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Abstract 

Recent advancements have been made in the development of cell‑based in‑vitro 
neuronal networks, or organoids. In order to better understand the network struc‑
ture of these organoids, a super‑selective algorithm has been proposed for inferring 
the effective connectivity networks from multi‑electrode array data. In this paper, we 
apply a novel statistical method called spectral mirror estimation to the time series 
of inferred effective connectivity organoid networks. This method produces a one‑
dimensional iso‑mirror representation of the dynamics of the time series of the net‑
works which exhibits a piecewise linear structure. A classical change point algorithm 
is then applied to this representation, which successfully detects a change point 
coinciding with the neuroscientifically significant time inhibitory neurons start appear‑
ing and the percentage of astrocytes increases dramatically. This finding demonstrates 
the potential utility of applying the iso‑mirror dynamic structure discovery method 
to inferred effective connectivity time series of organoid networks.

Keywords: Organoid, Time series network analysis, Multidimensional scaling, Manifold 
learning, Change point detection

Introduction
Detecting structural changes in time series of networks is central to many modern 
network science applications. However, due to the complexity of temporal network 
data and the myriad possible aspects for potential structural change, this problem can 
be daunting. For discovering underlying dynamics in time series of networks, Athreya 
et al. (2022) proposes theory and methods for representing temporal network structure 
with a curve, or ‘mirror’, in low dimensional Euclidean space, enabling the use of classi-
cal change point detection algorithms. In this paper, we estimate the mirror for a time 
series of brain organoid connectivity networks and subsequently identify change points. 
Because the mirror estimation method requires a 1-1 vertex correspondence for the net-
works across time, we first demonstrate that the putative 1-1 correspondence obtained 
directly from data collection is sufficiently accurate by comparing it to the vertex 
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correspondence obtained via graph matching (Vogelstein et  al. 2015). Thence, mirror 
estimation and manifold learning recovers a 1-dimensional piecewise linear ‘iso-mirror’ 
representation, with an evident slope change. By using the change point detection algo-
rithm from (Bücher et al. 2021) and break point estimation for piecewise linear models 
from (Muggeo 2017), we identify a change points neuroscientific significance coinciding 
with development stages.

We organize this paper as follows. In section "Organoids" we introduce our brain 
organoids data and the extraction of effective connectivity networks based on extracel-
lular electrophysiology recordings. In section "Graph Matching" we define the graph 
matching problem and present the fast approximate assignment algorithm. In section 
"Discovering underlying dynamics in times series of networks" we introduce the mirror 
estimation method and relevant model assumptions. In the "Results" section we apply 
these methods to the time series of organoid networks and present the graph matching 
results and the change point detection results. We conclude the paper with a discussion.

Organoids
The brain organoids we consider are self-organizing structures composed of roughly 
2.5 million neural cells. They are generated from human induced pluripotent stem cells 
(hiPSCs) (Muguruma et al. 2015). After growing for 6 weeks, they are plated in 8 wells 
of a multi-electrode array (MEA) plate (Axion Biosystem, Atlanta,GA, USA). MEA con-
tains 64 low-impedance (0.04 MU) platinum microelectrodes with 30 µm of diameter 
spaced by 200 µm. Each well contains two or three organoids. Then, to characterize the 
functional development of the organoids, extracellular spontaneous electrical activity is 
recorded weekly using Maestro MEA system and AxIS Software Spontaneous Neural 
Configuration (Axion Biosystems) with a 0.1-Hz to 5-kHz band-pass filter. Then spikes 
are detected with an adaptive threshold crossing set to 5.5 times the standard deviation 
of the estimated noise for each electrode. Each time series consists of five minutes of 
recorded neural activity across 10 months and the data are recorded irregularly—not 
exactly once a week. Cortical organoids show low and sparse activity during the first 
2 months with an average firing frequency of 0.5-Hz, then they start exhibiting highly 
synchronized and stereotypical network activity which transitions into 2-Hz and 3-Hz 
rhythmic activity by 4-6 months. At later stages (6 to 9 months), the activity includes 
high-rate spiking with peak of activity reaching a 20-Hz pace and highly complex burst-
ing behaviors with cross-frequency coupling (Puppo et al. 2021). A combination of prin-
cipal component analysis and k-means clustering is used to spike sort the multi-unit 
activity from the 64 electrodes of each well. The average number of neurons detected in 
each well increases with the maturation of the organoids onto the electrodes, sometime 
reaching saturation after 6 months. Similar behavior is observed in all MEA wells. For 
example, the number of spike-sorted neurons in one well is detected as 122, 160, 189, 
174, 190 at 2, 4, 6, 8 and 10 months. The other well has 81, 160, 174, 171, 170 neurons 
detected at 2, 4, 6, 8, and 10 months.

To infer the effective connections between neurons—i.e., the adjacency matrices with 
neurons as vertices across time from the spike activity data—the algorithm proposed in 
Puppo et al. (2021) is applied. This algorithm uses a super-selection rule to individuate 
and discard correlation peaks corresponding to apparent and indirect interactions, and 
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reconstructs the effective connectivity of the network considering the remaining corre-
lation delays. In the end, 45 effective connectivity networks on 127 vertices across 244 
days are obtained. This is our time series of organoid networks.

Graph matching
Given a time series of networks G1, · · · ,GT on the same set of vertices V, a 1-1 vertex 
correspondence across all the networks facilitates joint spectral embedding, which is a 
key step in the mirror estimation method we will present in the next section, “Discover-
ing underlying dynamics in time series of networks”. Such a vertex correspondence may 
be available a priori in labeled networks, or it can be inferred from unlabeled networks. 
This inference problem—the so-called graph matching problem—is to find an alignment 
of vertices between two graphs such that the corresponding edge differences are mini-
mized. We denote A, B as two n× n adjacency matrices for two graphs with n vertices 
each. Then the graph matching problem is to find the permutation matrix P that maxi-
mizes the objective function

for P ∈ P where P = {P ∈ {0, 1}n×n : P⊤
1 = P1 = 1} , 1 = (1, 1, ...1)⊤ , and || · ||F denotes 

the Frobenius norm. This formulation is equivalent to maximizing

Because solving this optimization problem is combinatorically difficult, approximation 
algorithms have been proposed. We use the Fast Approximate Quadratic (FAQ) assign-
ment algorithm (Vogelstein et al. 2015) to obtain an approximate solution. FAQ itera-
tively finds a local solution to the relaxed problem—expanding the constraint set to the 
convex hull of P—and then projects the solution back to P , and has been shown empiri-
cally to be competitive with or superior to other state-of-art methods. In Section Results 
we use FAQ to demonstrate that the given putative 1-1 correspondence for each pair of 
networks is close to the solution to the corresponding graph matching problem.

Discovering underlying dynamics in time series of networks
To discover the underlying dynamics in time series of networks, we use the model and 
method proposed in Athreya et al. (2022). First we introduce the generative joint model 
for time series of networks. We consider T networks, each containing n vertices, with 
adjacency matrices At , t ∈ {1, 2, ...,T } . In the model, each vertex is associated with a time 
varying d-dimensional latent vector. These vectors Xt are each one realization from a 
stochastic process, called the latent position process (LPP)—each Xt is a d-dimensional 
random variable. For n vertices, we generate n i.i.d. samples from the LPP, which collec-
tion then forms the latent position matrices {Xt} , where Xt ∈ Rn×d for t ∈ {1, 2, ...,T } . 
The connection probability between vertex i and vertex j at time t is the inner prod-
uct of the associated latent vectors at time t. That is E(At) = XtX

T
t  . Note that each net-

work corresponds to a latent position random variable. Thus we can capture the distance 
between graphs using the corresponding random variables. We define the distance

f (A,B;P) = −||A− P⊤BP||2F

f (A,B;P) = trace(APBTPT ).



Page 4 of 13Chen et al. Applied Network Science            (2023) 8:45 

where Od×d is the set of orthogonal transformation matrices with dimension d. When 
Xt and Xt ′ are centered, the dMV  distance can be interpreted as the maximum directional 
variation for the random vector Xt −WXt ′ , where W is an orthogonal transformation 
used to align Xt and Xt ′ . We evaluate this distance for every pair of random variables 
in the LPP and obtain a T × T  distance matrix D . Then we apply classical multidimen-
sional scaling (MDS) (Torgerson 1952) to D to get a low-dimensional Euclidean repre-
sentation of underlying network structure, called the mirror , {ψ(t)} . In practice, the LPP 
is unknown and only network realizations {At} are observed. For the n× n symmetrized 
adjacency matrix At , we use adjacency spectral embedding (ASE) (Athreya et al. 2018) 
to obtain X̂t = U�1/2 , where the diagonal matrix � contains the top d eigenvalues of At 
and U contains the associated eigenvectors. Then we use

to estimate the pairwise distance between networks, yielding D̂ . Applying MDS to D̂ 
yields the mirror estimate {ψ̂(t)} . When the mirror exhibits a manifold structure, we can 
further simplify the change point detection problem by applying the manifold learning 
method isometric mapping (ISOMAP) (Tenenbaum et  al. 2000) to {ψ̂(t)} . This yields 
the iso-mirror, which captures the geodesic distance along the mirror and preserves it 
in lower dimensions with Euclidean distance. Subsequent inference is then performed 
using the iso-mirror representation. For convenience, the iso-mirror representation will 
also be denoted as {ψ̂(t)}.

Results
Time series of organoid networks data

All results in this section are based on data collected from well 8. For analogous results 
from well 5, please refer to the Appendix. For well 8, the time series of organoid net-
works consists of 45 time stamps {1, 2, ..., 45} ; each time stamp corresponds an effec-
tive connectivity graph Gt with adjacency matrix At . Each graph is directed, weighted, 
and hollow. We symmetrize the directed graphs, and use ranks in place of the raw edge 
weights. All graphs have the same vertex set V = {1, 2, ...n} with n = |V | = 127 , although 
some of the graphs contain isolated vertices. See Fig. 1.

Putative 1‑1 correspondence

For this time series of organoid networks, inferred neuron location gives a putative 
1-1 vertex correspondence across the graphs. We assess this correspondence via graph 
matching using the objective function value (OFV) f(A, B; P). The OFV for the putative 
1-1 correspondence is given by f(A, B; I) where I is the identity matrix. We denote the 
FAQ output for matching adjacency matrices A and B initialized at C as PA,B;C . Typi-
cally we choose the barycenter b = 11

T

n  as the initial point. For all times i ∈ {1, 2, ...44} , 
we consider Ai , Ai+1 and FAQ yields PAi ,Ai+1;b (denoted Pi,i+1;b for short). In Fig. 2 we 

dMV (Xt ,Xt ′) = min
W∈Od×d

�E[(Xt −WXt ′)(Xt −WXt ′)
⊤]�1/2

2
,

d̂MV (X̂ t , X̂ t ′) = min
W

1√
n
�X̂ t − X̂ t ′W�1/2

2
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compare f (I) = f (Ai,Ai+1; I) and f (Pi,i+1;b) = f (Ai,Ai+1;Pi,i+1;b) . Although f (Pi,i+1;b) 
is always larger than f(I), the two OFVs are close to each other for all time stamps, indi-
cating that the putative 1-1 correspondence is close to FAQ’s solution.

To further asses the putative 1-1 correspondence, we consider a specific pair of adja-
cency matrices: A28 , A29 . We uniformly generate 100,000 random permutation matrices 
R and evaluate f (R) = f (A28,A29;R) . We plot the histogram in Fig.  3. We also indi-
cate f (A28,A29; I) , f (A28,A29;P28,29;I ) , f (A28,A29;P28,29;b) and f (A28,A29;P28,29;R) , 
where R are 100 randomly drawn permutation matrices. We see that the putative 1-1 
correspondence performs better than all 100,000 instantiations of f(R) and is close to 
P28,29;b , P28,29;I and P28,29;R . Thus we conclude that the putative 1-1 correspondence is 
sufficiently accurate, and we will proceed apace for mirror estimation and change point 
detection.

Change point detection

For the 45 graphs, time stamps are from 1 to 244, in days. We choose time stamps in 
[150,230] to avoid growth and death regimes.

For these graphs, we find the largest common connected component, which contains 
112 vertices. The average number of edges for the largest common connected compo-
nent is approximately 6130. We use the putative 1-1 vertex correspondence across time. 
We apply our mirror estimation method to this time series of networks, and ISOMAP 
manifold learning yields the 1-dimensional representation of the dynamics {ψ̂t} . We 
choose 10 time stamps shown in Fig. 4. As we see, the representation is approximately 
piecewise linear with an evident change of slope at t = 4 , day 188.

Fig. 1 The number of non‑isolated vertices and the number of edges for the graphs at each of the 45 time 
stamps. The number of edges are counted after symmetrizing the directed graph
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Assuming the true underlying 1-dimensional representation ψ(t), t ∈ [0,T ] , is piece-
wise linear and continuous, it is natural to define the change point t∗ as the point when 
the slope changes. If we assume there is only one change point, then we can write

Both the change point detection algorithm from Bücher et al. (2021) and the break point 
estimation for piecewise linear models from Muggeo (2017) yield an estimated change 
point t̂∗ = 4 , day 188, which coincides with neuroscientifically significant develop-
mental changes—inhibitory neurons start appearing and the percentage of astrocytes 
increases dramatically—as described in Trujillo et al. (2019). Note that the emergence 

ψ(t) = β0 + β1t + β(t − t∗)I(t > t∗).

(a)

(b)
Fig. 2 Comparison of OFV using I and Pi,i+1;b for 44 pairs of graphs, demonstrating that FAQ increases the 

OFV only slightly. a f(I) and f (Pi,i+1;b). b f (Pi,i+1;b)

f (I)
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of astrocytes does not happen at once but builds over time, so there is no one precise 
date for the change point and detection of a time coinciding with this change can be but 
suggestive.

Conclusion
Reconstruction of effective connectivity networks of electrophysiologically active 
brain organoids reflect their structural (increasing number of neurons (nodes) and 
connections (edges)) and electrical development over time, as previously demon-
strated in Trujillo et al. (2019).

(a)

(b)
Fig. 3 Matching A28 and A29 . Comparison of OFV for using I,R, P28,29;b , P28,29;I and P28,29;R. a Histogram 
demonstrating that OFV for R is not nearly as good as for the others. b Enlargement of the far right portion 
of the top figure, demonstrating that FAQ output at different initial points I, b and R improves the OFV only 
slightly compared to the putative 1‑1, I 
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By applying the spectral mirror estimation method to the time series of organoid 
networks, we obtain a 1-dimensional iso-mirror representation of dynamic inferred 
effective connectivity organoid networks. Two change point detection algorithms 
successfully detect a change at day 188. At approximately 188 days (~6 months), cor-
tical organoids start showing inhibitory neurons and the percentage of astrocytes 
increases from 5% to 30–40% (Trujillo et  al. 2019) resulting in added complexity in 
the activity and network distribution of brain organoids.

There are several change point detection algorithms available for analyzing time series 
of graphs, including the one proposed in Wang et al. (2021). However, it is important 
to note that the spectral mirror estimation method used in our study is not restricted 
to change point detection alone. Instead, it provides a low-dimensional (in our case, 
one-dimensional Euclidean) representation of network dynamics, enabling us to visual-
ize network evolution. As illustrated in Fig. 4, we observe piecewise linear structure and 
apply segment regression to identify a significant increase in slope after day 188. This 
suggests that organoid graphs drift continuously over time, but their rate of drift accel-
erates significantly after day 188. Our method is preferred in this regard as it provides 
us with more than just one change point. Additionally, since the iso-mirror represents 
the underlying LPP, the detected change point in the iso-mirror reflects a fundamen-
tal change in the underlying generative LPP of the time series of networks, which may 
not necessarily correspond to any specific network measure. Furthermore, the spectral 
mirror method can be applied to other dynamic graphs that meet our model assump-
tions, namely that the time series of networks are generated from a time series of latent 
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Fig. 4 Discovering a change point in time series of inferred effective connectivity organoid networks via the 
iso‑mirror. The x‑axis is time stamp, in days. The y‑axis is the ISOMAP representation of the estimated mirror 
{ψ̂t} . This indicates a change in the network dynamics at day 188
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position random networks whose vertices have independent, identically distributed 
latent positions given by an LPP.

Future work includes addressing two major theoretical issues of note, to make the 
change point inference formally principled. First, the theory in Athreya et al. (2022) 
requires a known 1-1 vertex correspondence across time. It remains to study the effect 
of errors in this correspondence, such as those inherent in our putative 1-1 corre-
spondence deemed sufficiently accurate for practical purposes. In addition, it remains 
to study the entry-wise behavior of the error term ǫ(t) = ψ̂(t)− ψ(t) . For example: in 
Bücher et al. (2021) the proof of consistency of the change point estimator requires 
the error process to be stationary; in Muggeo (2017) the ǫ(t) are assumed to be i.i.d. 
normal to construct a confidence interval for t̂∗ . For now, Athreya et  al. (2022) has 
shown that ψ̂(t) converges to ψ(t) in Frobenius norm, that is T

t=1(ǫ(t))
2 → 0 with 

high probability, which is insufficient to conclude normality or stationarity. What’s 
more, this convergence result is for the mirror rather than the iso-mirror. As for 
whether the same conclusion can be extended to the iso-mirror, further investigation 
is needed.

Appendix
Time series of organoid networks data for well 5

For well 5, there are 40 graphs with time stamps [1229] and all of them have the same 
vertex set with |V | = 128 , although some of the graphs contain isolated vertices. See 
Fig.  5. Each graph is directed, weighted, and hollow. We symmetrize the directed 
graphs, and use ranks in place of the raw edge weights.

Fig. 5 The number of non‑isolated vertices and the number of edges for the graphs at each of the 40 time 
stamps for well 5. The number of edges are counted after symmetrizing the directed graph
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Putative 1‑1 correspondence for well 5

We assess the putative 1-1 correspondence exactly the same way as in the paper and 
Fig. 6 indicates that the putative 1-1 correspondence is close to FAQ’s solution.

(a)

(b)
Fig. 6 Comparison of OFV using I and Pi,i+1;b for 39 pairs of graphs, demonstrating that FAQ increases the 
OFV only slightly. a f(I) and f (Pi,i+1;b). b f (Pi,i+1;b)

f (I)



Page 11 of 13Chen et al. Applied Network Science            (2023) 8:45  

We also consider a specific pair of adjacency matrices: A28 , A29 to assess the 1-1 
putative correspondence. See Fig. 7. The result is similar to well 8 and we conclude 
the 1-1 putative correspondence is accurate enough.

Change point detection for well 5

For the 40 graphs, time stamps are from 1 to 244, in days. We choose the same time 
stamps in [150,230] as in the paper. We find the largest common connected component 
for these graphs. We use the putative 1-1 vertex correspondence across time. We apply 
our mirror estimation method to this time series of networks, and ISOMAP manifold 

Fig. 7 Matching A28 and A29 . Comparison of OFV for using I,R, P28,29;b , P28,29;I and P28,29;R . Left: Histogram 
demonstrating that OFV for R is not nearly as good as for the others. Right: Enlargement of the far right 
portion of the left figure, demonstrating that FAQ output at different initial points I, b and R improves the OFV 
only slightly compared to the putative 1‑1, I 
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learning yields the 1-dimensional representation of the dynamics {ψ̂t} . We choose the 
same 10 time stamps as in the paper shown in Fig. 8. As we see, the representation is 
approximately piecewise linear. The break point estimation for piecewise linear models 
from Muggeo (2017) yield an estimated change point t̂∗ = 4 , day 188.
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