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Abstract 

We investigate the statistical learning of nodal attribute functionals in homophily 
networks using random walks. Attributes can be discrete or continuous. A generaliza-
tion of various existing canonical models, based on preferential attachment is stud-
ied (model class P ), where new nodes form connections dependent on both their 
attribute values and popularity as measured by degree. An associated model class U is 
described, which is amenable to theoretical analysis and gives access to asymptotics of 
a host of functionals of interest. Settings where asymptotics for model class U transfer 
over to model class P through the phenomenon of resolvability are analyzed. For the 
statistical learning, we consider several canonical attribute agnostic sampling schemes 
such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec, 
2016) that incorporate both classical random walk and non-backtracking propensities 
and propose new variants which use attribute information in addition to topological 
information to explore the network. Estimators for learning the attribute distribu-
tion, degree distribution for an attribute type and homophily measures are proposed. 
The performance of such statistical learning framework is studied on both synthetic 
networks (model class P ) and real world systems, and its dependence on the network 
topology, degree of homophily or absence thereof, (un)balanced attributes, is assessed.

Keywords: Attributed networks, Homophily, Network model, Resolvability, Random 
walk samplings, Discrete and continuous attributes, Learning attribute functionals

Introduction
Attributed networks, namely graphs in which nodes and/or edges have attributes, are 
at the center of network-valued datasets in many modern applications. For example, 
in real-world network datasets most nodes have values of characteristics of interest; 
in social networks, users have attributes such as “gender”, “age”, “language”; in citation 
networks, articles are classified by the main subject, field, sub-field, keywords. Net-
works also differ in the range of attributes values (cardinality), their types (discrete 
or continuous) and the size of each group. In one direction, machine learning pipe-
lines such as network representation learning Fan et al. (2021), clustering Chang et al. 
(2019), classification Lee et al. (2017), and community detection Baroni et al. (2017) 
have been developed to study the entire network. Another recent direction, specifi-
cally related to attributed network valued data, is the use of attribute information, in 
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addition to graph topological information, in improving the performance of explora-
tory data analytic techniques such as community detection Berahmand et al. (2022) 
or link prediction tasks Nasiri et al. (2023). Both papers, through careful development 
of methodological analysis using graph regularization and non-negative matrix fac-
torization, and through detailed empirical analysis, show significant improvement for 
such machine learning pipelines via incorporating node attribute information. Driven 
by the scale of data, the main motivation of this paper is network sampling, where 
limited explorations based on random walks are used to learn network level function-
als of attributes.

In real-world networks, the attributes of a node will co-vary and are not independ-
ent. One standard phenomenon in many such real world systems is homophily Shrum 
et  al. (1988); McPherson et  al. (2001); Mislove et  al. (2010), i.e., node pairs with 
similar attributes being more likely to be connected than node pairs with discord-
ant attributes. For instance, many social networks show this property, which is the 
tendency of individuals to associate with others who are similar to them; e.g., with 
respect to the gender, ethnicity, political ideologies. Furthermore, the distribution of 
user attributes over the network is usually uneven, with coexisting groups of different 
sizes, e.g., one ethnic group may dominate others Espín-Noboa et al. (2021). On the 
other hand, another co-variation across neighbors is due to heterophily, where nodes 
with the same attribute type value repel each other.

Performance of network sampling algorithms in such settings has received some 
attention including: the bias of several sampling methods in conserving position of 
nodes and visibility of groups Wagner et al. (2017); the effect of homophily on cen-
trality measures and visibility of minority groups and fairness questions Karimi et al. 
(2018). More recently the synthetic models that motivate this paper were used in 
Espín-Noboa et  al. (2022) to understand the inequality of node ranking algorithms 
(e.g. as measured by the Gini coefficient) as well as inequity (e.g. by contrasting the 
percentage of a given attribute amongst the most popular k%-age of nodes with the 
true demographic percentage of that group), in particular trying to understand the 
foundational characteristics of network evolution such as homophily or preferential 
attachment in (quoting Espín-Noboa et  al. (2022)) “reducing, replicating or ampli-
fying” representation of specific groups by these ranking algorithms. In a different 
direction, Espín-Noboa et  al. (2021) uses these synthetic models to understand the 
accuracy of semi-supervised machine learning tasks such as learning/prediction of 
attribute labels given partial information on the labels of a subset of seeded verti-
ces; the goal is to understand the impact of homophily/heterophily and preferential 
attachment driven growth characteristics of the underlying network on the accuracy 
of a host of popular relational classifiers and collective inference algorithms.

This paper is motived by the lack of theoretical results in the analysis of attribute 
network models with homophily and the development of a learning framework to 
estimate attribute functionals in real networks. We investigate the following research 
questions (RQ).

RQ1 How to analyze and extend the existing network models with homophily and 
derive the main functionals of interest?
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We describe a generalization of the directed preferential attachment model with 
homophily (called model class P ) formulated in Karimi et al. (2018) where new nodes 
connect to existing ones based on the attributes of both end points of the potential edge 
and centrality of the existing vertex. The network model can generate scale-free net-
works with discrete or continuous attributed nodes, and different intensities of homo-
phily. The dynamics of the network is the following. Starting from a fully connected 
cluster of nodes with attributes, each node that arrives has attribute generated inde-
pendently according to a given distribution and connects to a fixed (constant) number 
of nodes. The probability that a new node connects to an existing node is proportional 
to the product of the degree (to the power of a parameter) with a function that meas-
ures the propensity of the two nodes attributes to interact. Thus, the model encodes the 
interplay between the two main mechanisms of tie formation found in social networks: 
preferential attachment and homophily. Given the importance of this model in applica-
tions, theoretical analysis of this model including stability properties of heterophily and 
homophily statistics are of great importance; yet till date the only functional amenable 
to theoretical analysis has been degree distribution Karimi et al. (2018); Jordan (2013). 
We describe a related model of network evolution (called model class U ) which is much 
more amenable to theoretical analysis and a phenomenon we term resolvability which 
enables one to transfer results from model class U to model class P ; in this paper we 
specialize to large network limits for degree distribution for an attribute type and homo-
phily and heterophily statistics, deferring a full treatment to Antunes et al. (2023).

RQ2 How to use the existing link trace algorithms to sample the network and take into 
account the attributes of nodes?

Uniform random sampling of nodes or edges is the “gold standard”, providing unbiased 
estimates of corresponding attribute functionals. However, owing to both computational 
and privacy issues in social networks and other settings, such sampling is often infea-
sible. Other networks that allow random access limit the rate of API (Application Pro-
gram Interface) calls implying that creating a sample of sufficient size takes a prohibitive 
time. In these cases, link trace sampling, such as random walks (RWs) are typically used; 
see references in Antunes et al. (20212021) for estimation of functionals such as degree 
distribution and clustering. However, much less is known in the context of estimating 
quantities influenced by attribute types in homophily networks.

In this work, we consider several existing canonical attribute agnostic sampling 
schemes proposed in the literature (that do not use the attribute type of nodes to con-
struct the sample) such as Metropolis-Hasting random walk and versions of node2vec 
Grover and Leskovec (2016) that incorporate both classical random walk and walks 
with non-backtracking propensities. These random walks have been designed to pre-
serve structural properties of the network in the sample, such as high degree nodes, 
clustering, diameter and not the different types of node attributes. We are interested 
not only in estimating the proportion of nodes with a given attribute but also in the 
structural properties of the sub-network spanned by vertices of a specified attribute 
type including the degree distribution and homophily measures. Our main contribu-
tion here is to show that random walks that use edge weights can be attribute aware 
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samplers through the proposal of variants of node2vec where edge weights depend on 
attributes of its end nodes. This will be especially useful in homophilic networks for 
analyzing geometric properties involving nodes with minority attributes.

RQ3 How to estimate the attribute functionals and homophily measures through the 
sampling schemes and evaluate their performance?

We propose estimators for attribute functionals and homophily measures that are 
based on correcting the bias of the empirical sample quantities through the use of sta-
tionary distribution of the RWs associated in sampling nodes and edges.

We study the performance of the considered random walk sampling schemes in 
terms of estimation error of the attribute distributions and homophily measures 
across the following four dimensions in both synthetic networks using the model 
class P and real world settings: (a) Inherent homophilic propensity of the network 
and underlying density of attributes; (b) Impact of centrality of nodes as measured by 
degree in the evolution of the network; (c) Nonlinear impact of incorporating “escape 
echo chamber” mechanisms in random walks by encouraging walks to jump across 
edges with discordant attributes; (d) Impact of reducing the backtracking propensity 
to encourage walks to explore more of the network.

We find that (i) RWs with attribute dependent weights can perform better over 
attribute agnostic RWs in homophilic networks; (ii) the weights need to balance the 
movements between/within nodes with different/same attributes; (iii) non-back-
tracking improves performance, especially in conjunction with attribute dependent 
weights and low edge density; (iv) methods seem to work comparably well for syn-
thetic and real networks.

This paper is a significant extension of the conference paper Antunes et al. (2023) 
including: (a) appreciable expansion of the theoretical developments to the network 
models described in Antunes et al. (2023), including describing the notion of resolv-
ability of such models which allows one to connect them to a different class of models 
for which asymptotic analysis for a wide range of functionals, such as degree expo-
nent for an attribute type, homophily and heterophily statistics can be undertaken; 
(b) substantial expansion of the methodological development of the paper, including 
a new class of functionals (degree distribution for an attribute and homophily meas-
ures) to be estimated through network sampling schemes; (c) new network sampling 
schemes from node2vec variants; (d) further applications of the methodology devel-
oped to new network data for evaluation and comparison; and (e) a final section with 
extensions and future directions of the work.

Attributed network models and homophily functionals
As described above, synthetic models have been used to great effect in understanding 
the structure and evolution of attributed networks and the impact of ranking, sam-
pling and classification algorithms in such settings. The overarching goal in this sec-
tion is to describe an extension of the canonical (linear) attributed network models 
currently considered in the literature. We refer the interested reader to Karimi et al. 
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(2018); Espín-Noboa et al. (20222021) and the references therein for further discus-
sion on motivations and use of such models. More concretely in this section: 

(a) We will describe the main synthetic model, termed non-linear preferential attach-
ment (NLPA) model with homophily, and referred to for the rest of the paper as 
model class P.

(b) We will give concrete formulations of key network functionals measuring homoph-
ily between different groups.

(c) Understanding (large network) asymptotics for model class P is non-trivial. We 
will introduce a related model (referred to as model class U ), that seems signifi-
cantly more amenable to analysis, formalize a notion called resolvability, connect-
ing model classes P and U and then describe the explicit results that can be derived 
for model class P , at least in the linear case using U . Technical justifications of 
these connections can be found in Antunes et al. (2023).

Fix an attribute (or latent) space A with probability measure μ. Fix a (potentially asym-
metric) function f : A×A → R+ which measures propensities of node pairs to interact 
based on their attributes. Fix α ≥ 0 describing the role of degree in measuring popular-
ity and integer m ≥ 1 denoting the number of edges a new vertex has when entering 
the system, to connect to pre-existing vertices. In principle m could be random and/or 
dependent on the attribute type, but for simplicity and to match existing literature (e.g. 
Karimi et al. (2018)) we focus on the fixed m setting (see Antunes et al. (2023) for results 
when m is attribute dependent). Let N be the number of nodes (vertices) in the network. 
In the model class P , nodes {vn : 1 ≤ n ≤ N } enter the system sequentially starting at 
n = 1 with a base connected graph G1 (with every node having an attribute in A ) with 
dynamics: 

 (i) Every node vn has attribute a(vn) ∈ A generated independently using µ.
 (ii) Node vn enters the system with m edges.
 (iii) The dynamics for connecting each of the m edges are recursively defined as fol-

lows: suppose the network has been constructed till stage n with structure Gn . For 
any n and 0 ≤ i ≤ m− 1 and v ∈ Gn , let degi(v, n) denote the degree of v at time n 
when i of the edges of vn+1 have connected to Gn . Conditional on Gn and stage i, the 
probability that the (i + 1) th edge of vn+1 connects to v ∈ Gn is proportional to: 

 Once this edge has connected, all the degrees are updated and the above dynam-
ics is repeated till all m edges have connected to Gn . When m = 1 , then each new 
vertex has only one edge to connect to the network and in this case we write 
deg(v, n):= deg0(v, n).

We will refer to this as model class P (or P (α,µ, f ) when we want to specify all the 
parameters; we suppress dependence on m to ease notation) and sometimes write 
{Gn : 1 ≤ n ≤ N } ∼ P (α,µ, f ) . The model (1) extends various existing models including: 
Barabási-Albert model Barabási and Albert (1999) ( f ≡ 1 , α = 1 ), sublinear PA Krapivsky 
and Redner (2001) ( f ≡ 1 , 0 < α < 1 ), PA with multiplicative fitness Bianconi and Bara-
bási (2001) ( f (a, a′) = a , α = 1 ), scale free homophilic model de Almeida et  al. (2013) 

(1)Pvn+1v ∝ f (a(v), a(vn+1))[degi(v, n)]
α .
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( f (a, a′) = 1− |a− a′| , A = [0, 1] , α = 1 ), and geometric versions with α = 1 , a compact 
metric space A and an appropriate function f of the distance Flaxman et al. (2007) and Jor-
dan (2013). Most existing studies focus on asymptotics for either the degree distribution or 
maximal degree. The notation used in the paper is summarized in Table 1.

Homophily functionals

When the latent space A = {1, 2, . . . ,K } is finite, one can define macroscopic measures of 
homophily, and conversely heterophily Park and Barabási (2007), from an observed net-
work G (either synthetic or empirically observed) on N nodes as follows. Let E denote the 
total edge set; for a ∈ A , let Va be the set of nodes of type a, and for a, a′ ∈ A , let Eaa′ be 
the set of edges between nodes of types a and a′ . Let p = |E |/

N
2  be the edge density. For 

a ∈ A , dyadicity

measures the contrast in edges within the cluster of nodes a as compared to a setting 
where all edges are randomly distributed; thus Da > 1 signals homophilic characteristics 

(2)Da = |Eaa|
/((

|Va|

2

)
p

)

Table 1 Summary of the main notation

Notation Description

P (α,µ, f ) Model class P (non-linear preferential attachment model with homophily)

A Attribute space

µ Attribute distribution of an arriving node

α Preferential attachment parameter

f (a, a′) Propensity of a pair of nodes with attributes a and a′ to interact

m Number of edges a new node entering the system connects to pre-existing nodes

degi(v , n) Degree of v at time n when i of the edges of vn+1 have connected to the network

U (α, ν , f ) Model class U

ν Resolvable measure

E Set of edges of the network

N Number of nodes in the network

Va Set of nodes of type a

Eaa′ Set of edges between nodes of attributes a and a′

Da Dyadicity of nodes with attribute a

Haa′ Heterophilicity between nodes with attributes a and a′

p(a) Proportion of nodes with attribute a

|.| Number of elements of a set

p(k|a) proportion of nodes of degree k having attribute a

.̂ Estimator of a quantity

di Degree of node i

πi Probability of sampling node i

π(i,j) Probability of sampling edge (i, j)

wij Eeight of edge (i, j)

θ propensity of N2V to backtrack

 γ ( β) Propensity of a N2V to reach a (non-)common neighbor of the currently visited node

and the previously visited node

δ Spectral gap
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of type a nodes while Da < 1 signifies heterophilic nature of type a nodes. Similarly, for 
a  = a′ , heterophilicity

denotes propensity of type a nodes to connect to type a′ nodes as contrasted with ran-
dom placement of edges with probability equal to the global edge density. If Haa′ < 1 , 
nodes of opposite labels do not tend to be connected (homophilic); if Haa′ > 1 , there are 
more connections between nodes of different labels a and a′ (heterophilic).

Illustrations of homophilic synthetic networks of the model class P (α,µ, f ) gener-
ated from (1) are given in Fig.  1. The total number of nodes is N = 1000 and each 
node has an attribute in A = {1, 2, 3} according to the probability mass function 
(p.m.f.) µ = (0.7, 0.2, 0.1) ; the propensities of node pairs to connect based on their 
attributes are f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 2 . The networks 
are plotted for different values of α in Fig. 1a–c. For instance, with α = 0.2 , the cor-
responding homophily measures are D1 = 1.364 , D2 = 3.038 , D3 = 7.38 , H12 = 0.336 , 
H13 = 0.386 and H23 = 0.399 . Figure  2 shows the case of heterophilic networks 
with N = 1000 of the model class P (α, (0.7, 0.2, 0.1), f ) for different values of α with 
f (a, a) = 0.2 , f (a, a′) = 0.4 , a  = a′ = 1, 2, 3 and m = 2 . For α = 1 , the homophily 

(3)Haa′ = |Eaa′ |/(|Va||Va′ |p)

(a) (b) (c)
Fig. 1 Networks generated by the model class P (α,µ, f ) with homophily where N = 1000 , 
µ = (0.7, 0.2, 0.1) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 2 a α = 0.2 , b α = 1 , c α = 1.2

(a) (b) (c)
Fig. 2 Networks generated by the model class P (α,µ, f ) with heterophily where N = 1000 , 
µ = (0.7, 0.2, 0.1) , f (a, a) = 0.2 , f (a, a′) = 0.4 , a  = a′ = 1, 2, 3 and m = 2 a α = 0.2 , b α = 1 , c α = 1.2
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measures are D1 = 0.750 , D2 = 0.772 , D3 = 0.750 , H12 = 1.479 , H13 = 1.615 and 
H23 = 1.873.

Model class U and rationale

While model class P has been heavily used in applications, deriving large network 
asymptotics of functionals is non-trivial. Next we will describe a related network model 
(model class U ), the rationale for why this might be more amenable to analysis, and then 
formalize situations where given P , one can construct (using as input the parameters 
α,µ, f  from P ), a corresponding model in class U such that properties of P can be read 
off from (the more easily analyzable) U . For most of this discussion we will only consider 
the m = 1 setting, albeit the formulae for asymptotics for various functionals considered 
below seem to extend, at least in simulations, in a straightforward manner to general m 
setting.

Since the general setting (with “continuous” attribute space) is more technical, let us 
explain the basic rationale in the simpler discrete setting where S = [K ]:={1, 2, . . . ,K } 
so that µ is a p.m.f.. Fix a (potentially and in most cases different from µ ) p.m.f. ν and 
consider the attributed network model 

{
G̃n : n ≥ 0

}
 with dynamics:

Note that the above model is invariant to scaling in ν , so it will be convenient to allow 
ν to be a general weight sequence instead of normalizing it to be a probability measure.

The above belongs to a general class of models defined below that we will refer to as 
U (α, ν, f ) . Thus, here the p.m.f. ν plays the role of a weight and further, unlike the model 
P where each new arriving vertex has attribute sampled independently from the current 
state of the network, here the distribution of new vertices is closely dependent on the 
entire state of the current network.

Rationale for technical tractability: Tabling the issue of connection with P for the next 
sections, first note that U can be simulated via dynamics where every vertex essentially 
behaves independently ((c) below). In brief, if one wanted to simulate model class U 
starting from one vertex of type a, then this can be done as follows: 

(a) Every vertex v that enters the system (starting with the root of type a) gives birth 
independently to child nodes with attributes in continuous time, connected to the 
vertex.

(b) For a node of type a, conditional on its degree d, the rate of reproduction of a child 
node of type a′ is ν(a)f (a, a′)dα.

(c) Reproduction dynamics is independent across nodes.

Write {BP (t) : t ≥ 0} for the (continuous time) process and for any n ≥ 1 , Tn be the 
(random) time such that the size |BP (Tn)| = n . (BP stands for Branching Process.) Then 
it is easy to check that {BP (Tn) : 1 ≤ n ≤ N } has the same distribution as {
G̃n : 1 ≤ n ≤ N

}
∼ U (α, ν, f ) . Further the independence in the evolution makes this 

model much more amenable to analysis, yielding asymptotic information for the process 
BP and thus the model U.

(4)P

(
a(vn+1) = a⋆, vn+1 � v|G̃n

)
:=

ν(a⋆)f (a(v), a⋆)[deg(v, n)]α∑
a∈[K ]

∑
v′∈G̃n

ν(a)f (a(v′), a)[deg(v′, n)]α
.
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Resolvability

Note that the main model of interest, both as a synthetic test bed in this paper, and in 
pre-existing work, is the model class P . The main goal of this section is to formalize a 
connection between model classes P and U . Given 

{
G̃n : 0 ≤ n ≤ N

}
∼ U (α, ν, f ) , for 

n ≥ 1 define π̃n =
∑n

t=1 δ{a(vt)} , i.e. the empirical measure of attributes in G̃n.
Now say that model P (α,µ, f ) is resolvable if there exists ν such that for the model 

class U (α, ν, f ) , the empirical measures of attribute types satisfy: π̃n → µ as n → ∞ . In 
words, one can chose a weight measure ν such that the corresponding dynamics for U 
with the same α and f drives the empirical distribution to the limiting empirical distribu-
tion µ of model class P (since every new vertex has attribute distribution µ independent 
of the network evolution).

Resolvability in the linear finite attribute case

The linear case ( α = 1 ) with a finite attributes S = [K ] turns out to be completely resolv-
able under the following.

Assumption 1 Assume the sampling measure µ = (µ1, . . . ,µK ) has all entries strictly 
positive and assume the affinity kernel f (a, a′) > 0 , ∀a, a′ ∈ [K ].

Fix a model class P (α = 1,µ, f ) satisfying the above Assumption. Let P([K ]) denote 
the K − 1 dimensional simplex of probability mass functions on [K]. Define (in the inte-
rior of P([K ]) ) the function:

By Jordan (2013, P8), under the above Assumption, Vµ(·) has a unique minimizer 
η:=η(µ) = (η1(µ), . . . , ηK (µ)) in the interior of P(S) . Now, define

where the final identity follows from Jordan (2013, P8). Let ν = (ν1, . . . , νK ) . Then the 
following paraphrases some of the results in Antunes et al. (2023): 

1. Under the above Assumption, model P (α = 1,µ, f ) is resolvable with one resolving 
measure ν given as above. This implies, in particular, local functionals (such as degree 
distribution PageRank) converge to the same limits as those for U (α = 1, ν, f ) . Two 
specific implications are given next.

2. For each a ∈ [K ] , the empirical p.m.f. of vertice degrees of type pan
P

−→pa∞ where the 
limit p.m.f. has tail exponent pa∞(k) ∼ k1+2/φa as k → ∞.

3. Using the objects defined in (5), define the matrix 

Vµ(y):=1−
1

2

∑

j∈S

µj

(
log(yj)+ log(

∑

k∈P

yk f (k , j))

)
, y ∈ P([K ]).

(5)νa:=
µa∑K

l=1 f (l, a)ηl
, φa,b:=f (a, b)νb, φa:=

K∑

b=1

φa,b = 2−
µa

ηa
,

(6)M =

(
Ma,b:=

φa,b

2− φa

)

a,b∈[K ]

.
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 Then the homophily and heterophily statistics 
{
Dn,a : a ∈ [K ]

}
 and {

Hn,(a,a′) : a �= a′ ∈ [K ]
}
 satisfy the asymptotics, 

Remark 1

Result (b) above was previously derived in Jordan (2013) using stochastic approximation 
techniques.

The results above are illustrated numerically in Fig. 3 and Tables 2 and 3. We fixed the 
model class P (1, (0.7, 0.2, 0.1), f), where f (a, a) = 0.8 , f (a, a′) = 0.1 , for a  = a′ = 1, 2, 3 
and m = 1 . The model is resolvable with resolving measure ν approximately equal to 
(0.742, 0.189, 0.069). We generate the model classes P and U = (α, ν, f ) using (1) and 
(4), respectively, for different network sizes. Figure 3 shows the degree distributions of 
attribute 2 for both models which are getting closer as N increases. In the limit they 
converge to the same p.m.f.. We fit a power-law distribution function using a maximum 
likelihood approach to the empirical degree distribution tail per attribute of the model 
class P for each network size. The respective tail exponents are shown in Table 2 with 
the asymptotic limit p.m.f. tail exponent 1+ 2/φa . Finally, the empirical and asymptotic 
dyadicity and heterophilicity measures, respectively, (2), (3) and (7), are given in Table 3. 

(7)Dn,a
P

−→
[M]a,a

µa
, Hn,(a,a′)

P
−→

1

2

[
[M]a′,a

µa
+

[M]a,a′

µa′

]

Fig. 3 Degree distribution of attribute 2 under model classes P (α,µ, f ) and U (α, ν , f ) for different network 
sizes N, where α = 1 , µ = (0.7, 0.2, 0.1), ν ≈ (0.742, 0.189, 0.069) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 
and m = 1

Table 2 Tail exponent of the degree distribution per attribute of model class P (α,µ, f ) for different 
network sizes N and asymptotically ( N → ∞ ), where α = 1 , µ = (0.7, 0.2, 0.1), f (a, a) = 0.8 , f (a, a′) = 0.1 , 
a  = a′ = 1, 2, 3 and m = 1

Attribute 1 2 3

Asym. 2.892 3.256 3.782

model class P

N = 5000 2.933 3.352 3.547

N = 10000 2.950 3.230 4.079

N = 30000 2.983 3.310 3.742
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The results show that complicated functionals of the model class P can be easily approx-
imated with good precision even for moderate network sizes.

Random walk samplings in attributed networks
Since many real-world networks can only be crawled, in the sense that only the neigh-
bors of the current visited node can be explored, we consider sampling procedures that 
are based on random walks. They are also a core technique for constructing various 
algorithms to extract information on networks, such as community detection, ranking 
of nodes and edges, and dimension reduction. We introduce well-known random walks 
which are attribute agnostic. These random walks have been designed to preserve struc-
tural properties of the network and not the representativeness of node attributes in the 
sample. We are interested (see next section) in estimating the attribute distribution but 
also structural properties (node degrees) depending on the node attributes. We show 
next that some random walks that use edge weights can be attribute aware samplers. 
This will be especially useful in homophilic networks. Throughout this section, for graph 
G and node i ∈ G , di will denote its degree. We assume a static graph and that only lim-
ited set of initial seed nodes i ∈ G that initializes the random walk are available. When 
we say that a node is sampled, it means that its attribute a(i) (and degree d(i) dependent 
on the quantities of interest) is added to the sample.

Metropolis Hastings Random Walk (MHRW) At each step, if the walk is currently 
at node i, a neighbor j is selected uniformly at random and the proposed move to j is 
accepted with probability min(1, di/dj) , else the walk stays at i. Thus proposed moves 
towards a node of smaller degree are always accepted whilst we reject some of the pro-
posed moves towards higher degree nodes. It is easy to check that the stationary distri-
bution is uniform over the node set, i.e.,

The stationary distribution over the edge set is

Node2vec (N2V) As proposed in Grover and Leskovec (2016), in full generality, the tran-
sitions of N2V depend on the neighborhood both of the currently visited node, and the 
node visited prior to the current node. Let the previously and currently visited nodes 

(8)πi = 1/N , 1 ≤ i ≤ N .

(9)πij =
1

Ndi
, (i, j) ∈ E .

Table 3 Homophily measures of model class P for different network sizes N and asymptotically 
( N → ∞ ), where α = 1 , µ = (0.7, 0.2, 0.1), f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 1

D1 D2 D3 H12 H13 H23

Asym. 1.369 3.183 4.038 0.3074 0.4059 0.4633

model class P

N = 5000 1.391 3.115 3.961 0.312 0.393 0.4362

N = 10000 1.384 3.226 3.459 0.291 0.433 0.448

N = 30000 1.363 3.185 3.774 0.316 0.415 0.476
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be k and i, resp. The next visited node j is chosen according to the transition probability 
proportional to:

where wij is the weight of edge (i, j), θ is the parameter that represents the propensity for 
the random walk to backtrack, γ is the quantifying probability of reaching a common 
neighbor of the currently visited node and the node visited in the last step, and β is the 
parameter of exploring any of other neighbor–see Fig. 4. N2V is a second order Markov 
chain. We now describe specific variants of this random walk which includes some clas-
sical versions.

Node2vec-1  (N2V-1): If the network is undirected, unweighted and θ = β = γ , one 
obtains the classical RW with the well-known stationary distributions,

Node2vec-2 (N2V-2): If the network is undirected and θ = β = γ , one obtains a weighted 
RW. This walk can use node attributes through weights in contrast to N2V-1. We assume 
that for each sampled node i, we have access to the attributes of the neighbors of i. If 
there is a connection between i and j, the weight wij is a function of a(i) and a(j). In a 
homophilic network, setting wij to a lower value if nodes have equal attributes encour-
ages the sampling of nodes with different attributes. The stationary distributions in this 
case are given by

Node2vec-3 (N2V-3): If the network is undirected, without self-loops, multiple edges and 
β = γ , θ > 0 , with equal weights wij , the stationary distributions for nodes and edges 
are given by (10) Meng and Masuda (2020). With small θ , the walk approaches the non-
backtracking random walk avoiding 2-hop redundancy in the sample.

Node2vec-4  (N2V-4): We consider next the combination of the last two schemes, 
with β = γ , θ > 0 and weights wij dependent on the attributes of i and j. In this set-
ting, one major technical hurdle is that, unlike the settings above, there is no explicit 
formula for the stationary distributions. Analogous to the stationary distributions for 

p(j|k , i) ∝





βwij , k �= j, (k , j) /∈ E ,
γwij , k �= j, (k , j) ∈ E ,
θwij , k = j,

(10)πi =
di

2|E |
, πij =

1

|E |
.

(11)πi =

∑
j wij∑

k

∑
j wkj

, πij =
wij∑∑

k<l

wkl
.

Fig. 4 Node2vec node transitions. The random walk has transitioned from k to i and is now evaluating the 
next step out of i 
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N2V-3 matching the usual RW in the stationary regime, it is expected that especially in 
the small θ setting, the stationary distributions can still be approximated by those in (11). 
We explore the efficacy of these approximations for moderate size synthetic networks 
below.

Node2vec-5 (N2V-5): In this variant the weights wij are equal to 1 and θ , γ and β are 
different. To enhance the exploration of the network to sampled nodes which are fur-
ther away from the previous visited nodes, we consider the case θ < γ < β . The station-
ary distributions in this case are not known and we will use the empirical distribution 
obtained through simulations.

Node2vec-6  (N2V-6): This is the more general variant extending N2V-5 to have 
weights. Again, the most interesting case is θ < γ < β . As in N2V-5 the stationary dis-
tributions are unknown. However, we include this sampling scheme for a full evaluation 
of the performance of N2V. We believe that for the network model an approximation can 
be obtained for stationary distributions through the resolvability of the model classes P 
and U . Due to the technical nature of the problem, it is outside the scope of this paper, 
and will be considered in a future work.

For comparison to RWs, we will also use the following baseline samplings. These can 
be viewed as “ideal” for sampling purposes and correspond to the limiting distributions 
of some RWs.

Node Sampling (NS) NS sampling requires full access to the network and is unavailable 
for many real networks. In the classical NS, nodes are chosen independently and uni-
formly from the network with replacement.

Edge Sampling (ES) In the classical ES, edges are chosen independently and uniformly 
from the network with replacement. Since ES selects edges rather than nodes to popu-
late the sample, the node set is constructed by including both incident nodes in the sam-
ple when a particular edge is sampled.

Estimation of attribute distributions and homophily measures
We consider here estimation in the case of discrete-valued attributes; the case of contin-
uous-valued attributes is discussed at the end of this work. Our estimators of quantities 
of interest will be based on one of the following two general estimators. The first estima-
tor is for the proportion p(A) of nodes i with a certain characteristic A(i) taking value A. 
The characteristic takes discrete values and could be the discrete attribute ai = a(i) itself, 
the degree di = d(i) , the combination of the latter two, etc. The estimator of p(A) for a 
random walk is defined as follows. Run a random walk (any of the sampling schemes 
described above) for n steps and let is denote the sth node sampled by the random walk, 
for 1 ≤ s ≤ n . Since nodes are sampled with replacement and with probabilities πi in the 
stationary regime, the proportion p(A) can be estimated as

where 1{E} = 1 if E is true and 0 otherwise Kolaczyk (2009) (Chapter  5). If the total 
number of nodes N is unknown, its estimator is given by N̂ = (1/n)

∑
s 1/πis , and (12) 

becomes

(12)p̂(A) =
1

Nn

n∑

s=1

1{A(is) = A}

πis

,
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A direct application of e.g. (12) yields the following estimators for the proportion p(k, a) 
of nodes with degree k and attribute a, the proportion p(a) of nodes with attribute a, and 
the conditional proportion p(k|a) = p(k , a)/p(a) of nodes of degree k having attribute a:

 We note that the quantities in (14)–(16) are given in terms of the sample obtained 
through the random walk used with N estimated by N̂ .

The performance of p̂(A) in (12) and hence the components of the estimators 
(14)–(16) can be assessed through their MSE. For fixed A, the MSE of p̂(A) is given 
by E[(p̂(A)− p(A))2] . In the stationary regime, p̂(A) in (12) is an unbiased esti-
mator of p(A) and the MSE is equal to the variance V [p̂(A)] . The variance of p̂(A) 
can be related to the spectral gap of the RW. More specifically, let P be the associ-
ated transition matrix of the random walk with eigenvalues (real by reversibility): 
1 = �1 ≥ �2 ≥ . . . ≥ �N ≥ −1 . The spectral gap is defined as δ = 1− �2 . Equivalently, 
the relaxation time of the RW is the reciprocal of the spectral gap. A larger spec-
tral gap implies a faster convergence of the RW to its stationary distribution. From 
Aldous and Fill (2002) (Proposition 4.29), we have

where �(A) =
∑N

i=1 1{A(i) = A}/(N 2πi) . The error in estimating the proportion of 
nodes with characteristic A is thus proportional to the inverse of the spectral gap and 
�(A) ; the latter is small if the probability of sampling nodes with characteristic A is 
large. We will see in Section Experiments that for N2V-2, if edge weights wij are inversely 
related to the concordance of the attributes, thus encouraging the walk to explore verti-
ces with different attributes, then in some settings, this increases δ and decreases �(a) 
(for attributes with small proportions), resulting in a smaller variance of the estimator 
for the proportion p(a) of nodes with attribute a.

The second estimator is for the proportion p(B) of edges (i, j) with a certain charac-
teristic B(i, j) taking value B. The values B are assumed to be discrete. For the random 
walk considered above, since edges are sampled with probabilities πij in the stationary 
regime, the proportion p(B) can be estimated similarly to (12) as

(13)p̂(A) =
1∑n

s=1 1/πis

n∑

s=1

1{A(is) = A}

πis

.

(14)p̂(k , a) =
1

Nn

n∑

s=1

1{d(is) = k , a(is) = a}

πis

, a ∈ A,

(15)p̂(a) =
1

Nn

n∑

s=1

1{a(is) = a}

πis

, a ∈ A,

(16)p̂(k|a) =

n∑

s=1

1{d(is) = k , a(is) = a}

πis

/ n∑

s=1

1{a(is) = a}

πis

, a ∈ A.

(17)V (p̂(A)) ≤
2�(A)

δn

(
1+

δ

2n

)
,
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and if needed, the number of edges as

A direct application of (18)–(19) is to estimation of homophily measures Da and Haa′ in 
(2) and (3) as:

where |̂Va| = N̂ p̂(a) , p̂ = |̂E |/
(
|̂N |
2

)
 and

where a, a′ ∈ A . We note again that the quantities in (19)–(21) are given by the sample 
obtained through the respective random walk used. We are not aware of the results of 
the type (17) to assess the variability of the estimator p̂(B) in (18).

In terms of complexity of the learning framework, the random walks considered 
in this work are computationally efficient in terms of both space and time require-
ments Grover and Leskovec (2016). For instance, for each visited node, we need to 
check the immediate neighbors and their attributes. For the second order random 
walks (N2V-3, -4, -5 and -6), we need additionally to keep track of the interconnec-
tions between the neighbors of the current visited node, however, the average degree 
of the graph is usually small for most real world networks. The proposed estimators 
are obtained from simple weighted sample statistics.

Experiments
In this section, we assess the performance of the sampling methods and estimators 
in learning the attribute distribution, degree distribution per attribute and homoph-
ily measures on synthetic and real-world networks with discrete attributes.

Synthetic network with homophily

We consider the model class P (α,µ, f ) with N = 2000 nodes and 3 discrete attrib-
utes. In the generation of the network, each node that enters the system has attribute 
1, 2 or 3 with probabilities µ1 = 0.7 , µ2 = 0.2 , µ3 = 0.1 , respectively, and connects 
to m = 2 nodes proportional to (1), where f (a, a) = 0.8 , f (a, a′) = 0.1 , a, a′ = 1, 2, 3 , 
a  = a′ . We investigate the effect of homophily in the estimation of the quantities of 
interest in a controlled environment for the two most interesting network topolo-
gies: sublinear ( α = 0.2 ) and linear ( α = 1).

(18)p̂(B) =
1

(n− 1)|E |

n−1∑

s=1

1{B(is, is+1) = B}

πis ,is+1

(19)|̂E | =
1

n− 1

n−1∑

s=1

1

πis ,is+1

.

(20)D̂a = ̂|Eaa|
/((

|̂Va|

2

)
p̂

)
, Ĥaa′ = |̂Eaa′ |

/(
|̂Va||̂Va′ |p̂

)
,

(21)|̂Eaa′ | =
1

n− 1

n−1∑

s=1

1{(a(is), a(is+1)) = (a, a′) ∨ (a(is), a(is+1)) = (a′, a)}

πis ,is+1

,
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Attribute distribution

Setting 1 ( α = 0.2 ): The evaluation of the several sampling methods in learning the 
attribute distribution using (15) assuming N unknown is shown in Fig. 5. Each boxplot is 
constructed from the results of 500 estimates. The length of each walk is 0.15N. MHRW 
has an important property that the stationary distribution is uniform over all the nodes. 
Thus, in principle, MHRW is equivalent to RNS of the network for an infinite RW. In 
practice, MHRW typically requires sample sizes of O(N) to achieve the stationary dis-
tribution Kumar and Sundaram (2021). It is challenging to use MHRW for large scale 
networks with millions of nodes, where typical sample size is much smaller than the net-
work size. Networks with a strong homophily are problematic in this case since MHRW 
tends to get stuck in nodes with the same attributes. The classical variant of node2vec, 
N2V-1, which like MHRW is also attribute agnostic has the property that the stationary 
distribution is uniform over all the edges. N2V-1 is equivalent to RES of the network 
for an infinite RW. In practice, it suffers from the same drawbacks of MHRW to a lower 
extent. The poor performance can also be explained through the bound of the variance 
(17). Table   4 shows that MHRW has the lowest spectral gap while N2V-1 has a high 
value �(3) for attribute 3 (this is detailed next for N2V-2).

The attribute aware samplers like N2V-2 use node attribute to determine the next 
node to add to the sample, by checking the attribute of the node against the attribute of 
the last node added to the sample. To simplify the exposition (instead of wij for nodes i 
and j), we write waa for the weights of nodes with the same attributes, and waa′ with dif-
ferent attributes. Table 5 shows the effects of the weights in the standard deviation of 
the estimate for N2V-2 for attribute 3. To explain their differences, we turn to the bound 
of the variance of the estimator (17). The error in estimating the proportion of nodes 

Fig. 5 Boxplots of 500 estimates of the attribute distribution under model class P (α,µ, f ) with homophily 
where N = 2000 , α = 0.2 , µ = (0.7, 0.2, 0.1) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 2 . The 
sample size for each sampling method is 0.15N. N2V-2 ( wij = 0.3 if nodes have equal attributes and 1 
otherwise); N2V-3 ( θ = 10−3 , β = γ = 1 ), N2V-4 ( θ = 10−3 , β = γ = 1 , wij = 0.3 if nodes have equal 
attributes and 1 otherwise), N2V-5 ( θ = 10−3 , γ = 0.1,β = 1 ), N2V-6 ( θwij = 10−3 , γwij = 0.1 , and βwij = 0.3 
if nodes have equal attributes and 1 otherwise). The red dotted lines represent the true values p(a), a = 1, 2, 3

Table 4 The variation of spectral gap (δ) and �(3) from the bound of the variance of p̂(3) under 
model class P (α,µ, f ) and sampling method parameters as described in Fig. 5

MH N2V-1 N2V-2 N2V-3 N2V-4 N2V-5 N2V-6

spectral gap (δ) 0.064 0.137 0.110 0.359 0.421 0.380 0.420

�(3) 0.102 0.149 0.116 0.149 0.120 0.150 0.120
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with an attribute a is upper bounded by the inverse of the spectral gap. If waa is much 
smaller than waa′ = 1 , say waa = 0.05 , then the movements of N2V-2 between different 
node attributes are very frequent and exploration within each attribute is insufficient. 
In this case, the spectral gap is low creating a bottleneck for approaching the station-
ary probability. As waa increases the inter-attribute moves are less frequent, accelerating 
the convergence to the stationary distribution. On the other hand, when waa becomes 
greater or equal than waa′ , the spectral gap decreases until that N2V-2 hardly transits 
from one attribute value to another. The error in estimating the attribute distribution 
is also bounded by the quantity �(a) which is small if the probability of sampling nodes 
with attribute a is large. We also observe from Table 5 the effect of waa on the value �(a) 
for attribute 3. The tradeoff between δ and �(a) explains the smaller standard deviation 
for attribute 3 of N2V-2 with waa = 0.25 . The convex behavior of the empirical standard 
deviation as a function of waa will be explored at the end of this work in the guidelines 
for setting the weights of attribute aware samplers.

In N2V-3, the parameter θ of the propensity for the random walk to backtrack is set 
close to zero θ = 10−3 such that if the walker arrives at a node with degree 1, it always 
backtracks in the next time step since this is the only possible move, and β = γ = 1 . In 
this case, N2V-3 tends to explore better the network, avoiding the redundancy of nodes 
in the sample which accelerates the convergence (see the spectral gap in Table 4). The 
result is consistent with the non-backtracking RWs on regular graphs Alon et al. (2007). 
In many cases, they find spectral gap “twice as good” compared to the classical RW, as 
also in our case.

N2V-4 combines features of both attribute aware and non-backtracking samplers. We 
use the same weights and backtracking parameters as in N2V-2 and N2V-3 above. Since 
the stationary distribution πi in (15) is not known, it is obtained through simulations. 
The results show that N2V-4 can provide better estimates with lower variability com-
pared to N2V-2 and N2V-3. This can be explained by the increase of the spectral gap 
while keeping �(a) small for attribute values 2 and 3 (see Table 4). We have confirmed 
the use of the approximation in (11) for the stationary distribution of N2V-4. The choice 
is heuristic but the results show very good accuracy compared to the empirical distribu-
tion for this network scenario.

N2V-5 ignores the attributes of nodes while sampling the network. We set θ = 10−3 , 
γ = 0.1 and β = 1 , forcing the RW to explore non-common neighbors of the previous 
and currently visited nodes. The performance is worse compared with N2V-4 with the 
decrease of the spectral gap and the increase of �(3) (Table   4). N2V-6 is the version 
of N2V-5 with attribute aware sampling. We now set βwij = 0.3 if nodes have equal 

Table 5 Empirical standard deviation of p̂(3) , and the variation of spectral gap (δ) and �(3) (from 
the bound of the variance of p̂(3) ) with N2V-2 ( wij = 1, a(i) �= a(j)) under model class P (α,µ, f ) where 
N = 2000 , α = 0.2 , µ = (0.7, 0.2, 0.1) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 2

wij , a(i) = a(j) 0.05 0.25 0.5 0.75 1 1.25 1.5

SD 0.070 0.054 0.058 0.059 0.062 0.073 0.075

Spectral gap (δ) 0.027 0.098 0.1344 0.139 0.137 0.130 0.122

�(3) 0.142 0.115 0.124 0.137 0.149 0.160 0.171
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attributes and 1 otherwise as in N2V-4 and keep the other parameters used in N2V-5. 
There is an improvement of performance, however, its variability is similar to N2V-4. 
In both N2V-5 and -6, the stationary distributions used in the estimation are obtained 
through simulations.

Setting 2 ( α = 1 ): We next consider the linear model class P (1,µ, f ) case, where µ , f, N 
and the sampling rate are the same as in Setting 1. The boxplots of 500 estimates for each 
sampling scheme using (15) are given in Fig. 6. In this case, the performance of MHRW 
is worse due to the existent of high degree nodes which tend to be avoided by MHRW, 
reducing the spectral gap. Note that high degree vertices increase “conductance” in the 
network (small world phenomenon) and hence avoiding them decreases the mixing time 
of MHRW. For the variants of N2V the estimates for attributes 2 and 3 tend to be bet-
ter. This can be explained by the homophily and preferential attachment in the model 
which enables different types of attachment propensities as we now indicate. The attrib-
utes with small proportions 2 and 3 will be mainly attracted by the same node attributes. 
However, due to the preferential attachment, nodes with attributes from small propor-
tions will also be partly attracted to the majority proportion of nodes with attribute 1 
(see Fig. 1b). Therefore, the variability in the estimation tends to be smaller for attrib-
utes with lower proportions. The ranking of the performance of sampling methods is the 
same as in the sublinear case.

Other settings such as the presence of weak homophily and balanced attributes, i.e. 
the distribution of attributes in the network being uniform will be investigated with real 
data.

Degree distribution per attribute

Setting 3 ( α = 0.2 ): Fig.  7 depicts the boxplots of the estimation error 
(
∑

k(p̂(k|a)− p(k|a))2)1/2 of the degree distribution per attribute for a sublinear net-
work from 500 estimates under MHRW, N2V-1 to -4, and baseline sampling methods. 
Since the stationary distributions of N2V-5 and -6 are not known and the N2V-5 and 
-6 performances approach N2V-3 and -4, respectively, we omitted them in the plot. The 
number of nodes sampled is 0.2N and the parameters of N2V-3 and 4 are the same as 
in Setting 1. N2V-4 achieves the highest performance especially for attributes 2 and 3 
(even compared with RES) due to being attribute aware. We use its empirical station-
ary distribution and also check the approximation (11) which shows similar boxplots. 

Fig. 6 Boxplots of 500 estimates of the attribute distribution under model class P (α,µ, f ) with α = 1 . See 
Fig. 5 for the remaining parameters of the model and sampling methods
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On the other hand, MHRW has a poor performance compared with the baseline RNS. 
The results for the variants of N2V are consistent with the estimation of the attribute 
distribution.

Homophily measures

Setting 4 ( α = 1 ): The homophily measures are D1 = 1.34 , D2 = 3.44 , D3 = 4.87 , 
H12 = 0.28 , H13 = 0.37 , H23 = 0.56 . Figure 8 shows the estimates of the dyadicity and 
heterophilicity using N2V variants with known or approximate stationary distribution. 
The estimators in (20) involves the ratio of several quantities which are sensitive to small 
deviations. Thus a larger sample size 0.3N is used to reduce the variability. The other 

Fig. 7 Boxplots of 500 estimation errors of the degree distribution per attribute under model class P (α,µ, f ) 
with homophily where N = 2000 , α = 0.2 , µ = (0.7, 0.2, 0.1) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and 
m = 2 . The sample size for each sampling method is 0.2N. N2V-2 ( wij = 0.3 if nodes have equal attributes 
and 1 otherwise); N2V-3 ( θ = 10−3 , β = γ = 1 ), N2V-4 ( θ = 10−3 , β = γ = 1 , wij = 0.3 if nodes have equal 
attributes and 1 otherwise)

Fig. 8 Boxplots of 500 estimates of homophily measures under model class P (α,µ, f ) with homophily 
where N = 2000 , α = 1 , µ = (0.7, 0.2, 0.1) , f (a, a) = 0.8 , f (a, a′) = 0.1 , a  = a′ = 1, 2, 3 and m = 2 . The sample 
size for each sampling method is 0.3N. N2V-2 ( wij = 0.3 if nodes have equal attributes and 1 otherwise), 
N2V-3 ( θ = 10−3 , β = γ = 1 ), N2V-4 ( θ = 10−3 , β = γ = 1 , wij = 0.3 if nodes have equal attributes and 1 
otherwise). The red dotted lines represent the true values
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parameters are the same as in Setting 2. We have omitted MHRW in the plots due to 
having the worst performance and also the baseline RNS. For the heterophilicity meas-
ure, N2V-4 achieves the lower variability followed by RES. We note that Ĥaa′ in (20) 
involves the estimation of the number of edges between different attribute nodes, which 
due to the reduced number of these connections is better estimated with N2V-4 than 
RES.

Synthetic network with heterophily

Attribute distribution

Setting 6: We consider the model class P (α = 1,µ = (0.7, 0.3, 0.1), f ) with f (a, a) = 0.2 , 
f (a, a′) = 0.4 , a, a′ = 1, 2, 3 , a  = a′ . The network size and sampling rate are the same 
as in the synthetic network with homophily (Settings 1 and 2). The network gener-
ated is heterophilic with measures D1 = 0.667 , D2 = 0.573 , D3 = 0.962 , H12 = 1.261 , 
H13 = 1.668 and H23 = 1.378 . Figure 9 gives the estimates of the attribute distribution 
under several sampling schemes using (15). With heterophily, for attributes aware sam-
plers the weights are higher if nodes have equal attributes. For N2V-2 and N2V-4 the 
weights are wij = 1 if nodes have different attributes and 0.8 otherwise. The differences 
between the different sampling methods are now smaller. In this case, even though most 
edges are heterophilic, networks will also contain edges between nodes of the same 
attribute type (see Fig. 2b). This is specially true for nodes with attribute 1 where locally 
they connect to few other nodes with attribute 1, but globally there are many connec-
tions between them. This mixing of different types of edges explains why heterophilic 
networks can achieve high overall performance among the different sampling methods. 
The spectral gap of the random walks increases and also the quantity �(.) decreases 
which also explains the results.

Empirical networks

We analyze four publicly available datasets of real attributed networks from different 
domains and with different homophily levels. Table 6 shows some key characteristics of 
interest. Wikipedia dataset is a hyperlink network where nodes represent U.S. politicians 
with attributes as either male or female. Blogs dataset is a network from political blogs 
from the 2004 U.S. election. Nodes represent blog pages and edges hyper-links between 

Fig. 9 Boxplots of the estimates of the attribute distribution under model class P (α,µ, f ) with heterophily 
where N = 2000 , α = 1 , µ = (0.7, 0.2, 0.1) , f (a, a) = 0.2 , f (a, a′) = 0.4 , a  = a′ = 1, 2, 3 and m = 2 . The sample 
size for each sampling method is 0.15N. N2V-2 ( wij = 1 if nodes have equal attributes and 0.8 otherwise), 
N2V-3 ( θ = 10−3 , β = γ = 1 ), N2V-4 ( θ = 10−3 , β = γ = 1 , wij = 1 if nodes have different attributes and 0.8 
otherwise). The red dotted lines represent the true values
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them. Each blog is either right- or left-leaning as attribute. APS is a scientific network 
from the American Physical Society where nodes represent articles from two subfields 
and edges represent citations. Swarthmore is a university network with friendship links 
between users’ pages with attribute gender (male or female). The estimation of the quan-
tities of interest below are replicated 500 times for each sampling scheme.

Attribute distribution

Figure  10 shows the results of estimation of the attribute distributions using (15) for 
all data sets. We investigate only the sampling methods with known (or approximately 
computable) stationary distributions. For N2V-3 and -4, we use θ = 10−3 , γ = β = 1 
through this section. The sample size is 0.15N. Wikipedia has unbalanced attributes and 
moderate homophily. For N2V-2 and -4 the weights are wij = 0.75 if nodes have equal 
attributes and 1 otherwise. The performance of MHRW with real data shows again the 
worst performance. The variants 3 and 4 of N2V presents the lowest variability. Blogs is 
an approximately balanced attribute data set with a significant homophily. The weights 
for the variants of N2V are wij = 0.3 if nodes have equal attributes and 1 otherwise. Due 
to the high density of edges (i.e., the fraction of existing edges out of all possible edges, 
|E |/

(N
2

)
 ) the performance of N2V-3 is similar to N2V-1. APS is an unbalanced attribute 

Table 6 Empirical networks characteristics (total number of nodes and edges, attribute types, 
dyadicity and heterophilicity measures)

N |E | Attribute D1 D2 H12

Wikipedia 1595 2809 Male/female 1.0810 1.706 0.710

Blogs 1222 16714 Right/left 1.733 1.901 0.189

APS 1281 3064 Subfield 1/2 1.491 2.487 0.128

Swarthmore 1517 53725 Male/female 1.082 1.052 0.933

Fig. 10 Boxplots of 500 estimates of the attribute distribution: Wikipedia (N2V-2 and -4: wij = 0.75 if nodes 
have equal attributes and 1 otherwise), Blogs (N2V-2 and -4: wij = 0.3 if nodes have equal attributes and 1 
otherwise), APS (N2V-2 and -4: wij = 0.25 if nodes have equal attributes and 1 otherwise), Swarthmore (N2V-2 
and -4: wij = 0.95 if nodes have equal attributes and 1 otherwise). N2V-3 and -4, θ = 10−3 , γ = β = 1 . The 
sample size for each sampling method is 0.15N. The red dotted lines represent the true values
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dataset with strong homophily. In this case wij = 0.25 if nodes have equal attributes and 
1 otherwise. Swarthmore is a dataset which is very weakly homophilic. The diferences 
between the sampling methods are less significant where we use wij = 0.95 if nodes 
have equal attributes and 1 otherwise. These empirical networks are heterogenous with 
respect to homophily complementing the settings considered in the synthetic case. In 
Antunes et al. (2023) we have estimated the attribute distribution of a Facebook web-
graph dataset restricted to pages from four attributes (politicians, governmental organi-
zations, television shows and companies) where edges represent mutual likes between 
sites.

Degree distribution per attribute

Figure 11 depicts the estimation error (
∑

k(p̂(k|a)− p(k|a))2)1/2 of the degree distribu-
tion for each attribute of Wikipedia and APS. The parameters for the different sampling 
methods are the same as for the estimation of attribute distribution with sample size 
0.2N. The degree distributions for both attributes are heavy-tailed in the two datasets. 
For the majority attributes the tail exponents are 2.823 and 3, respectively, for Wikipedia 
and Blogs. The error in the estimation decreases significantly with N2V-4, especially for 
the minority attribute.

Homophily measures

The dyadicity and heterophilicity measures using (20) are given in Fig. 12 for Wikipe-
dia and Blogs. Only N2V variants have been considered in the evaluation with the same 
parameters as above and sample size 0.3N. The performance of the samplings methods 
for Wikipedia are in line with the synthetic model with discrete attribute set. The high 
density of edges in Blogs, as discussed above, explains the inferior performance of N2V-3 
similar to N2V-1 especially in the estimation of H12.

Extensions and future directions
How to sample the network and set the sampling method parameters?

Here are some guidelines on how to sample and learn the attribute functionals of a 
network. If the homophily level is unknown (or even if it is not known if the network 
is homophilic), the network should be sampled with N2V-3 to estimate the dyadicity 
and heterophilicity measures. As seen from our experiments the backtracking param-
eter should be close to zero and the other parameters equal to one. In the case that 

Fig. 11 Boxplots of the estimation error of the degree distribution per attribute: Wikipedia (N2V-2 and -4: 
wij = 0.75 if nodes have equal attributes and 1 otherwise), APS (N2V-2 and -4: wij = 0.25 if nodes have equal 
attributes and 1 otherwise). N2V-3 and -4, θ = 10−3 , γ = β = 1 . The sample size for each sampling method 
is 0.2N 
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the sampled network indicates that the network is homophilic, we propose the fol-
lowing approach to set the initial edge weights of attribute aware samplers (N2V-2 
and N2V-4) to estimate the attribute distribution (and additionally the degree distri-
bution). If dyadicity is, say, greater than 1.5 and heterophilicity is less than 0.5, then 
set the weights to wij = 0.3 if nodes have equal attributes and 1 otherwise. For lower 
homophily levels, set wij = 0.7 if nodes have equal attributes. (In the case of N2V-
4, additionally the backtracking parameter should be close to zero.) As observed in 
the Section Synthetic Network with Homophily (Setting 1), the empirical standard 
deviation of the estimator of the attribute distribution as a function of the weights wij 
(when nodes have equal attributes) is convex. Thus, the weights can then be tuned in 
practice as follows if feasible. (1) Fix the initial set of weights as described above and a 
minority attribute, and run n (say, greater than 10) independent attribute aware sam-
plers for a number of steps and obtain the empirical standard deviation of the n esti-
mates of the proportion of the minority attribute; (2) The weights of the n samplers 
are then increased (decreased) with increment � and run again to compute the empir-
ical standard deviation; (3) The previous step is repeated until an inflection point of 
the empirical standard deviation is reached and the “optimal“ weight is outputted.

Continuous attributes

The estimators (12) and (18) were defined for node and edge characteristics that are 
discrete. But they have natural continuous analogues. More specifically, in connec-
tion to (12), assume that the characteristic A(i) values are such that A ∈ Rd . Then, we 
expect the density g(A) to be estimated by the kernel smoothing as

Fig. 12 Boxplots of the estimates of homophily measures: Wikipedia (N2V-2 and -4: wij = 0.75 if nodes 
have equal attributes and 1 otherwise), Blogs (N2V-2 and -4: wij = 0.3 if nodes have equal attributes and 1 
otherwise). N2V-3 and -4, θ = 10−3 , γ = β = 1 . The sample size for each sampling method is 0.3N. The red 
dotted lines represent the true values
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where h > 0 is a bandwidth, K : Rd → R is a kernel function, and the weights w̃s satisfy

For the density g(a) of continuous attributes a(i) ∈ R , the estimator (22) was explored 
briefly in synthetic and real networks in our conference paper Antunes et al. (2023).

Similarly, the continuous analogue of (18) is

where K and h are as in (22), and the weights w̃s,s+1 satisfy

Exploring (22) and (24) further is left for future work. For the attribute aware samplers 
the weights can be taken as wij = |a(i)− a(j)|b , which allows moving between similar 
attribute values of nodes but also giving more weight to edges with different values. The 
choice of b is motivated by similar arguments as in the case of discrete attributes. If the 
weights between edges of different groups are too large, then the convergence is decel-
erated because exploration within the same group attribute is not sufficient due to the 
inter-group moves.

Future directions

We expect to show that for the parameter m ≥ 2 in model class P , the networks are 
‘expanders’ in the sense that the mixing time of RWs on the network is of a much smaller 
order than the network size (typically logarithmic in network size) Mihail et al. (2003); 
Ben-Hamou et al. (2018). This would indicate that, although explicitly finding the sta-
tionary distribution is infeasible in most cases (e.g. in N2V-4,5,6 discussed above), it can 
be approximated by observing the RW for a relatively small number of steps. A descrip-
tion of the local limits of neighborhoods of typical vertices in the network Berger et al. 
(2014); Garavaglia et al. (2022); Banerjee et al. (2023) will then provide tractable recur-
sive distributional equations (e.g. Chen et al. (2017) for Pagerank distribution) charac-
terizing the limiting empirical stationary distribution of the RW (as the network size 
grows). This representation can be exploited to analyze detailed behavior of this limiting 
distribution including tail exponents, means, etc.

Random walks are also closely tied to ranking mechanisms such as the Pagerank central-
ity, and we plan to study the impact of the parameters driving the random walk on such 
centrality scores, thus looping back to one of the central motivations for studying attrib-
uted networks namely fairness of ranking mechanisms Karimi et  al. (2018). Other ques-
tions, including learning joint distributions of the multivariate attribute distributions, both 

(22)ĝ(A) =

n∑

s=1

K

(
A− A(is)

h

)
1

hd
w̃s,

(23)w̃s ∝
1

πis

,

n∑

s=1

w̃s = 1.

(24)ĝ(B) =

n−1∑

s=1

K

(
B− B(is, is+1)

h

)
1

hd
w̃s,s+1,

(25)w̃s,s+1 ∝
1

πis ,is+1

,

n−1∑

s=1

w̃s,s+1 = 1.
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in terms of developing synthetic models, as well as real world data will also be considered. 
We considered simple time snapshots of the network process, without directionality infor-
mation, for estimation in this work, but in future work it will be interesting to exploit the 
temporality and directionality in network data. Finally, there has been significant recent 
interest in incorporating higher order interactions (network data and models largely hinge 
on binary or pairwise interactions) in the evolution of networks and the impact of dynamics 
such as percolation and epidemics resulting from such interactions Courtney and Bianconi 
(2017); Battiston et al. (2020); Majhi et al. (2022); Iacopini et al. (2019); Fan et al. (2022); Sun 
et al. (2023). Exploring versions of such questions incorporating attribute information sug-
gests fascinating new directions of research.

Conclusions
In this paper, we developed a statistical framework for learning attribute functionals 
through sampling in networks with homophily. First, we proposed a generalization of the 
preferential attachment model with homophily (model class P ). We described a related 
model (model class U ), that is significantly more amenable to analysis, formalizing the 
notion of resolvability, which provides explicit information (degree distribution of an attrib-
ute, homophily and heterophily statistics) for model class P by using model class U . Sec-
ond, we introduced link trace samplers (random walks) with weights for networks with 
restricted access that explore better the attribute space (attributed aware). Third, estima-
tors that correct the bias of the considered sampler methods were proposed for the sev-
eral attribute and geometric quantities of interest. Fourth, we showed experimental results 
for synthetic (using model class P ) and a variety of real world datasets, demonstrating that 
attribute aware samplers are more efficient and outperform attribute agnostic random 
walks samplers for several network settings. Finally, we presented extensions of the devel-
oped framework including continuous attributes and directions for future work.
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