents the political affiliation-republican and democrat. The adjacency matrix A is 
calculated by thresholding the correlations among congressmen by τ , i.e., if the correla-
tion of voting between two congressmen is as high as τ , we assume they are connected 
by an edge and hence the corresponding entry of the adjacency matrix 1, and 0 other-
wise. Finally we vary τ ∈ {0.3, 0.5, 0.7} . It is instructive to note that smaller values of τ 
leads to a more dense network.

In this data, the number of distinct communities is not expected to go below 2 because 
of the two party affiliations. However, in our analysis, the estimated number of com-
munities varies in {3, 4, 5} (depending on the desired tolerance ratio) implying potential 
further subdivisions among political parties. Here too, the significance level has a large 
impact on the analysis. For example, when τ = 0.7 , changing α from 0.06 to 0.04 drops 
the number of communities from 5 to 4. Therefore, a judicious choice of the significance 

Table 6 Choice of α and corresponding estimated number of communities K̂α for different values of 
tolerance ratio η across various choices of correlation threshold γ for the scRNA-seq data

Correlation threshold ( τ) 0.3 0.5 0.7

Tolerance ratio ( γ) 0.5 1 2 0.5 1 2 0.5 1 2

Significance level ( α) 0.05 0.03 0.01 0.04 0.04 0.01 0.05 0.03 0.02

Estimated # communities ( ̂Kα) 7 7 6 9 8 7 9 9 7
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level is necessary, and the tolerance ratio again provides a means of guiding this choice 
in an intuitive manner (Table 7).

Discussion
We have proposed an algorithm to provide guidance to the practitioner in order to 
obtain a nominal significance level that matches their desired balance between overfit-
ting and underfitting probabilities. Traditional approaches to estimate the number of 
communities often arbitrarily set the significance level, and the tolerance ratio presents 
an intuitive alternative. To construct the test statistic in a sequential testing framework, 
we used Newman’s modularity maximization approach. Even though our approach 
is demonstrated on modularity based test, it will also work on any general sequential 
testing approach, for example, spectral clustering method (Ng et al. 2001) and its vari-
ants, model-based approaches (Lee and Wilkinson 2019). Our proposed method can be 
adapted to such settings by replacing the modularity by between clusters sum of squares 
variability at each step of sequential testing.

Although here we have assumed a stochastic block model, a feasible extension of this 
approach would be to apply it to dynamic stochastic block models Matias and Miele 
(2015) in order to allow a time varying network structure. It is instructive to note that 
we proposed the solution using the sequential tests, and implemented the algorithm 
via bootstrap due to the lack of the analytic expression of the test statistic. A potential 
bottleneck that the proposed algorithm will face is when the network size is very large 
because bootstrapping will be computationally expensive. However, in case an analytic 
expression of the test statistic is available in closed form, the algorithm can be adapted 
trivially to use it in place of bootstrapping. This would further increase algorithmic sta-
bility by removing stochasticity introduced through the bootstrap.
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