
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Loporchio et al. Applied Network Science (2023) 8:34
https://doi.org/10.1007/s41109-023-00557-4

Applied Network Science

Is Bitcoin gathering dust? An analysis
of low-amount Bitcoin transactions
Matteo Loporchio1*, Anna Bernasconi1, Damiano Di Francesco Maesa1 and Laura Ricci1

Abstract

In the Bitcoin protocol, dust refers to small amounts of currency that are lower than the
fee required to spend them in a transaction. Although “economically irrational”, dust
is commonly used for achieving unconventional side effects, rather than exchanging
value. For instance, dust might be linked to on-chain services or to malicious activity,
such as dust attacks attempting to break users’ pseudonymity. To study this phenom-
enon, this paper presents an in depth analysis of Bitcoin transactions involving dust,
showing how dust is created and consumed. We identify the top dust creators and
consumers and discuss how consumption has evolved over time. Finally, we use the
data to identify transactions suspected of being part of dust attacks and quantify their
impact on address deanonymization. Our results show that dust is mainly related to
on-chain betting services. Transactions likely to be part of dust attacks are a minority of
dust creating transactions but, despite their relatively low number, they have a dispro-
portionately high effect on helping attackers to break address pseudonymity.

Keywords: Blockchain, Bitcoin, Anonymity, Data analysis

Introduction
Blockchain technology has gained widespread popularity due to its ability of providing
trust and transparency without the need for intermediaries. Initally made popular by
cryptocurrencies, where they are used to record value and asset transfers, blockchains
have eventually been adopted in several other fields of application, including identity
management systems, access control systems and supply chain management (Di Franc-
esco Maesa and Mori 2020).

Nakamoto (2008) is perhaps the most popular application of blockchain technology.
Originally created by Satoshi Nakamoto in 20081, Bitcoin is a decentralized digital cur-
rency that enables peer-to-peer transactions without relying on intermediaries such as
banks or financial institutions. Users transfer funds to other participants by means of
transactions, which are permanently recorded on the Bitcoin blockchain, a public dis-
tributed ledger that guarantees the immutability of its contents through cryptographic
mechanisms. The process of adding new transactions to the blockchain is called mining.

*Correspondence:
matteo.loporchio@phd.unipi.it

1 Department of Computer
Science, University of Pisa, Largo
Bruno Pontecorvo, 3, 56127 Pisa,
Italy

1 Although the original Bitcoin whitepaper by Satoshi Nakamoto was published in 2008, the first transaction recorded
on the blockchain was issued on January 3rd, 2009.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00557-4&domain=pdf

Page 2 of 28Loporchio et al. Applied Network Science (2023) 8:34

During this process, miners employ their computational power to solve a complex math-
ematical problem. The first miner solving the problem can add transactions to the block-
chain and receives a reward in the form of newly created coins and transaction fees, paid
by users to incentivize the inclusion of their transactions in the blockchain.

In this paper we study Bitcoin transactions involving dust, small amounts of value that
are lower than the fee required to spend them in a transaction. Our analysis is motivated
by the fact that, despite its “economically irrational” nature, dust is commonly used for
achieving some external side effect, rather than exchanging value. As a result, by study-
ing how dust is created and consumed, it is possible to discover which “unconventional”
processes (i.e., different from the usual payments) are using the Bitcoin blockchain for
their own purposes. We do note, however, that this phenomenon is not exclusive to Bit-
coin, as dust amounts can also originate on other UTXO-based2 currencies (e.g., Lite-
coin and Bitcoin Cash (Pérez-Solà et al. 2019)). Nonetheless, this paper will only discuss
dust within the Bitcoin ecosystem, as it represents the most relevant currency in terms
of users and market capitalization.

For instance, Bitcoin dust transactions can often be associated with on-chain services,
i.e., applications that interact directly with the blockchain. As an example of such ser-
vices we mention Satoshi Dice, a popular on-chain gambling game launched in 2012. To
notify players of their loss, Satoshi Dice sends back a small fraction of the original wager,
which is typically a dust amount. However, besides its role in such “honest” activities,
Bitcoin dust can also be associated with malicious behavior. In fact, dust transactions
can also constitute a source of spam for the blockchain network as they are used to con-
duct denial-of-service attacks (Bradbury 2013). A typical scenario is the one of attackers
issuing many dust transactions to fill up the unconfirmed transaction pool, with the goal
of slowing down the transaction confirmation process (Wang et al. 2018). Dust is also
associated with dust attacks, where an adversary sends small amounts of bitcoin to a
large number of addresses in an attempt to deanonymize the owners of those addresses.
By leveraging the multi-input heuristic (Reid and Harrigan 2013)–a rule which states
that all sending addresses of a transaction are likely to belong to the same user–the
attacker hopes that users will eventually combine the received dust amounts with funds
from other addresses owned by them. When this happens, all addresses involved can be
linked to the same user. Moreover, if at least one Bitcoin address is linked to real-world
information (e.g., an IP address), the user is deanonymized, meaning that their entire
transaction history can be now traced back to a real identity. As a result, since transac-
tions on the blockchain are public, this attack has the disruptive effect of compromising
users’ privacy by exposing sensitive information (i.e., the history of their payments).

In this work we analyze transaction inputs and outputs to understand how dust is cre-
ated and consumed within the Bitcoin ecosystem. We then identify the major contribu-
tors to dust creation and consumption and trace the evolution of consumption patterns
over time. Finally, we present an analysis of transactions that are possibly related to dust
attacks, as they hold significant relevance in terms of network security.

2 Unspent Transaction Output model as explained in the Transactions section.

Page 3 of 28Loporchio et al. Applied Network Science (2023) 8:34

Our paper extends the previous analysis of dust transactions presented in Loporchio
et al. (2023). In our previous work, the analyzed transactions were collected using a
new approach based on authenticated data structures (Tamassia 2003). The method we
proposed guarantees the integrity of the received information and allows resource-con-
strained nodes to obtain data from the blockchain without downloading the entire trans-
action history. In addition to a general revision and improvement, this paper extends our
previous contribution in the following directions.

1 We create a new Related work section by discussing existing papers that analyze the
role of dust in Bitcoin and compare them to our contribution.

2 We expand the Background section by introducing a formal characterization of Bit-
coin transactions, following the one proposed in Crowcroft et al. (2021).

3 We add a formal definition of dust, in accordance with the implementation of the
Bitcoin Core client.

4 We extend our experimental analysis by studying the properties of transactions that
are possibly related to dust attacks.

The above enhancements made to our previous work have yielded novel contributions to
the existing literature, which can be summarized as follows.

1 We provide a formal definition of dust attack and establish when such attacks can be
considered successful or unsuccessful.

2 We identify transactions created by possible attackers, namely those that are primar-
ily aimed at the creation of dust.

3 We differentiate transactions issued by victims by taking into account all those that
consume dust previously created by attackers.

4 Using heuristic clustering techniques, we assess the impact of attackers’ transactions
on users’ anonymity.

Paper structure This paper is organized as follows. In the Related work section we pre-
sent the most relevant works concerning Bitcoin dust and discuss how they relate to our
contribution. Then, in the Background section we introduce some fundamental concepts
concerning Bitcoin and blockchain technology. In the Bitcoin dust section we present
the notion of dust in the Bitcoin blockchain and focus on the concept of dust attacks,
whose goal is to deanonymize users. In the Experimental results section we illustrate our
experimental analysis and finally, in the Conclusions and future work section, we present
our conclusions and discuss possible directions for future work.

Related work
In this section we review the most relevant works concerning Bitcoin dust and discuss
how they relate to our proposal.

Pérez-Solà et al. (2019) studied dust as part of their analysis of unspent transaction
outputs in Bitcoin, Bitcoin Cash and Litecoin. They determined that a significant por-
tion of unspent outputs for the three examined currencies can be considered “dust” or
unprofitable (i.e., spending it would cost more in fees than the value of the output itself)

Page 4 of 28Loporchio et al. Applied Network Science (2023) 8:34

and that their impact in terms of size is significant. Baqer et al. (2016) conducted an
empirical analysis of a spam campaign on the Bitcoin blockchain. They indicated dust
outputs as a possible source of spam, as they are used to delay the confirmation of legiti-
mate transactions. Similarly, Wang et al. (2018) and Saad et al. (2019) propose meth-
ods for identifying denial-of-service attacks based on dust transactions. In this scenario,
malicious users issue a large number of dust transactions that will fill up the uncon-
firmed transaction pool, thus slowing down the confirmation process. A different per-
spective is the one presented by Bartoletti and Pompianu (2017), whose work focuses on
small amounts of value and investigates their connection with the OP_RETURN scripting
instruction as a way of writing arbitrary data on the Bitcoin blockchain. Within their
analysis of cybercrime financial relationships, Gomez et al. (2022) have proposed an
heuristic to identify and remove transactions related to dust attacks. To this aim, they
defined transactions issued by attackers as the ones that send the same dust amount to at
least 100 different output addresses.

If compared to the previously mentioned works, our paper focuses exclusively on dust
amounts. Our intent is to analyze the properties of such amounts as well as their con-
nections with on-chain services and malicious behavior, with particular attention to dust
attacks. To the best of our knowledge, our work is the first one presenting a detailed
characterization of transactions that are possibly related to dust attacks, both from the
attackers’ side and from the perspective of victims. Moreover, as far as the authors know,
no prior work analyzing the impact on deanonymization of potential dust attack trans-
actions currently exists.

Background
This section presents the key definitions and notation used throughout the paper, which
formalize common concepts related to the Bitcoin blockchain.

Bitcoin blockchain

Users take part in the Bitcoin economy through addresses. An address is created by
hashing a public key derived from a ECDSA key pair (Johnson et al. 2001). The address
and public key are employed for sending and receiving payments, while private keys are
used to provide proofs of ownership. Users typically create and use multiple addresses
for sending and receiving payments through transactions. All transaction history is per-
manently recorded in a distributed ledger, called blockchain, which is publicly accessible
and aims at preventing double spending. More precisely, the Bitcoin blockchain can be
thought as an ordered list of blocks. Besides transactions, each block also comprises a
header including all information needed to make the chain immutable, such as a crypto-
graphic hash pointer to the previous block and the root of a Merkle Tree (Merkle 1980)
which guarantees the integrity of the block content.

Transactions

In a Bitcoin transaction, the value gathered from the input addresses (or newly cre-
ated, the special case of coinbase transactions) is distributed among output addresses,
with a portion reserved as the transaction fee. Fees are used to reward miners for their
work in validating the block. To represent Bitcoin transactions, in this paper we adopt

Page 5 of 28Loporchio et al. Applied Network Science (2023) 8:34

the formalization described in Crowcroft et al. (2021). In this regard, a transaction can
be modeled as a pair T = (in, out) where in, out ⊆ I ×A× N are two multisets, I ⊆ N
is a set of numeric identifiers and A is the set of all Bitcoin addresses. The in (resp.
out) multiset contains a set of transaction inputs (resp. outputs) represented as tuples
(i, a, v), where i ∈ I is a numerical value that uniquely identifies the transaction3, a ∈ A
is the address that is paying (resp. paid) and v ∈ N is the amount of value transferred,
expressed in satoshi4. Coinbase transactions do not contain any inputs (i.e., it is in = ∅),
as they constitute the source of new bitcoins. Given a non-coinbase transaction T, each
of its inputs (i, a, v) ∈ in represents a pointer to a previously created transaction output,
namely there exists a unique older transaction T ′ = (in′, out′) such that (i, a, v) ∈ out′ .
Moreover, the outputs of a transaction cannot be spent more than once: given a transac-
tion T ′ = (in′, out′) , for each (i′, a′, v′) ∈ out′ there exists at most one newer transaction
T = (in, out) such that (i′, a′, v′) ∈ in.

In this paper, we adopt the following notation conventions. Given a transaction
T, we denote the transaction fee, namely the difference between the sum of the input
and output values, by φ(T) = (i,a,v)∈in v − (i,a,v)∈out v . Also, we indicate with
inaddr(T) = {a ∈ A | ∃ i ∈ I , v ∈ N : (i, a, v) ∈ in} the set of all input addresses
of T and by outaddr(T) = {a ∈ A | ∃ i ∈ I , v ∈ N : (i, a, v) ∈ out} the set of out-
put addresses. Given a set of transactions T , we represent the set of all inputs as
txin(T) =

⋃

(in,out)∈T in and the set of all outputs as txout(T) =
⋃

(in,out)∈T out . Then,
with these definitions in mind, we can easily describe the set of all unspent transaction
outputs (often abbreviated as UTXO) in T as utxo(T) = txout(T) \ txin(T).

Scripts

Transaction outputs are associated with a script, i.e., a piece of code written in a stack-
based and Turing-incomplete language specifying the conditions that must be met in
order for someone to spend the corresponding value in a subsequent transaction. Scripts
allow for specifying arbitrarily complex conditions, but many of them follow common
patterns. For the purposes of this paper (i.e., the study of dust transactions) we distin-
guish between the most common script types, as discussed below.

1 Pay-to-Public-Key-Hash (P2PKH) scripts are the most common for standard Bitcoin
transactions. They are used to pay a specific public key hash.

2 Pay-to-Public-Key (P2PK) scripts allow for a direct payment to a public key, rather
than its hash.

3 Pay-to-Script-Hash (P2SH) scripts are used to pay a hash of another script and they
are often used to implement multi-signature transactions.

4 Pay-to-Witness-Public-Key-Hash (P2WPKH) scripts have been introduced as part of
the Segregated Witness (SegWit) protocol upgrade in August 2017 (Singh et al. 2020).
SegWit addresses the issue of transaction malleability, a flaw in the original Bitcoin
design that allowed malicious actors to modify transactions before they were con-

3 In our dataset we have chosen to replace transaction hashes with unique progressive identifiers for transactions.
4 A satoshi represents the smallest bitcoin denomination and is equivalent to 10−8 bitcoins.

Page 6 of 28Loporchio et al. Applied Network Science (2023) 8:34

firmed (Decker and Wattenhofer 2014). A P2WPKH script enables payments to pub-
lic key hashes, similarly to the P2PKH counterpart.

5 Pay-to-Witness-Script-Hash (P2WSH) scripts have also been introduced with SegWit
update. Similarly to P2SH scripts, these scripts allow users to pay a hash of another
script.

6 OP_RETURN scripts allow for storing arbitrary data into the blockchain. The instruc-
tion is used to create provably unspendable outputs that cannot be consumed in a
future transaction and do not appear in the UTXO set (Bartoletti and Pompianu
2017).

7 We use the type OTHER to label all other kinds of scripts, including standard scripts
as Pay-to-Multisignature and all non-standard scripts, such as empty scripts that do
not contain any instruction.

For the sake of notation, in the following we assume the existence of a function
script : I ×A× N → S that maps a given transaction output to the corresponding
script type, where S = {P2PKH,P2PK,P2SH,P2WPKH,P2WSH,OP_RETURN,OTHER} is
the set of all script type identifiers listed above.

Clustering

Transactions recorded on the Bitcoin blockchain represent interactions between
addresses. As stated previously in the Bitcoin blockchain section, users of the Bitcoin
network typically generate and use multiple addresses, each associated with no real-
world information about the controlling user. This weak protection of users’ anonymity
is commonly known as pseudonimity (Meiklejohn et al. 2013). The pseudonimity prop-
erty leverages the fact that an address carries no information about its owner, and dif-
ferent addresses of the same owner share no common information between themselves.
Attacks towards Bitcoin anonymity then attempt to break such property, mainly by heu-
ristic rules (Harrigan and Fretter 2016). The most widely adopted of such rules is called
multi-input heuristic (Reid and Harrigan 2013), stating that all input addresses of the
same transaction belong to the same user. This rule can be described more formally as
follows.

Property 1 (Multi-input heuristic) Let T be a set of transactions. Then ∀T ∈ T and
∀ a1, a2 ∈ inaddr(T) it holds that a1 and a2 belong to the same user.

We remark that other heuristic rules for grouping addresses together do exist as
well. For instance, the change address heuristic (Meiklejohn et al. 2013) states that if
a transaction includes change, the change address is likely to belong to the same user
owning the input addresses. However, as observed in Zhang et al. (2020), this heuris-
tic rule has some important limitations. For instance, due to the evolution of wallet
management software over the years, it is often difficult to identify change addresses.
In addition to this, if coins in the inputs are transferred without any change, the
heuristic could erroneously identify one of the recipients as a change address. Moti-
vated by these reasons, for the rest of this paper, and in particular for the experimen-
tal analysis conducted in the Experimental results section, we will only consider the

Page 7 of 28Loporchio et al. Applied Network Science (2023) 8:34

multi-input heuristic, as it is more conservative with respect to other heuristic rules.
We informally consider conservative a rule that minimizes the grouping of addresses
that should not be grouped together (i.e., false positives), at the expense of accepting
an increase in not grouping together addresses that should be (i.e., false negatives).

In the literature (Maesa et al. 2017), the process of grouping addresses together in
sets belonging to the same user is called clustering, and such sets are called clusters.
Grouping addresses together in clusters allows to deanonymize all addresses belong-
ing to the cluster if just one of the addresses ownership is disclosed. The clustering
algorithm first starts with each address in a separate cluster. Then, the considered
heuristic rules are applied to a transaction at a time, with the potential effect of
merging together clusters previously separated. The end result is a partition of the
addresses set in sets of addresses (i.e., clusters) believed to be owned by the same
entity. As such, given the set of addresses A and transactions T , the process of clus-
tering A with respect to T can be described by a function C : A× T → 2A , where
2A denotes the power set of A . The result of this process is indeed a set P ⊆ 2A that
constitutes a partition of A . Note that if A is not specified then it is assumed as the
set of addresses implied by T , defined as A =

⋃

T∈T inaddr(T) ∪ outaddr(T) , namely
the set of all addresses appearing in any input or output of T . Do note that the clus-
tering of a set of Bitcoin addresses with respect to a set of transactions, if performed
by only considering the previously described multi-input heuristic, can be computed
in time linear in the number of addresses and number of inputs of all transactions, as
explained in Di Francesco Maesa et al. (2018).

Bitcoin dust
The term dust typically refers to the amounts of value that are smaller than the mini-
mum fee required to spend them in a transaction. We now introduce the formal defi-
nition of dust we adopt throughout this paper, namely the one detailed in Pérez-Solà
et al. (2019) and based on the implementation of the Bitcoin Core client.

Definition 1 (Dust output) Let T = (in, out) be a Bitcoin transaction and
out = (i, a, v) ∈ out be one of its outputs. The output out is considered dust if and only if
v < f · (41+ 107/α + size(out)) , where:

1 size(out) is the output size, expressed in bytes;
2 f represents the suggested fee-per-byte rate, namely the amount paid for the transac-

tion to be included in the blockchain, measured in satoshi per byte;
3 α is the Segregated Witness discount factor. If T complies with the Segregated Wit-

ness soft fork, then it is α = 4 , otherwise α = 1.

As will be discussed in the Experimental result section, our analysis will only con-
sider transactions that took place before the Segregated Witness protocol update.
Therefore, for the rest of this paper we will define dust outputs by considering a dis-
count factor α = 1 . In this regard, as the size of a typical spendable non-Segregated
Witness transaction output is equal to 34 bytes and the default rate is equal to 3000

Page 8 of 28Loporchio et al. Applied Network Science (2023) 8:34

satoshi per kilobyte, by applying the inequality from Definition 1 we can derive the
minimum amount v for which an output is not considered dust, namely (3000/1000) ·
(41 + 107 + 34) = 546 satoshi.

There are several ways to create dust on the Bitcoin blockchain. For instance, the
popular on-chain betting game Satoshi Dice used to send back a tiny amount of bit-
coin (i.e., a small fraction of the original wager) to players who lost their bets to notify
their loss (Satoshi Dice: Bitcoin Casino Game). Another source of dust is constituted
by transaction outputs with the special OP_RETURN redeeming instruction. As dis-
cussed in the Scripts section, OP_RETURN outputs are provably unspendable out-
puts often associated with amounts of value that are very small or possibly equal to
zero. Provably unspendable outputs are typically created to store arbitrary data on the
blockchain, as detailed in Bartoletti and Pompianu (2017).

We can also notice that, according to Definition 1, inputs and outputs with an asso-
ciated amount equal to zero should also be considered dust. However, one the goals of
our analysis is the study of dust attacks and no attack might occur using amounts of
zero satoshi, because there would be no reason for someone to spend such amounts in
a transaction. Therefore, for the rest of this paper we will label as dust all transaction
outputs and inputs whose amount is included in the range between 1 and 545 satoshi,
thus excluding zero amounts from our analysis. In addition to this, we introduce the
following definition to characterize transactions that produce or consume dust.

Definition 2 (Dust-creating and dust-consuming transactions) Let T = (in, out) be a
Bitcoin transaction. We say that:

• T is dust-creating if and only if there exists (i, a, v) ∈ out such that v ∈ [1545] ,
namely T has at least one dust output.

• T is dust-consuming if and only if there exists (i, a, v) ∈ in such that v ∈ [1545] ,
namely T has at least one dust input.

Notice that a transaction could be both dust-creating and dust-consuming at the
same time. Furthermore, we will say that an address is a dust receiver (resp. a sender)
if and only if it is associated with one of the dust outputs (resp. inputs) of a transac-
tion. More formally, an address a′ ∈ A is a dust receiver (resp. sender) if and only if
for a given transaction T = (in, out) that there exists (i, a, v) ∈ out (resp. (i, a, v) ∈ in)
such that a = a′ ∧ v ∈ [1545].

Dust attacks

As previously discussed in the Clustering section, addresses in the Bitcoin blockchain
are pseudonymous, namely they are not tied to any personally identifying informa-
tion and thus do not reveal anything about their owner per se. This property, how-
ever, does not guarantee complete anonymity. The entire payment history is in fact
recorded on the blockchain, which is a public ledger. If someone is able to link a real-
world identity to a specific address, they will be able to track down all transactions
associated with that identity. For this reason, deanonymization attacks, which attempt

Page 9 of 28Loporchio et al. Applied Network Science (2023) 8:34

to break users’ anonymity by discovering their real-world identities, have become
increasingly popular (Fanti and Viswanath 2017; Biryukov and Tikhomirov 2019).

In this paper we focus on dust attacks, which are also referred to as forced address
reuse attacks, a particular kind of deanonymization attack involving small amounts of
value. During a dust attack, an adversary sends tiny amounts of bitcoin to many dif-
ferent addresses. The attacker then hopes that the recipients (or their wallet software)
will eventually aggregate these amounts as inputs to a larger transaction. If this is the
case, the adversary can exploit the multi-input heuristic, discussed in the Background
section, to link all input addresses to the same user. Then, if the attacker succeeds
in associating one of these addresses to real-world information (e.g., an IP address
obtained with network analysis techniques Fanti and Viswanath 2017), the user is
deanonymized, with potentially disruptive consequences on their privacy. Indeed,
as transactions on the blockchain are publicly visible, the entire payment history of
the user can now be tied to their real identity and exposed to the public. To charac-
terize dust attacks from a more formal standpoint, we present a definition based on
their outcome, which may either be success or failure. This definition will be adopted
throughout the rest of this paper.

Definition 3 (Dust attack) Let TA = (in, out) be a dust-creating transaction from an
attacker A and let (i, a, v) ∈ out be a dust output of TA sending value to an address a
owned by a user U. We say that the dust attack of A towards U is:

1 successful, if there exists a later transaction TU = (in′, out′) created by U such that
the following conditions hold:

(a) (i, a, v) ∈ in′;
(b) |inaddr(TU)| ≥ 2 , namely if ∃ (i′, a′, v′) ∈ in′ such that a′ �= a;

2 unsuccessful otherwise.

In other words, the attack is successful if the user U eventually spends the received
output (i, a, v) in combination with funds from at least another address a′ �= a owned by
them. According to the multi-input heuristic, this allows A to learn that both address a′
and a are likely to be owned by the same user U. Conversely, the attack fails if the adver-
sary is not able to learn any new information about the set of addresses owned by the
victim. This is the case if the output (i, a, v) is never spent or if it is spent only with other
funds from the same address a. As the deanonymization attack based on the multi-input
heuristic is driven by multiple addresses appearing as inputs of the same transaction,
the goal of a dust attack is to force such appearances by sending amounts that cannot be
spent on their own.

Experimental results
In this section we present our experimental analysis of dust in the Bitcoin blockchain.
Our contribution in this regard is twofold.

Page 10 of 28Loporchio et al. Applied Network Science (2023) 8:34

1 First, we present a general study of transactions that create and consume dust. In
particular, we focus on dust inputs and outputs and examine how they are distrib-
uted across transactions. We then identify the top creators and consumers by com-
puting the most frequent addresses in our data set. Finally, we provide an insight on
how the expenditure of dust outputs has evolved over time and discuss how such
outputs are combined with other outputs when consumed.

2 Secondly, in the Dust attack analysis section we extend our analysis by identifying
transactions that are possibly related to dust attacks. To this aim, we differentiate
possibly malicious transactions from other transactions involving dust. We use this
classification to study the impact of transactions suspected to be part of dust attacks
when performing clustering-based deanonymization attacks.

The code for the experiments has been written in Java and Python and is publicly avail-
able on GitHub at https:// github. com/ mlopo rchio/ DustA nalys is.

Data set description

We considered the data set comprising all Ntxs = 245 410 083 transactions in the first
Nb = 479 970 blocks of the Bitcoin blockchain, thus covering the time period between
January 3rd, 2009 18:15 GMT and August 10th, 2017 18:03 GMT. Notice that all trans-
actions included in this data set were issued before the introduction of the Segregated
Witness soft-fork. For the sake of notation, we refer to this data set as the full data set
and denote it by F . In the following, we denote by

the set of all transactions in F that create or consume dust. Finally, we indicate
with Dout = {(i, a, v) ∈ txout(F) | v ∈ [1545]} the set of all dust outputs and with
Din = {(i, a, v) ∈ txin(F) | v ∈ [1545]} the set of all dust inputs of all transactions in
F . For ease of comprehension, we have gathered all symbols and abbreviations used
throughout this section in Table 9 of the Appendix: symbols and abbreviations. Each
symbol is accompanied by a brief explanation of its meaning.

Transaction analysis

In this section, we study the properties of the data set T , containing all dust-creating and
dust-consuming transactions. The data set is made up of 2,114,335 elements: more pre-
cisely, it comprises 1,705,560 dust-creating transactions (nearly 0.7% of the total number
Ntxs), 429,544 (nearly 0.175% of Ntxs) that consume it and 20,769 transactions (approxi-
mately 0.008% Ntxs) that simultaneously create and consume dust. First, we examined
the average number of dust outputs (resp. inputs) for dust-creating (resp. dust-consum-
ing) transactions and found out that each dust-creating transaction has 2.58 dust out-
puts on average, while dust-consuming ones have 5.98 dust inputs. Similarly, in order to
understand how dust is distributed among transactions, we computed the average per-
centage of dust outputs (resp. inputs) in dust-creating (resp. dust-consuming) transac-
tions. Our results show that, on average, the percentage of dust outputs in dust-creating
is approximately 50.22%, while for dust-consuming ones the percentage of dust inputs is
35.83%.

T := {(in, out) ∈ F | ∃ (i, a, v) ∈ in ∪ out : v ∈ [1545]}

https://github.com/mloporchio/DustAnalysis

Page 11 of 28Loporchio et al. Applied Network Science (2023) 8:34

We then evaluated the frequencies of dust outputs (resp. inputs) in dust-creating (resp.
dust-consuming) transactions. Our findings are illustrated by the first two plots (from
left to right) of Fig. 1. As the reader may notice, approximately 106 dust-creating transac-
tions comprise exactly one dust output. Similarly, we can also notice that a consistent
number (i.e., between 105 and 106) of dust-consuming transactions has only one input.
More generally, it is possible to observe that transactions with a high number of dust
inputs and outputs seem to be less common. From the second plot, it can also be inferred
that the relation between the quantity of dust inputs ni and the number of transactions
including ni dust inputs follows a trend similar to a power law. Finally, in the third (resp.
fourth) plot of Fig. 1 we report the average percentages of dust and non-dust outputs
(resp. inputs) in dust-creating (resp. dust-consuming) transactions. In both charts, the
dashed lines correspond to the minimum percentages for dust outputs and inputs. For
instance, since in the third (resp. fourth) plot we are only considering dust-creating
(resp. dust-consuming) transactions, in a transaction with k outputs (resp. inputs) the
percentage of dust outputs (resp. inputs) will always be at least 1/k. If we exclude the
obvious cases of transactions with one output or one input, we can notice that in both
situations there seems not to be any consistent pattern in the partitioning between dust
and non-dust, although non-dust amounts seem to be more common among the inputs
and in transactions involving less than 102 outputs.

Address analysis

In order to determine the main senders and receivers of dust, we analyzed the most fre-
quent addresses in both Din and Dout . We then identified the top 5 addresses for each
category and compiled our findings in Table 1. Regarding the top senders, we notice that
all addresses are associated with Satoshi Dice, the on-chain betting game previously dis-
cussed in the Bitcoin dust section. Satoshi Dice addresses can be easily identified since
they were generated with mnemonic 1dice prefixes, and their winning odds (repre-
sented by W) and winning multipliers (represented by M) are predetermined and known
to the players. As discussed in the Bitcoin dust section, this fact can be easily under-
stood as Satoshi Dice addresses return a small fraction of the initial bet to the player
in case of a loss. Additionally, it is worth noting that the activity of the highest receiv-
ers are also connected to this gambling game. In Table 1 we computed, for each rea-
ceiver, the number of transactions having at least one Satoshi Dice input address. We
discovered that, for 4 addresses out of 5, over 75% of the received transactions origi-
nated from a recognized Satoshi Dice address. This suggests that the owners of these
addresses are likely to be participants in the gambling game, with the exception of

Fig. 1 Properties of dust-creating and dust-consuming transactions

Page 12 of 28Loporchio et al. Applied Network Science (2023) 8:34

18d3HV2bm94UyY4a9DrPfoZ17sXuiDQq2B. This specific address received dust
in 8099 distinct transactions, of which 8098 are actually coinbase transactions used by
miners to collect the block reward. This leads us to believe that the address may be part
of a mining pool and, in fact, it represents the offline wallet of Eligius, a mining pool
active between 2011 and 2017.

Output analysis

We classified the transaction outputs in Dout into three distinct groups, which can be
described as follows.

1 Unspent outputs, namely those that are still left in the corresponding addresses. This
set can be formally expressed as U := Dout \ Din.

2 Not Only Dust (NOD), which includes dust outputs spent in combination with at
least one non-dust output. These outputs can be characterized as

3 Only Dust (OD), which comprises dust outputs spent exclusively in combination
with other dust outputs. Formally, it is:

Table 2 reveals that the majority of outputs, namely almost 55%, fall under the NOD
category, while approximately 42% of them are still unspent. It is worth noting that our
investigation only considers blocks up to August 10th, 2017, so these outputs may have
been consumed at a later date. The remaining 3% consists of OD outputs, which are only

NOD := {(i, a, v) ∈ Dout | ∃ (in, out) ∈ T : (i, a, v) ∈ in ∧

(∃ (i′, a′, v′) ∈ in : v′ �∈ [1545])}.

OD := {(i, a, v) ∈ Dout | ∃ (in, out) ∈ T : (i, a, v) ∈ in ∧

(∀ (i′, a′, v′) ∈ in : v′ ∈ [1545])}.

Table 1 The top 5 dust sender and receiver addresses

Address TXs Notes

Senders 1dice8EMZmqKvrGE4Qc9bUFf9PX3x-
aYDp

374,464 Satoshi Dice (W = 48.8281% , M = 2.004×)

1dice97ECuByXAvqXpaYzSaQuPV-
vrtmz6

177,201 Satoshi Dice (W = 50.0000% , M = 1.957×)

1dice6YgEVBf88erBFra9BHf6Z-
MoyvG88

127, 790 Satoshi Dice (W = 12.2070% , M = 8.000×)

1dice7fUkz5h4z2wPc1wLMPWgB5m-
DwKDx

123,005 Satoshi Dice (W = 24.4141% , M = 4.003×)

1dice1e6pdhLzzWQq7yMid-
f6j8eAg7pkY

93,724 Satoshi Dice (W = 0.0015% , M = 64000×)

Receivers 1PEDJAibfNetJzM289oXsW1qLAgjY-
DjLgN

14,337 10,758 from SD (75%)-Satoshi Dice gambler

15tcsumFPsrw2p9Egmk7wGszFJVxp-
w7UiD

11,131 11,126 from SD (100%)-Satoshi Dice gambler

18d3HV2bm94UyY4a9DrPfoZ17sX-
uiDQq2B

8099 0 from SD (0%)-Eligius offline wallet

14z1fVwxMG71WcijX9J9te8G1wyp7t-
Vqdz

7628 7626 from SD (100%)-Satoshi Dice gambler

1FE1CDgkqzMSFXFreXrET7hvhEf-
CP9QabY

3739 3739 from SD (100%)-Satoshi Dice gambler

Page 13 of 28Loporchio et al. Applied Network Science (2023) 8:34

spent in conjunction with other dust outputs. The role of NOD and OD outputs has
been further analyzed from a temporal perspective in the subsequent paragraph.

Temporal analysis We then conducted a temporal analysis on Dout with a dual pur-
pose: (1) computing the average duration, i.e., the number of blocks between the
creation and consumption of outputs; (2) discovering patterns in the consumption
itself. For what concerns their consumption, we discovered that, on average, dust out-
puts get consumed after 25,165.33 blocks while non-dust outputs from all transac-
tions in F only last for 3 207.36 blocks. We further analyzed the duration of outputs
in the plots of Fig. 2. In the leftmost plot, we reported the distributions of duration
for dust and non-dust outputs. More precisely, we counted the number of dust and
non-dust outputs that have been spent after a given number of blocks. Note that the
plot has a logarithmic scale on the y-axis, while each bin has a width of 104 blocks on
the x-axis. On the other hand, the rightmost plot shows the percentages of dust and
non-dust outputs for each duration. We can observe that dust and non-dust outputs
are spent at different speeds, as the percentage of dust outputs depicted in the right-
most chart is not constant. In particular, we can observe how dust outputs take longer
to be spent compared to non-dust ones, which is also confirmed by the previously
computed mean durations. Indeed, if we consider an average inter-block time5 of 10
minutes, we obtain a period of approximately 175 days for dust outputs and 22 days
for non-dust amounts. Thus, we can observe that non-dust outputs are consumed
nearly 8 times faster. This gap is probably due to the fact that spending dust outputs
on their own is unprofitable and hence users typically wait until they have collected a
sufficient number of such outputs before they can aggregate them into a single trans-
action. From both plots it is also possible to notice how there are no dust outputs
spent after a certain date. This may be an artificial consequence of data collection, as
only transaction outputs from very old transactions (i.e., before 2012) could have such
duration. At that time, the Bitcoin protocol was not so popular so, although possible,
the concept of dust was not yet considered due to the minimal value of the currency.

To discover meaningful patterns behind dust consumption, we first associated each
output with the timestamp of the transaction where it has been spent and then count
the number of consumed outputs on a yearly basis. The results of this temporal analy-
sis are presented in the leftmost plot of Fig. 3, where each year is divided into quarters
for clarity. We can observe that the consumption of NOD outputs began to rise during
the second quarter of 2011 and peaked in 2013, with minor peaks in 2014 and 2015.
To determine the primary factors contributing to NOD aggregations, we once again

Table 2 Classification of dust outputs

No. of outputs Percentage (%)

Unspent 1,830,911 41.604

NOD 2,420,707 55.007

OD 149,139 3.389

Total 4,400,757 100.000

5 The inter-block time is the time that passes between the creation of two consecutive blocks.

Page 14 of 28Loporchio et al. Applied Network Science (2023) 8:34

examined the most frequently occurring addresses. Table 3 lists the top 5 addresses
in terms of NOD output usage. The reader may immediately notice that the first three
of them have already been identified in Table 1. Moreover, such addresses have previ-
ously been associated with mining operations and Satoshi Dice. The remaining two
addresses can also be associated with this popular gambling game. Indeed, Table 3
indicates that at least 90% of the NOD outputs associated with these addresses have
been sent by a Satoshi Dice address, confirming our previous speculation. Further-
more, from the NOD histogram depicted in Fig. 3, we can observe a sharp spike in

Fig. 2 Output duration

Table 3 Top 5 addresses for NOD output consumption

Address NOD outputs From SD Perc. (%) Description

1PEDJAibfNetJzM289oX-
sW1qLAgjYDjLgN

12,502 10,758 86 Satoshi Dice gambler (see Table 1)

14z1fVwxMG71WcijX9J9te8G-
1wyp7tVqdz

7628 7626 100 Satoshi Dice gambler (see Table 1)

18d3HV2bm94UyY4a9DrP-
foZ17sXuiDQq2B

7288 0 0 Eligius offline wallet (see Table 1)

1GmREU2gwcvQHRQFgwHvbD-
4dyL8iryCPMY

3614 3270 90 Satoshi Dice gambler

1dES7RLppoYc8mLQedwUo-
JMZZ9RnuCP5f

3526 3526 100 Satoshi Dice gambler

Fig. 3 Temporal analysis of dust output consumption

Page 15 of 28Loporchio et al. Applied Network Science (2023) 8:34

aggregations during the second quarter of 2012. This sudden increase may coincide
with the launch of the gambling game, which occurred on April 24th, 2012.

In terms of OD aggregations, the most prolific year was 2013, as evidenced by the his-
togram on the right-hand side of Fig. 3. More in detail, the histogram exhibits a peak
with over 105 consumed outputs during the month of October. To discover the origin
of such aggregations, we conducted further research on this phenomenon by examining
the most frequent addresses and discovered that 1JwSSubhmg6iPtRjtyqhUYYH-
7bZg3Lfy1T consumed 134,693 outputs, which is about 90% of all 149,139 OD out-
puts, as indicated in Table 2. The interesting fact about this address is that its private
key has been compromised6, which allows anyone to redeem bitcoins as soon as they
are sent to it. This leads us to believe that the main reason behind the sudden increase of
aggregations from this address is the public disclosure of the address secret key.

Dust attack analysis

In this section we extend our analysis of dust-creating and dust-consuming transactions
to identify candidate transactions that are part of a dust attack. However, given that dust
inputs and outputs occur normally within the Bitcoin protocol, we would like to differ-
entiate the rarer but impactful attack transactions from all those involving dust amounts.

Data filtering

To achieve our aim, we first filtered the data set T , which contains all dust-creating and
dust-consuming transactions, by keeping only those transactions T that satisfy the fol-
lowing two conditions.

(1) T does not contain the address of a known entity among its inputs. In our analysis,
a known entity is one whose behavior or aim is universally recognized by other par-
ticipants. Examples could include mining pools and on-chain services (e.g., Satoshi
Dice).

(2) At least one of the following is true.

(a) T has at least one dust output that is not associated with the OP_RETURN
scripting instruction.

(b) T has at least one dust input that was not created in a transaction from a
known entity.

The result of this filtering step is a new data set T ′ , formally described as

T ′ := {T = (in, out) ∈ T | (inaddr(T) ∩K = ∅) ∧

((∃ (i, a, v) ∈ out : v ∈ [1545] ∧

script(i, a, v) �= OP_RETURN) ∨

(∃ (i, a, v) ∈ in : v ∈ [1545] ∧

(∀ (in′, out′) ∈ T (i, a, v) ∈ out
′ ⇒ (∀ (i′, a′, v′) ∈ in

′ a′ �∈ K)))}

6 Source: https:// priva tekeys. pw/ addre ss/ bitco in/ 1JwSS ubhmg 6iPtR jtyqh UYYH7 bZg3L fy1T

https://privatekeys.pw/address/bitcoin/1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T

Page 16 of 28Loporchio et al. Applied Network Science (2023) 8:34

where K ⊆ A is the set containing addresses of known entities. Notice that our choice of
condition (1) is motivated by the multi-input heuristic. Indeed, if the inputs of a trans-
action include at least one address of a known entity, we assume that all other input
addresses belong to the same entity. Additionally, since the entity is known, we assume
that all transactions it creates do not deviate from the purpose for which the service
was designed and thus we assume that it does not represent a potential threat for dust
attacks. To identify known entities, we employed the entity-address data set (Jourdan
et al. 2018, 2019), which provides a mapping between Bitcoin addresses and categori-
cal labels describing the entity they belong to. The entity-address data set has been fur-
ther expanded with the list of all known Satoshi Dice addresses, derived from the official
website. With this strategy, we were able to collect 1,550,843 transactions created by 231
different labeled entities. In Table 4 we list the top 10 services according to the number
of created transactions, which constitute 72.64% of the full data set. As the reader may
notice, the most impactful service is Satoshi Dice, with nearly 1.5 millions of created
transactions (nearly 70% of all items in the full data set). This is a further confirmation
of our findings presented in the Address analysis section, where we computed the top
dust senders and receivers. However, other popular on-chain betting services such as
BtcDice, DiceOnCrack, and BetCoins can also be found among the top contributors.
Interestingly enough, the list also comprises Silk Road, an online illegal marketplace on
the dark web, which was active from 2011 to 2013 and was primarily used to buy and sell
drugs. The marketplace heavily relied on Bitcoin payments as a way of hiding the identi-
ties of its users (Christin 2013).

On the other hand, the second condition captures all transactions potentially cre-
ated by attackers and those which might have been generated by victims as a conse-
quence of the attack. More precisely, condition (2a) refers to transactions issued by
attackers. In order for their dust outputs to be spent, these should contain at least one
which is not associated with the OP_RETURN scripting instruction. Instead, condition
(2b) refers to transactions that might have been issued by victims: for a dust attack to
be successful, we require that the victim spends at least one dust amount created in a
transaction that has been issued by an unknown entity.

Table 4 The top 10 services in terms of created transactions

Entity Description No. of transactions Percentage (%)

SatoshiDice On-chain betting service 1,464,813 69.280

ePay.info Faucet service 43,259 2.046

BtcDice.com On-chain betting service 8500 0.402

DiceOnCrack.com On-chain betting service 7114 0.336

Betcoins.net On-chain betting service 3218 0.152

SilkRoadMarketplace Online black market 2877 0.136

Bitcoin-Roulette.com On-chain betting service 1742 0.082

Instawallet.org Online wallet service 1516 0.072

BitZino.com On-chain betting service 1497 0.071

Cex.io Exchange service 1337 0.063

Total 1,535,873 72.640

Page 17 of 28Loporchio et al. Applied Network Science (2023) 8:34

Transaction analysis

The “filtered” data set T ′ is made up of 387,330 total transactions. The data set
includes 194,628 dust-creating, 202,448 dust-consuming, and 9746 transactions that
simultaneously create and consume dust. Similarly to what has been done in the
Transaction analysis section, we examined the number of dust outputs (resp. inputs)
in dust-creating (resp. dust-consuming) transactions in T ′ . We found out that, on
average, dust-creating transactions have 14.71 dust outputs, while dust-consum-
ing ones include 4.1 dust inputs. We also computed the average percentage of dust
outputs (resp. inputs) for dust-creating (resp. dust-consuming) transactions. In this
regard, we discovered that the average percentage of dust outputs in dust-creating
transactions is equal to 51.57%. In comparison, the average percentage of dust inputs
in transactions that consume dust is 29.3%. In Table 5 we compare these mean values
with the ones obtained in the Transaction analysis section for data set T . We observe
that the removal of transactions produced by known services has determined a sig-
nificant increase of the average number of dust outputs, which is now approximately
5.7 times larger. On the contrary, for what concerns dust inputs, the average number
of dust inputs in the new data set T ′ has decreased slightly.

For a more accurate insight on how dust is distributed among transactions, the left-
most (resp. rightmost) plot of Fig. 4 illustrates the distribution of the number of dust
outputs (resp. inputs) in dust-creating (resp. dust-consuming) transactions, with a
logarithmic scale on both axes. Despite the removal step, the shapes of both distribu-
tions look very similar to their counterparts computed for data set T and depicted in
Fig. 1. Again, as observed for T , the shape of the distribution of dust inputs resembles
a power law.

Table 5 A comparison of dust-creating and dust-consuming transactions in the “original” data set T
and the “filtered” data set T ′ . Values are computed as average over the corresponding data set

Data set Dust outputs Dust inputs % of dust outputs % of dust inputs

T 2.58 5.98 50.22 35.83

T ′ 14.71 4.10 51.57 29.30

Fig. 4 Distributions of dust outputs in dust-creating transactions (left) and inputs in dust-consuming
transactions (right) for data set T ′

Page 18 of 28Loporchio et al. Applied Network Science (2023) 8:34

The leftmost (resp. rightmost) plot of Fig. 5 contains the cumulative distribution
function for the percentage of dust outputs (resp. inputs) in dust-creating (resp. dust-
consuming) transactions. From this plot, we can notice that approximately 90% of all
dust-creating transactions have less than 50% dust outputs. The remaining 10%, on the
other hand, have more than 50% dust outputs. Similarly, from the rightmost plot we can
deduce that approximately 90% of all dust-consuming transactions have less than 50%
dust inputs. As a result, transactions where dust outputs (resp. inputs) constitute the
majority of all outputs (resp. inputs) seem to be quite uncommon. The percentages of
dust outputs and inputs are further investigated in the Candidate identification section,
where we identify transactions that might be related to dust attacks.

Candidate identification

The filtering step discussed in the Data filtering section allowed us to remove all trans-
actions generated by well known services. In this section we further refine our data set
with a dual objective. First, we would like to identify dust-creating transactions issued by
potential attackers. Secondly, we would like to differentiate the ones, created by poten-
tial victims, that are spending these dust amounts as a consequence of the attack.

For what concerns potential attackers, we are interested in dust-creating transactions
that exhibit “exceptional” behavior, i.e., transactions with dust creation as their main
objective. To this aim, for each dust-creating transaction T ∈ T ′ we evaluated the abso-
lute number k(T) of dust outputs and the relative number j(T), namely the percentage of
dust outputs over the total number of outputs of T. Indeed, the higher j and k, the more
the transaction’s primary purpose is likely to be the creation of dust. Since it is more
cost-effective in terms of size, and consequently transaction fees, to create many outputs
in a single transaction, instead of splitting them into multiple transactions, a rational
attacker would aim to create as many dust outputs as possible within a single transac-
tion. In order to understand what the “exceptional” values for j and k are, in the plots of
Fig. 6 we have computed the number of dust-creating transactions for different values of
j and k. More precisely, in both grids, a cell with coordinates (x, y) contains the number
of dust-creating transactions T ∈ T ′ such that j(T) ≥ x and k(T) ≥ y . Do note that, for
better readability, all values in the grids are rescaled by a factor of 103 and 10% incre-
ments are used on the x-axis.

Fig. 5 Cumulative distributions of percentages of dust outputs in dust-creating transactions (left) and dust
inputs in dust-consuming transactions (right) for the “filtered” data set

Page 19 of 28Loporchio et al. Applied Network Science (2023) 8:34

From the leftmost plot of the figure we can see that the increase in both j and k mostly
has a linear impact on the resulting number of transactions. An exception in this regard
is constituted by all values in the darker areas of the plot, corresponding to k ≥ 1 dust
outputs and a percentage ranging from a minimum of 0% to a maximum of 50%. This
fact becomes more evident if we look at the rightmost plot of Fig. 6, where we focused
on the values of k in the range from 1 to 9. From this representation, the reader may
notice that when the minimum number of dust outputs increases from 1 to 2 the total
number of transactions decreases suddenly of an order of magnitude. A similar decrease
can be found when the minimum percentage j increases from 50% to 60%. For other val-
ues, except the last column containing rarer only dust output transactions, the change
is way less dramatic. As such we believe that k ≥ 2 and j > 50% could be the most sig-
nificant thresholds for discerning dust-focused transactions, primarily aimed at creating
dust, from all transactions involving dust. The clear demarcation in the data considering
these thresholds is a good indication of demarcation in transaction type. As a result, in
the following we will call

the set of suspect dust-creating transactions, namely those T with k(T) ≥ 2 and
j(T) > 50% . The set includes 18,840 transactions, which accounts for 4.86% of all trans-
actions in T ′.

On the other hand, to identify all transactions issued by potential victims as a con-
sequence of a dust attack, we partitioned the 256,906 dust-consuming transactions
included in T ′ into three different sets, based on the nature of their inputs.

1 Type 1: the inputs of these transactions contain only one distinct address.

2 Type 2+: the inputs of these transactions have at least two distinct addresses. More
formally, it is:

Tsus = {T = (in, out) ∈ T ′ | (∃ (i, a, v) ∈ out : v ∈ [1545]) ∧ k(T) ≥ 2 ∧ j(T) > 50%}

T1 := {T = (in, out) ∈ T ′ | (∃ (i, a, v) ∈ in : v ∈ [1545]) ∧ |inaddr(T)| = 1}

T2+ := {T = (in, out) ∈ T ′ | (∃ (i, a, v) ∈ in : v ∈ [1545]) ∧ |inaddr(T)| ≥ 2}.

Fig. 6 Number of dust-creating transactions T ∈ T with j(T) ≥ x and k(T) ≥ y as x and y vary. All values
have been rescaled by a factor of 103

Page 20 of 28Loporchio et al. Applied Network Science (2023) 8:34

3 Type S: this category comprises all dust-consuming transactions where the sum of all
input amounts equals the fee. This set can be defined as

In this classification, type 2+ transactions may represent the consequence of a suc-
cessful dust attack. Indeed, as discussed in the Dust attacks section, such transactions
may reveal other addresses owned by the spending entity, according to the multi-input
heuristic. On the other hand, transactions in the type 1 category might be related to an
unsuccessful dust attack. In this case, in fact, users are aggregating dust from the same
source, namely from the same address the dust amount was sent to by the potential
attacker. Concerning type S transactions, their connection with dust attacks seems to be
unlikely, since no amount of value is actually transferred to a recipient and everything in
the inputs is paid as fee. Such transactions may be linked to dust-collecting services such
as Dust-B-Gone, which allow users to clean up their wallets from dust. Indeed, a dust-
collecting service typically aggregates dust from multiple users in a single transaction
which spends all funds into mining fees. With this strategy, the multi-input heuristic no
longer holds and thus potential attackers are not able to learn any meaningful informa-
tion about the identity of the transaction senders.

The results of our classification are reported in Table 6. As the reader may notice, the
majority of dust-consuming transactions (approximately 57%) belongs to the type 2+
category, i.e., it has at least two distinct input addresses. Since they are aggregating dif-
ferent addresses in their inputs, we can observe that transactions in this category consti-
tute good candidates for being exploited by the multi-input heuristic. Conversely, we can
observe that about 43% of the classified transactions have only one unique input address,
while only 14 transactions (which correspond to 0.007% of all dust-consuming transac-
tions) belong to the S category, whose inputs funds are entirely spent in fees.

Taking into account this classification of dust-consuming transactions and our pre-
vious definition of suspect dust-creating transactions, we can now characterize the set
of all dust-consuming transactions that may correspond to successful dust attacks. As
stated in Definition 3, in a successful dust attack victims aggregate previously received
dust outputs with other funds from other addresses owned by them. This intuitive
description leads us to define the set of candidate dust-consuming transactions

TS :=

{

T = (in, out) ∈ T ′

∣

∣

∣

∣

(∃ (i, a, v) ∈ in : v ∈ [1545]) ∧
∑

(i,a,v)∈in

v = φ(T)

}

.

TC := {T = (in, out) ∈ T2+ | ∃ (in′, out′) ∈ Tsus : in ∩ out
′ �= ∅}

Table 6 Classification of dust-consuming transactions on the basis of their inputs

Category N. of TXs Percentage (%)

1 86,284 42.620

2+ 116,150 57.373

S 14 0.007

Total 202,448 100.000

Page 21 of 28Loporchio et al. Applied Network Science (2023) 8:34

including all type 2+ transactions that are spending at least one output from a suspect
dust-creating transaction. According to our characterization of dust attacks, we were
able to identify 89,102 candidate transactions, which account for approximately 44% of
all dust-consuming transactions.

Clustering analysis

In this section we study the impact of candidate transactions on clustering-based dean-
onymization attempts. As discussed in the Dust attacks section, we recall that a suc-
cessful dust attack aims at strengthening the effectiveness of the multi-input heuristic by
forcing dust receiving addresses to be grouped with other addresses in a single transac-
tion. However, the attack could be considered really successful if such addresses were
not already grouped together in the same cluster without the transaction caused by the
attack. In other words, the attack goal is to force the common use of addresses that were
previously not known to belong to the same user, and so to the same cluster.

To evaluate this effective successfulness of dust attacks on Bitcoin, we have performed
a partial deanonymization attack on our data set by executing the multi-input heuristic
clustering algorithm on three sets of transactions, and corresponding sets of addresses.

1 the full data set F , comprising all Bitcoin transactions in our data set;
2 the data set NC := F \ TC , obtained by removing all candidate dust-consuming

transactions from F ;
3 the data set N2+ := F \ T2+ , i.e., the one obtained by removing all type 2+ transac-

tions from F .

Informally, N2+ and NC represent the set of transactions without all transactions caused
by dust or dust attack candidate transactions respectively, while F contains all transac-
tions, and so has the full effect of dust attack transactions. Do note that TC ⊆ T2+ ⊆ F ,
and so N2+ ⊆ NC ⊆ F by construction. If we execute the clustering algorithm on this
three sets of transactions we would obtain the set of clusters:

1 with the full effect of dust and dust attack transactions for F ;
2 without the effect of transactions suspected of being dust attacks for NC;
3 without the effect of all dust transactions for N2+.

As such, if the dust attack truly increases the effectiveness of the clustering deanonymi-
zation we would expect the clustering performed on NC , i.e., without dust attack can-
didates to be less precise then the one on F , that includes dust transactions. Similarly,
comparing the effectiveness of the clustering on NC and N2+ should show how impact-
ful the dust attack candidate transactions alone are compared to all dust transactions.

For each of the three sets of transactions we applied the efficient version of the cluster-
ing algorithm based only on the multi-input heuristic rules presented in Di Francesco
Maesa et al. (2018). As discussed in the Clustering section, the inputs of this algorithm
are the set of addresses A =

⋃

T∈F inaddr(T) ∪ outaddr(T) , namely the set of addresses
induced by F , and a set of transactions X ⊆ F . The output is the partition C(A,X) ,
namely the partition of A induced by the transactions in X. Note that each element of

Page 22 of 28Loporchio et al. Applied Network Science (2023) 8:34

C(A,X) is a cluster, namely a subset of addresses of A . The algorithm iterates through
the transactions in X and assigns all addresses appearing as inputs of the same transac-
tion to the same cluster. Also, two clusters can be merged if they share at least one com-
mon address. We also recall that the complexity of this procedure is linear in the number
of addresses and number of inputs of all transactions. Given a set of transactions X ⊆ F ,
we define P(X) := C(A,X) as the partition obtained by applying the clustering algo-
rithm to X while considering the global set of addresses A induced by all transactions in
F , not just those in X.

Statistics on the three considered sets and on their clustering results P(F) , P(NC) , and
P(N2+) are reported in Table 7. Unsurprisingly, the less transactions we consider in each
set, the more clusters there will be, and the smaller each cluster would be on average.
This is to be expected, as the more transactions there are, the more the multi-input heu-
ristic is likely to group clusters together. However, we can argue that the effect of dust
transactions is more than ordinary, by having a disproportionate effect on the cluster-
ing. For example, if we compare the clustering results for F and NC , while the number
of transactions only decreases by 0.036%, the number of clusters and their average size
increases by 0.306% and 0.285% respectively. The minimum and maximum cluster sizes
do not change however, meaning that some addresses remain isolated in a single cluster
in both cases, and that the biggest cluster is formed independently from dust transac-
tions. Moreover, from the table we can see how the extremely high standard deviation,
compared to the mean value, as well as the huge difference between minimum and
maximum size of the clusters, suggests a wide span of cluster sizes for all three sets of
transactions considered. To better understand this phenomenon we plot the cluster sizes
distribution in Fig. 7. However, beside a few outliers, the differences in the three plots
are hardly noticeable. This is likely because the three sets considered have at least 99.95%

Table 7 Number of transactions and clustering results statistics for the three examined sets of
transactions F , NC = F \ TC , and N2+ = F \ T2+

N. of TXs N. of clusters Cluster size

Min Max Avg Std

F 245,410,083 139,962,731 1 12,431,337 2.099 1,193.883

NC 245,320,981 140,391,544 1 12,431,337 2.093 1,187.956

N2+ 245,293,933 140,623,307 1 12,431,337 2.089 1,186.860

Fig. 7 Clusters size distributions for P(F) (left), P(NC) (middle), and P(N2+) (right)

Page 23 of 28Loporchio et al. Applied Network Science (2023) 8:34

transactions in common. As such, it is not surprising that the clustering results show
many similarities between the three sets.

To better evaluate the impact of dust and dust attack candidate transactions, we have
chosen to ignore the clusters that are equal between different transaction sets. The goal
is to remove from the analysis the bulk of clusters that are not affected at all by the trans-
actions we are interested in. This way we can fully concentrate on the sole contribution
of those transactions.

To this aim we define the function diff (X ,Y) := P(X) \ (P(X) ∩ P(Y)) , i.e., a function
that given two sets returns the set containing all and only the elements of the first set
that do not also belong to the second set. Do note that this is equivalent to the set differ-
ence, i.e., diff (X ,Y) = P(X) \ P(Y) . We remind that the clustering results are partitions,
and so the intersection of two partitions will give us the set of sets of addresses that are
grouped identically in the two partitions. Given the sets F , NC , and N2+ then:

• diff (F ,NC) will be the set of all clusters of P(F) that are not also contained in P(NC)

;
• diff (NC ,F) will be the set of all clusters of P(NC) that are not also contained in

P(F);
• diff (F ,N2+) will be the set of all clusters of P(F) that are not also contained in

P(N2+);
• diff (N2+,F) will be the set of all clusters of P(N2+) that are not also contained in

P(F).

We report in Table 8 the size of the four sets, i.e., the number of clusters they contain,
and some statistics about their cluster sizes. We remark how each of these sets is a set of
clusters, i.e., a set whose elements (named clusters) are sets of addresses.

The first two lines of the table can be used to compare the effect of dust attack can-
didate transactions on the clustering. We see that removing the candidate transactions
induces a clustering approximately 13 times “worse”, as the number of clusters is 16
times higher in diff (NC ,F) compared to diff (F ,NC) (that does include the candidate
transactions). By looking at the cluster sizes, we see how the biggest cluster increases in
size, but not much, while the average size of clusters does increase considerably, again,
by a factor of approximately 13, while its standard deviation decreases. This means that
not only the clusters are less, but also bigger. The same trend can be observed by looking

Table 8 Number of clusters and clusters sizes statistics for the four considered sets diff (F ,NC) ,
diff (NC ,F) , diff (F ,N2+) , and diff (N2+ ,F) , i.e., the sets obtained by removing the common clusters
between the two partitions considered for each one

No. of clusters Cluster size

Min Max Avg Std

diff (F ,NC) 35,094 2 5,089,846 362.539 27,672.847

diff (NC ,F) 463,907 1 4,956,574 27.426 7,415.206

diff (F ,N2+) 45,137 2 5,089,846 490.035 26,836.537

diff (N2+ ,F) 705,713 1 4,954,411 31.342 6,639.323

Page 24 of 28Loporchio et al. Applied Network Science (2023) 8:34

at the results for diff (F ,N2+) and diff (N2+,F) , however the number of clusters and
average size differs for a lower factor of approximately 16. We note how in both cases
(considering NC or N2+) the minimum size of the clusters is 2 instead of 1, which is
unsurprising as we are considering transactions of type 2+ category in both cases and
so the transactions will always have at least two inputs with different addresses that will
then be placed in the same cluster by the multi-input heuristic.

To better inspect this difference in cluster sizes we show in Fig. 8 the cluster size distri-
bution for each set. If we compare Fig. 8a with Fig. 8b and Fig. 8c with Fig. 8d we notice
the same trend. For both cases, the plots show how the main effect caused by dust trans-
actions on cluster sizes is a stark decrease in the number of clusters of smaller sizes (not
just the clusters of size one that disappear completely). The overall number of addresses
is the same in each of the two scenarios as well as the sum of all cluster sizes. This nec-
essarily means that, even if less evident in the plot, there are more clusters containing
more addresses, as attested by the difference in the mean size values shown in Table 8. If
we consider only the clusters of size one that disappear entirely when considering dust
transactions of both kinds, they are 414,236 for NC and 623,614 for N2+ respectively.
These are especially important as they represent addresses that would not have been
grouped with any other if it were not for the dust transactions.

Overall this study highlights the relevant impact of dust attacks on the clustering
effectiveness. If it where not for the transactions of category 2+, there would exists
623,614 more clusters with a single address, i.e., addresses which the clustering fails

Fig. 8 Cluster sizes distributions for the four sets considered

Page 25 of 28Loporchio et al. Applied Network Science (2023) 8:34

to deanonymize. Similarly, if we consider the dust attack candidate transactions alone
(which are a subset of all transactions of type 2+), then 414,236 addresses would have
not been clustered at all if the attacks had not taken place. We observe that 414,236 is
lower than 623,614, but we have to remember that dust attack candidate transactions are
caused by the 18,840 suspect transactions of the set Tsus , which is much smaller than the
set of all dust creating transactions. This means that the dust attack transactions, despite
being only 4.86% of all dust creating transactions, allow to cluster 66.43% of all dust
induced clustered addresses. Considering the whole data set, the transactions suspected
of being part of dust attacks are only 0.008% of all transactions but allow to cluster 0.14%
of all addresses that would have otherwise remained isolated.

Conclusions and future work
In this paper we have presented an analysis of dust transactions in the Bitcoin block-
chain, focusing on unconventional behavior of users and deanonymization attacks based
on dust. After formally defining the concepts of dust and dust attack, we examined the
creation and consumption of dust outputs. We then highlighted the major creators and
consumers of dust and traced the evolution of consumption patterns over time. Moreo-
ver, in the second part of our study we identified transactions likely to be associated with
dust attacks, from the sides of both attackers and victims. Finally, we conducted an anal-
ysis of such transactions and used heuristic clustering techniques to assess the impact of
suspected dust attack transactions on the deanonymization of Bitcoin addresses.

Our results show that the majority of dust outputs can be traced back to Satoshi Dice,
a popular on-chain betting service launched in 2012. Among the remaining top crea-
tors we can find other gambling services (e.g., BtcDice, DiceOnCrack, and BetCoins) and
Silk Road, an online illegal marketplace on the dark web. On the other hand, for what
concerns the top consumers, we were able to identify a compromised address, i.e., one
whose private key has been leaked to the public. Moreover, the temporal analysis of dust
consumption allowed us to establish that non-dust outputs typically get spent 8 times
faster than dust outputs, probably due to the fact that dust outputs cannot be spent on
their own and thus need to be combined with other amounts of value.

The experimental results have also shown the impact of dust transactions, especially
the ones suspected of being part of dust attacks, on Bitcoin addresses pseudonymity.
For example, we have measured how the relatively few transactions likely related to dust
attacks disproportionately increase the effectiveness of addresses deanonymization. These
transactions are just 4.86% of all dust creating transactions and 0.008% of all transactions
overall, but allow to cluster 66.43% of all addresses affected by dust transactions and 0.14%
of all addresses. These results prove how dust negatively impacts on users’ pseudonymity
in Bitcoin in general, and especially so if intentionally used during dust attacks.

Regarding future work, we plan to extend our analysis by examining a more recent ver-
sion of the Bitcoin transaction data set. Specifically, our intention is to include also trans-
actions issued after the introduction of the Segregated Witness update, which took place
in August 2017. Indeed, with the introduction of Segregated Witness, the threshold to

Page 26 of 28Loporchio et al. Applied Network Science (2023) 8:34

consider amounts as dust has changed, thus potentially altering the quantity of dust outputs
that are created and consumed. In addition to this, we plan to enrich our clustering analysis
and further evaluate the impact of candidate and type 2+ transactions by comparing their
effect on address clustering with respect to randomly chosen subsets of transactions.

Appendix: symbols and abbreviations
This appendix contains a general scheme of all symbols and abbreviations results used
in the Experimental results section to indicate data sets of transactions. All used sym-
bols are listed in Table 9, each accompanied by a brief description of its meaning.

Acknowledgements
Not applicable.

Author Contributions
All authors have contributed equally to the paper. All authors have read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All code used for the experiments is publicly available at the following GitHub repository: https:// github. com/ mlopo
rchio/ DustA nalys is.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Table 9 List of symbols used throughout the Experimental results section

Symbol Description

F Set of all Bitcoin transactions from January 3rd, 2009 to August 10th, 2017

T Transactions in F that create or consume dust

Dout Set of all dust outputs in T

Din Set of all dust inputs in T

U Unspent outputs of Dout

NOD Outputs of Dout spent in combination with at least one non-dust output

OD Outputs of Dout spent exclusively with other dust outputs

T ′ Transactions in T possibly related to dust attacks

k(T) Absolute number of dust outputs of transaction T

j(T) Relative number of dust outputs of transaction T

Tsus Suspect dust-creating transactions in T ′ , issued by potential attackers

T1 Dust-consuming transactions in T ′ with one unique input address

T2+ Dust-consuming transactions in T ′ with at least two unique input addresses

TS Dust-consuming transactions in T ′ where all input value is spent in fees

TC Dust-consuming transactions in T ′ issued by potential victims of dust attacks

NC F \ TC , i.e., set obtained by removing all candidate dust-consuming transactions from F

N2+ F \ T2+ , i.e., set obtained by removing all type 2+ transactions from F

A Set of Bitcoin addresses induced by F

P(X) Partition of A obtained by applying the clustering algorithm to X

diff (X , Y) P(X) \ P(Y)

https://github.com/mloporchio/DustAnalysis
https://github.com/mloporchio/DustAnalysis

Page 27 of 28Loporchio et al. Applied Network Science (2023) 8:34

Competing interests
The authors declare that they have no competing interests.

Received: 28 February 2023 Accepted: 28 May 2023

References
Baqer K, Huang DY, McCoy D, Weaver N (2016) Stressing out: Bitcoin stress testing. In: International conference on financial

cryptography and data security, pp 3–18. Springer
Bartoletti M, Pompianu L (2017) An analysis of Bitcoin OP_RETURN metadata. In: Financial cryptography and data security, pp

218–230. Springer International Publishing
Biryukov A, Tikhomirov S (2019) Deanonymization and linkability of cryptocurrency transactions based on network analysis.

In: IEEE European symposium on security and privacy, EuroS &P 2019, Stockholm, Sweden, June 17–19, 2019, pp
172–184. IEEE

Bitcoin Wiki: Privacy–Forced address reuse. https:// en. bitco in. it/ wiki/ Priva cy# Forced_ addre ss_ reuse Accessed 15 Feb 2023
Bradbury D (2013) The problem with Bitcoin. Comput Fraud Secur 2013(11), 5–8
Christin N (2013) Traveling the silk road: a measurement analysis of a large anonymous online marketplace. In: Proceedings of

the 22nd international conference on World Wide Web, pp 213–224
Crowcroft J, Di Francesco Maesa D, Magrini A, Marino A, Ricci L (2021) Leveraging the users graph and trustful transactions for

the analysis of bitcoin price. IEEE Trans Netw Sci Eng 8(2):1338–1352
Decker C, Wattenhofer R (2014) Bitcoin transaction malleability and mtgox. In: Computer Security-ESORICS 2014: 19th Euro-

pean symposium on research in computer security, Wroclaw, Poland, September 7–11, 2014. Proceedings, Part II 19, pp
313–326. Springer

Di Francesco Maesa D, Marino A, Ricci L (2018) Data-driven analysis of bitcoin properties: exploiting the users graph. Int J Data
Sci Anal 6(1):63–80

Fanti G, Viswanath P (2017) Deanonymization in the bitcoin P2P network. In: Advances in neural information processing
systems 30: annual conference on neural information processing systems 2017, December 4–9, 2017, Long Beach, CA,
USA, pp 1364–1373

Di Francesco Maesa D, Mori P (2020) Blockchain 3.0 applications survey. J Parallel Distributed Comput 138:99–114
Gomez G, Moreno-Sanchez P, Caballero J (2022) Watch your back: identifying cybercrime financial relationships in bitcoin

through back-and-forth exploration. In: Proceedings of the 2022 ACM SIGSAC conference on computer and communi-
cations security, pp 1291–1305

Harrigan M, Fretter C (2016) The unreasonable effectiveness of address clustering. In: 2016 Intl IEEE conferences on ubiquitous
intelligence and computing, advanced and trusted computing, scalable computing and communications, cloud and
big data computing, internet of people, and smart world congress (uic/atc/scalcom/cbdcom/iop/smartworld), pp
368–373 . IEEE

Hughes J Wizstats-Bitcoin pool Web statistics. https:// github. com/ wizki d057/ wizst ats/ blob/ fb200 de98c 2889a 558cb f109f
d3da4 e916f 6dc5a/ config. php. examp le Accessed 15 Feb 2023

Johnson D, Menezes A, Vanstone SA (2001) The elliptic curve digital signature algorithm (ECDSA). Int J Inf Sec 1(1):36–63
Jourdan M, Blandin S, Wynter L, Deshpande P (2018) Characterizing entities in the bitcoin blockchain. In: 2018 IEEE interna-

tional conference on data mining workshop (ICDMW), IEEE
Jourdan M, Blandin S, Wynter L, Deshpande P (2019) A probabilistic model of the bitcoin blockchain. In: Computer vision and

pattern recognition workshop (CVPRW), 2019, IEEE
Loporchio M, Bernasconi A, Di Francesco Maesa D, Ricci L (2023) An analysis of bitcoin dust through authenticated queries. In:

Complex networks and their applications XI, Cham, pp. 495–508. Springer International Publishing
Maesa DDF, Marino A, Ricci L (2017) Detecting artificial behaviours in the bitcoin users graph. Online Soc Netw Media 3,

63–74
Meiklejohn S, Pomarole M, Jordan G, Levchenko K, McCoy D, Voelker GM, Savage S (2013) A fistful of bitcoins: characterizing

payments among men with no names. In: Proceedings of the 2013 conference on internet measurement conference,
pp 127–140

Merkle RC (1980) Protocols for public key cryptosystems. In: Proceedings of the 1980 IEEE symposium on security and privacy,
Oakland, California, USA, April 14–16, 1980, pp 122–134. IEEE Computer Society

Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. https:// bitco in. org/ bitco in. pdf Accessed 15 Feb 2023
Pérez-Solà C, Delgado-Segura S, Navarro-Arribas G, Herrera-Joancomartí J (2019) Another coin bites the dust: an analysis of

dust in utxo-based cryptocurrencies. R Soc Open Sci 6(1), 180817
Reid F, Harrigan M (2013) An analysis of anonymity in the bitcoin system. Springer: New York, pp 197–223
Saad M, Njilla L, Kamhoua C, Kim J, Nyang D, Mohaisen A (2019) Mempool optimization for defending against ddos attacks

in pow-based blockchain systems. In: 2019 IEEE international conference on blockchain and cryptocurrency (ICBC), pp
285–292. IEEE

Satoshi Dice: Bitcoin Casino Game. https:// web. archi ve. org/ web/ 20120 50109 4159/ http:// satos hidice. com Accessed 15 Feb
2023

Singh A, Parizi RM, Han M, Dehghantanha A, Karimipour H, Choo K-KR (2020) Public blockchains scalability: an examination of
sharding and segregated witness. In: Blockchain cybersecurity, trust and privacy, pp 203–232. Springer

Tamassia R (2003) Authenticated data structures. In: Algorithms-ESA 2003: 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003. Proceedings 11, pp. 2–5. Springer

Todd P Dust-B-Gone. https:// github. com/ peter todd/ dust-b- gone Accessed 15 Feb 2023
Twitter: Samourai Wallet on Twitter. https:// twitt er. com/ Samou raiWa llet/ status/ 10553 45822 07693 6192 Accessed 2023-02-15

https://en.bitcoin.it/wiki/Privacy#Forced_address_reuse
https://github.com/wizkid057/wizstats/blob/fb200de98c2889a558cbf109fd3da4e916f6dc5a/config.php.example
https://github.com/wizkid057/wizstats/blob/fb200de98c2889a558cbf109fd3da4e916f6dc5a/config.php.example
https://bitcoin.org/bitcoin.pdf
https://web.archive.org/web/20120501094159/http://satoshidice.com
https://github.com/petertodd/dust-b-gone
https://twitter.com/SamouraiWallet/status/1055345822076936192

Page 28 of 28Loporchio et al. Applied Network Science (2023) 8:34

The Bitcoin Core developers: Bitcoin dust limit. https:// github. com/ bitco in/ bitco in/ blob/ c536d fbcb0 0fb15 963bf 5d507 b7017
c2417 18bf6/ src/ policy/ policy. cpp Accessed 15 Feb 2023

Wang Y, Yang J, Li T, Zhu F, Zhou X (2018) Anti-dust: a method for identifying and preventing blockchain’s dust attacks. In:
2018 international conference on information systems and computer aided education (ICISCAE), pp 274–280. IEEE

Zhang Y, Wang J, Luo J (2020) Heuristic-based address clustering in bitcoin. IEEE Access 8, 210582–210591

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/bitcoin/bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/policy.cpp
https://github.com/bitcoin/bitcoin/blob/c536dfbcb00fb15963bf5d507b7017c241718bf6/src/policy/policy.cpp

	Is Bitcoin gathering dust? An analysis of low-amount Bitcoin transactions
	Abstract
	Introduction
	Related work
	Background
	Bitcoin blockchain
	Transactions
	Scripts
	Clustering

	Bitcoin dust
	Dust attacks

	Experimental results
	Data set description
	Transaction analysis
	Address analysis
	Output analysis
	Dust attack analysis
	Data filtering
	Transaction analysis
	Candidate identification
	Clustering analysis

	Conclusions and future work
	Appendix: symbols and abbreviations
	Acknowledgements
	References

