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Abstract 

Bipolarization is a phenomenon in which either a large or very small information 
cascade appears randomly when the retweet rate is high. This phenomenon, which 
has been observed only in simulations, has the potential to significantly advance the 
prediction of final cascade sizes because forecasters need only focus on the two peaks 
in the final cascade size distribution rather than considering the effects of various 
details, such as network structure and user behavioral patterns. The phenomenon also 
suggests the difficulty of identifying factors that lead to the emergence of large-scale 
cascades. To verify the existence of bipolarization, this paper theoretically derives math-
ematical expressions of the cascade final size distribution using urn models, which 
simplify the diffusion behavior of actual online social networks. Under the assumption 
of infinite network size, the distribution exhibits power-law behavior, consistent with 
the results of existing diffusion models and previous Twitter analytical outcomes. Under 
the assumption of finite network size, bipolarization is observed.

Keywords: Information diffusion, Online social network, Cascade size distribution, 
Bipolarization, Twitter

Introduction
A large-scale information cascade is a phenomenon in which attractive (viral) content 
spreads to a large number of online social network (OSN) users. The problem of pre-
dicting the final size of a cascade when its size is small has been studied for more than 
twenty years, where the size is the number of users who have shared the information. 
Some predicting approaches focus on community properties (Weng et  al. 2013, 2014; 
Junus et al. 2015; Bao et al. 2017). Other approaches focus on the details of the cascade 
and network structures (Zhao et al. 2015; Yu et al. 2015; Li et al. 2015; Krishnan et al. 
2016; Cheung et al. 2017). Recent approaches often employ deep neural network tech-
nologies (Bourigault et al. 2016; Wang et al. 2017, 2018; Horawalavithana et al. 2020).

If the prediction problem can be solved, then (1) content delivery systems can be made 
more efficient by moving viral contents to servers close to the viewers, (2) information 
that people are interested in can be used more quickly for stock investments and prod-
uct development, and (3) prediction technologies can be applied to viral marketing, 
which creates large-scale cascades on purpose.
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Large-scale cascades rarely occur (Goel et  al. 2012; Cheng et  al. 2014), so available 
datasets for their prediction are currently insufficient. As such, it is not always easy to 
apply machine learning techniques and verify the statistical significance for proposed 
methods. Meanwhile, simulation-based forecasting research is progressing. A phenom-
enon in which large and very small cascades appear randomly under a high retweet rate 
has been reported in Oida (2021). This phenomenon is referred to as bipolarization 
because the two peaks of the cascade size distribution move apart as the retweet rate 
increases.

Bipolarization is universal in that it emerges regardless of network topologies (small-
world (Watts and Strogatz 1998), scale-free (Barabási et al. 1999), Erdős–Rényi (Batagelj 
and Brandes 2005), and existing OSNs), existence of various types of communities (For-
estier et al. 2015; Baldesi et al. 2018), and user behavioral patterns (social reinforcement 
(Weng et  al. 2013, 2014), user response times (Zhou et  al. 2017; Xie et  al. 2011), and 
repeated exposure (Zhou et al. 2015)). This phenomenon was observed in event-driven 
simulations and was reproduced by the urn model, which is a model for simplifying 
the Twitter-type information diffusion mechanism (Oida 2021). Bipolarization appears 
when the network size is finite.

This paper mathematically formulates the urn model to theoretically verify this novel 
discovery. The contributions of this paper can be summarized as follows: 

1 This paper deals analytically with the case where the network size is finite (although 
the case where the size is infinite is much simpler). This is a realistic approach 
because existing network sizes are all finite. The effects of network properties and 
user behavior can be rigorously assessed through partially modifying the derived 
equations in this paper.

2 This paper is the first to theoretically prove the bipolarization phenomenon.
3 The formula for infinite network size can be applied to the case where most of the 

cascades are sufficiently smaller than the network size. The cascade size distribution 
derived from the formula shows a power law over a certain range. This is consist-
ent not only with the results of previous Twitter data analyses (Bakshy et al. 2011) 
(because most existing cascades are small) but also with those of existing diffusion 
models (Wegrzycki et al. 2017; Gleeson et al. 2020).

The remainder of this paper is organized as follows. Section  describes related studies. 
Section   introduces the urn model. Section   formulates the model as a Markov chain. 
Section  proves many propositions derived from the Markov chain. Section  numerically 
evaluates the derived equations to investigate the shape of the cascade final size distri-
butions under the finite and infinite network size assumptions. Section   discusses the 
implication of the findings, and finally, Sect.  concludes the paper.

Related work
The term “urn models” generally refers to the systems of one or more urns containing 
objects of various types (colored balls in the usual setting) (Mahmoud 2008). The sys-
tems evolve in time, subject to rules of drawing balls and throwing balls into the urns. 
These models have helped reveal various phenomena, including the evolution of species 
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in biology, particle systems in chemistry, and formation of social networks in sociology 
(Mahmoud 2008).

A variety of urn models have been proposed for years, especially in the field of mathe-
matics (Pemantle 2007). In recent reinforcement models, one or more balls are extracted 
and returned to the urn with additional balls. The number and colors of the additionally 
returned balls are determined by the colors of extracted ones (Rafik et al. 2019; Crimaldi 
et  al. 2022). These studies focus primarily on asymptotic properties, such as the limit 
value of the proportion of balls of a certain color in an urn. The model in this paper is 
simple in that one ball is extracted and one ball is returned; therefore, it is not a rein-
forcement model. The uniqueness of this study is that a ball to be returned may not be 
an extracted one and that the number of trials of extracting a ball is increased, not the 
number of balls to be returned.

The reinforcement model is also used to model various information diffusion phenom-
ena or to predict them through numerical computation. In (Hino et  al. 2016), Pólya’s 
urn model was introduced to observe phase transitions in the information cascade. The 
model was also used for reproducing trajectories of innovation diffusion (Dosi et  al. 
2019) and for predicting statistical laws for the rate at which novelties (e.g., discovery of 
new songs and ideas) happen through social interaction (Tria et al. 2014; Di Bona et al. 
2022).

Let us next discuss previous studies focusing on information cascade sizes. The 
authors of Wegrzycki et  al. (2017) presented a theoretical proof that the sizes of cas-
cades generated by the cascade generation model (CGM) (Leskovec et al. 2007) follow a 
power-law distribution. In Gleeson et al. (2020), information spread was modeled with a 
branching process, which also presented power-law behavior over a limited range. Both 
approaches are practical in that their models were effective for fitting empirical data. 
However, they did not clearly quantify the effects of finiteness of the network size on 
cascade sizes. This paper extends their work by articulating the impact of the finiteness 
from a different perspective.

Proposed model
Figure 1(left) shows the urn model that represents the mechanism of spreading retweets 
to followers. Table 1 describes the symbols in the model and corresponding OSN quan-
tities. There are N balls in the urn, and each is either black or white. The OSN quantity 

Urn
balls

Fig. 1 Left: In the urn model, a trial of extracting and returning a ball is repeatedly conducted until p reaches 
zero. p is increased by f − 1 if a white ball is extracted and a black ball is returned with probability � . In all 
other cases, p is decremented by one after each trial. In the figure, “ p ← p+ f − 1 ” denotes that the new 
value of p is p+ f − 1 . Right: One of the cases of Bτ = 5 . Event p = 0 occurs at the end of one of the intervals 
I0, I1, I2, . . .



Page 4 of 15Oida  Applied Network Science            (2023) 8:30 

corresponding to a black (white) ball is a user who has (not) posted a retweet. Thus, the 
initial condition is that all balls are white. The model repeats a trial in which a ball is ran-
domly extracted from the urn and then a ball is returned to the urn until p = 0 , where 
p is the number of remaining trials, and its initial value is f (> 0) . As shown in Table 1, 
p corresponds to the number of retweet messages that have not been read yet and f the 
number of followers.

In the OSN diffusion mechanism, a user posts a retweet with probability � after read-
ing an arrival retweet if the user has not posted a retweet yet. In this case, the number 
of unread retweets p increases by f − 1 (because the user has read the retweet and the 
number of followers is f), and the number of users who have retweeted B increases by 
one. If a retweet message arrives at a user who has already posted a retweet or at a user 
who decides not to post a retweet, p decreases by one and B is unchanged. The number 
B at p = 0 corresponds to the final size of the cascade.

The urn model in Fig. 1(left) follows the above-mentioned OSN diffusion mechanism. 
If a white ball is taken out of the urn, a black ball is returned to the urn with probability 
� (this ball-swapping rule represents the process in which a user who has not retweeted 
turns into a user who has retweeted). If this happens, p is incremented by f − 1 . In all 
other cases, the extracted ball is returned and p is decreased by one.

Formulation
This section defines a stochastic process from the urn model. Let pn and Bn be p and B 
immediately after the n-th trial, respectively. The stopping time τ of the trial is defined as

Bτ is determined by the Markov chain Xn = (Bn, pn) given by

where �n ∈ {0, 1} and �′
n ∈ {−1, f − 1} represent increases in B and p just after the 

n-th trial, respectively. Note from the previous section that {�n = 0} = {�′
n = −1} , 

{�n = 1} = {�′
n = f − 1} , and

(1)τ := inf{n ≥ 1|pn = 0}.

(2)X0 = (0, f0),

(3)Xn+1 = (Bn +�n+1, pn +�′
n+1),

(4)P(�n+1 = 1|Bn = i) = 1− P(�n+1 = 0|Bn = i) =
N − i

N
�.

Table 1 Symbols in the urn model and corresponding OSN quantities

Symbol Urn model OSN

p Number of remaining trials Number of unread retweets

f Number of trials to be increased Number of followers

N Total number of balls in the urn Total number of users (network size)

B Number of black balls in the urn Number of users who have retweeted

� Probability to return a black ball Retweet probability
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This paper assumes that � is constant and f may vary with time. Let fk be the k-th value 
of f ( f0 is the initial value of p). In the OSN setting, fk corresponds to the number of fol-
lowers of the user who posted the k-th retweet. Let

where f̄k :=
∑k

i=0 fi and I0 := (0, f̄0] . Figure  1(right) shows one of the cases where 
Bτ = 5 occurs. This event occurs if and only if events �n = 1 do not occur at n ∈ I5 , they 
occur five times at n ∈ ∪4

k=0
Ik , at least four times at n ∈ ∪3

k=0
Ik , at least three times at 

n ∈ ∪2
k=0

Ik , at least twice at n ∈ ∪1
k=0

Ik , and at least once at n ∈ I0.

Proposition 1 For any integer k ≥ 0,

Proof
As shown in Fig. 1(right), event p = 0 occurs only at the end of one of intervals I0, I1, I2, . . . . 
If Bτ = k , the trials are not conducted at f̄j , j > k and τ is not smaller than f̄k because if 
τ = f̄j , j < k , Bτ must be smaller than k. Thus, {Bτ = k} ⊂ {τ = f̄k} . If τ = f̄k , Bf̄k

= k . 
Thus, {τ = f̄k} ⊂ {Bτ = k} .  �

Calculation of P(Bτ )
Infinite network size

This section calculates the probability of Bτ when the total number of balls N (referred to 
as the network size) is infinite. Proposition 1 indicates that {Bτ = k} depends only on the 
first f̄k trials �1, . . . ,�f̄k

 . Because �n ∈ {0, 1} , ω = (�1, . . . ,�f̄k
) takes one of 2f̄k different 

binary sequences. Let a
b c

 be the number of events ω that satisfy the condition that a 

trials generate b events �n = 1 and τ = c . Then,

If N is infinite, the right-hand side of (4) is limN→∞
N−i
N � = � , so P(�n+1 = 1|Bn) is 

constant � regardless of Bn . Thus, by using X0 = (0, f0),

and for k ≥ 0,

where 
(

f̄0
0 f̄0

)

= |{ω|Bτ = 0}| = 1.

(5)Ik := (f̄k−1, f̄k ], k = 0, 1, . . . ,

(6){Bτ = k} = {τ = f̄k}.

(7)|{ω|Bτ(ω) = k}| =

(

f̄k
k f̄k

)

.

(8)
P(Bτ = 0) = P(B0 = 0)P(�1 = 0|B0 = 0) · · ·P(�f0 = 0|Bf0−1 = 0) = (1− �)f0 ,

(9)P(Bτ = k) =

(

f̄k
k f̄k

)

�
k(1− �)f̄k−k

,
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Proposition 2 For any integer k > 0,

Proof
From Proposition 1,

Because pn becomes zero only at n = f̄0, f̄1, f̄2, . . .,

Note that {τ = f̄m} , m = 1, 2, . . . , k , are disjoint sets. From (11) and (12),

Because

(10) holds.  �

Proposition 3 For any integers k and m satisfying 0 < m < k,

Proof
(

f̄k−1

k f̄m

)

 is the number of binary sequences (�1, . . . ,�f̄k−1
) in which events �n = 1 occur k 

times and τ = f̄m . The number of binary sequences (�1, . . . ,�f̄m
) satisfying τ = f̄m is 

(

f̄m
m f̄m

)

 , and the number of sequences (�f̄m+1
, . . . ,�f̄k−1

) in which events �n = 1 occur 

k −m times is 
(

f̄k−1 − f̄m
k −m

)

 .  �

(10)
(

f̄k
k f̄k

)

=

(

f̄k−1

k

)

−

k−2
∑

m=0

(

f̄k−1

k f̄m

)

.

(11){Bτ = k} = {Bf̄k
= k} ∩ {τ = f̄k}.

(12){Bf̄k
= k} = {Bf̄k

= k} ∩

k
⋃

m=0

{τ = f̄m}.

(13){Bτ = k} = {Bf̄k
= k} \ {Bf̄k

= k} ∩

k−1
⋃

m=0

{τ = f̄m}.

(14)|{Bf̄k
= k}| =

(

f̄k−1

k

)

,

(15)|{Bf̄k
= k} ∩

k−1
⋃

m=0

{τ = f̄m}| =

k−1
∑

m=0

(

f̄k−1

k f̄m

)

,

(16)
(

f̄k−1

k f̄k−1

)

= 0,

(17)
(

f̄k−1

k f̄m

)

=

(

f̄m
m f̄m

)(

f̄k−1 − f̄m
k −m

)

.
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Propositions 2 and 3 indicate that 
(

f̄k
k f̄k

)

 is obtained by using 
(

f̄m
m f̄m

)

 , 

m = 0, 1, . . . , k − 2 , where 
(

f0
0 f0

)

= 1 . Therefore, from (9), P(Bτ = k) can be derived 

in ascending order of k.

Finite network size

Let us next consider the case where N is finite, and let �i := N−i
N � . In this case, prob-

ability P(Bτ = k) becomes a complex formula, and its calculation time rises sharply as k 
increases. Therefore, the upper and lower bounds of P(Bτ = k) are derived as a first step.

Assume that events �n = 1 occur k times at n = n1, n2, . . . , nk , where 

1 ≤ n1 < n2 < · · · < nk ≤ f̄k−1 . Let c =
(

f̄k
k f̄k

)

∏k−1
i=0 �i and

Proposition 4 For k > 0 , P(Bτ = k) satisfies

Proof
Let ω∗ ( ω∗ ) be one of the ω values in {ω|Bτ(ω) = k} that maximizes (minimizes) probabil-
ity P(ω) . From (7),

In the following, P(ω∗) and P(ω∗ ) are derived. From (4),

which is independent of (n1, . . . , nk) . For any ω , P(ω) is given as

From (4), for any k-tuple (n1, . . . , nk) , L(n1, . . . , nk) strictly decreases as ni ∈ {n1, . . . , nk} 
increases. Note that Bτ = k if (n1, . . . , nk) is equal to (1, 2, . . . , k) or (f̄0, f̄1, . . . , f̄k−1) , and 
Bτ  = k if nj > f̄j−1 for any j, 1 ≤ j ≤ k . Accordingly, L is minimized (maximized) if events 
occur at (n1, . . . , nk) = (f̄0, f̄1, . . . , f̄k−1) ( (n1, . . . , nk) = (1, 2, . . . , k) ).  �

Note that

(18)
L(n1, n2, . . . , nk) :=

∏

i∈{1,2,...,f̄k }\{n1,...,nk }

P(�i = 0|Bi−1).

(19)cL(f̄0, f̄1, . . . , f̄k−1) ≤ P(Bτ = k) ≤ cL(1, 2, . . . , k).

(20)
(

f̄k
k f̄k

)

P(ω∗) ≤ P(Bτ = k) ≤

(

f̄k
k f̄k

)

P(ω∗).

(21)P(�n1 = 1|Bn1−1 = 0) · · ·P(�nk = 1|Bnk−1 = k − 1) =

k−1
∏

i=0

�i,

(22)P(ω) = L(n1, n2, . . . , nk)

k−1
∏

i=0

�i.

(23)L(1, 2, . . . , k) = (1− �k)
f̄k−k

,
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This paper further improves the upper and lower bounds in (19) by using the following 
propositions. Let

Proposition 5 For 0 < j ≤ k , L defined in (18) satisfies

Proof
From (4) and (18),

Similarly,

 �

Proposition 5 implies that an increase in nj by one results in a decrease in L by 
δ(N , �, j)× 100% . The function δ rises (falls) with an increase in � (N or j). Because N and 
� are constant in this urn model, j determines δ . From (25), however, the impact of j on δ 
may be small because j < N  and � ≪ 1.

Let L∗ := L(1, 2, . . . , k) and L∗ := L(f̄0, f̄1, . . . , f̄k−1) , and let us abbreviate δ(N , �, j) as δj . 
Proposition 5 yields the following.

(24)L(f̄0, f̄1, . . . , f̄k−1) =

(

k−1
∏

i=0

(1− �i)
fi−1

)

(1− �k)
fk .

(25)δ(N , �, j) :=
1

N (�−1 − 1)+ j
.

(26)
L(n1, . . . , nj + 1, . . . , nk)

L(n1, . . . , nj , . . . , nk)
= 1− δ(N , �, j),

(27)
L(n1, . . . , nj − 1, . . . , nk)

L(n1, . . . , nj , . . . , nk)
= 1+ δ(N , �, j − 1).

L(n1, . . . , nj + 1, . . . , nk)

L(n1, . . . , nj , . . . , nk)

=
(1− �0)

n1−1 · · · (1− �j−1)
nj (1− �j)

nj−2 · · · (1− �k−1)
nk−1−1(1− �k)

nk

(1− �0)
n1−1 · · · (1− �j−1)

nj−1(1− �j)
nj−1 · · · (1− �k−1)

nk−1−1(1− �k)
nk

=
1− �j−1

1− �j

=

(

1−
N − (j − 1)

N
�

)/(

1−
N − j

N
�

)

= 1−
1

N (�−1 − 1)+ j
.

L(n1, . . . , nj − 1, . . . , nk)

L(n1, . . . , nj , . . . , nk)
=

1− �j

1− �j−1

= 1+
1

N (�−1 − 1)+ j − 1
.
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Proposition 6 

Proof
By iteratively applying (26),

(29) is obtained in the same way.  �

Let �j := {j, j + 1, . . . , f̄j−1} and �′
j := {f̄j−1 + 1, f̄j−1 + 2, . . .}.

Proposition 7 Assume that events �n = 1 occur at n = n1, n2, . . . , where 
0 < n1 < n2 < · · ·.

Bτ = k is equivalent to

Proof
Assume that (30) does not hold. This happens when at least one of nj , 1 ≤ j ≤ k , satisfies 
nj /∈ �j or when nk+1 /∈ �′

k+1
 . nj /∈ �j implies nj > f̄j−1 because nj ≥ j due to 

0 < n1 < n2 < · · · . If nj > f̄j−1 , τ ≤ f̄j−1 ; therefore, Bτ ≤ j − 1 < k . This result does not 
depend on nk+1 ∈ �′

k+1
 . If ni ∈ �i for i = 1, 2, . . . , k and nk+1 /∈ �′

k+1
 , pf̄i > 0 for 

i = 0, 1, . . . , k ; therefore, Bτ > k.

Assume conversely that Bτ  = k . If Bτ = j < k , τ = f̄j ; therefore, nj+1 > f̄j , which is 
inconsistent with (30). If Bτ > k , p must satisfy pf̄k > 0 ; accordingly, nk+1 < f̄k , which is 
inconsistent with (30). �

Proposition 7 and (7) imply that |�̄k | =

(

f̄k
k f̄k

)

 , where

Accordingly, P(Bτ = k) is exactly given as

(28)L(n1, n2, . . . , nk) = L∗(1− δ1)
n1−1(1− δ2)

n2−2 · · · (1− δk)
nk−k

(29)= L∗(1+ δ0)
f̄0−n1(1+ δ1)

f̄1−n2 · · · (1+ δk−1)
f̄k−1−nk .

L(n1, n2, . . . , nk) = L(n1 − 1, n2, . . . , nk)(1− δ1)

= L(n1 − 2, n2, . . . , nk)(1− δ1)
2

= L(1, n2, . . . , nk)(1− δ1)
n1−1

= L(1, 2, . . . , k)(1− δ1)
n1−1(1− δ2)

n2−2 · · · (1− δk)
nk−k

.

(30)(n1, n2, . . . , nk , nk+1) ∈ �1 ×�2 × · · · ×�k ×�′
k+1.

(31)�̄k := {(ℓ1, ℓ2, . . . , ℓk) ∈ �1 ×�2 × · · · ×�k |ℓ1 < ℓ2 < · · · < ℓk}.

(32)P(Bτ = k) =

k−1
∏

i=0

�i

∑

(n1,n2,...,nk )∈�̄k

L(n1, n2, . . . , nk).
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The improved upper and lower bounds, denoted as B∗ and B∗ , respectively, are given by

where

The upper and lower bounds in Proposition 4 correspond to the case of ǫ = 1 , at which 
B∗ ( B∗ ) takes the maximum (minimum) value. P(Bτ = k) = B∗ = B∗ when ǫ = 0 . The 
computation time rises sharply as ǫ decreases, so ǫ should be decreased gradually from 
one.

Approximation

The calculations of B∗ and B∗ in (33) and (34) still require large computational capacity. 

This subsection approximates P(Bτ = k) in (32). Because |�̄k | =

(

f̄k
k f̄k

)

 , a part of the 

right-hand side of (32) can be approximately given by

where L1, L2, . . . are values of the function L calculated using randomly selected 
k-dimensional coordinates (n1, n2, . . . , nk) ∈ �̄k . Both sides in (37) coincide if 

m =

(

f̄k
k f̄k

)

 . The values of function L are obtained from (28) or (29).

Numerical results
This section numerically evaluates analytical results derived so far under the condition 
that follower sizes are constant, i.e., f1 = f2 = · · · = fk = f .

Infinite network size

This subsection discusses the case of N = ∞ . Figure  2 shows P(Bτ = k) in (9) when 
f � = 1 , where f � = 1 represents an intermediate state between expansion and slow-
down of cascade growth because f � can be considered as the expected number of future 
retweets yielded by one retweet. The figure indicates that the tail of P(Bτ = k) follows a 
power law P(Bτ = k) ∝ k−1.5 as long as f � = 1 , regardless of the values of f and �.

(33)B∗ =

k−1
�

i=0

�i





�

|�̄k | − |S∗(k , ǫ)|
�

L∗ +
�

(n1,n2,...,nk )∈S
∗(k ,ǫ)

L(n1, n2, . . . , nk)



,

(34)B∗ =

k−1
�

i=0

�i





�

|�̄k | − |S∗(k , ǫ)|
�

L∗ +
�

(n1,n2,...,nk )∈S∗(k ,ǫ)

L(n1, n2, . . . , nk)



,

(35)S∗(k , ǫ) := {(ℓ1, . . . , ℓk) ∈ �̄k |
ℓi − i

f̄i−1 − i
≥ ǫ, i = 1, 2, . . . , k},

(36)S∗(k , ǫ) := {(ℓ1, . . . , ℓk) ∈ �̄k |
f̄i−1 − ℓi

f̄i−1 − i
≥ ǫ, i = 1, 2, . . . , k}.

(37)
∑

(n1,n2,...,nk )∈�̄k

L(n1, n2, . . . , nk) ≈

(

f̄k
k f̄k

)

L1 + L2 + · · · + Lm

m
,
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Figure 3 shows the case when f �  = 1 . The tail of P(Bτ = k) in this case decays faster 
than that in the case f � = 1 . It is easy to understand that the tail is short if f � < 1 
because the cascade size is small in this case. The tail is also short when f � > 1 because 
probability P(Bτ = ∞) increases. From Figs. 2 and 3, P(Bτ = k) strictly decreases as k 
increases, regardless of f � , when N = ∞.

Finite network size

This subsection discusses the case of N < ∞ . Figure  4 shows the upper and lower 
bounds of P(Bτ = k) in (19). As shown in Fig.  4(left), both bounds are close and 

Fig. 2 The infinite model shows power-law behavior if f � = 1 . As long as f � = 1 , the exponent α is −1.5 
regardless of f and � . Left: f = 200 and � = 0.005 . Right: f = 50 and � = 0.002 . The correlation coefficients of 
(log k, log(P(Bτ = k))) , k ≥ 95 , of the two graphs are less than −0.999999999

Fig. 3 The infinite model shows power-law behavior with α = −1.5 over a limited range if f �  = 1 . f = 50 . 
Left: f � < 1 . Right: f � > 1

Fig. 4 Left: The upper and lower bounds monotonically decrease with k when f � = 0.7 . Right: The upper 
bound shows another peak, while the lower bound does not when f � = 0.8 . N = 100 and f = 20
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monotonically decreases with k. Accordingly, the distribution of P(Bτ = k) has a single 
peak at k = 0 when f � is small. If f � rises, as shown in Fig. 4(right), the upper bound 
shows another peak, while the lower bound does not. The upper bound suggests bipo-
larization because there are peaks at k = 0 and k = 59 ; however, Fig. 4(right) does not 
prove the existence of the phenomenon because the gap between the two bounds is too 
wide.

Bounds B∗ and B∗ in (33) and (34) were obtained to reduce the gap between the upper 
and lower bounds in (19). Table 2 shows how much these bounds are improved com-
pared with those in (19), which represent the case |S∗| = |S∗| = 0 . Because the per-
centages in the table are all small, calculation with larger |S∗| and |S∗| values is needed. 
However, the calculation requires a powerful computation environment. It took several 
days to obtain B∗ and B∗ for |S∗| = |S∗| = 107 when a new desktop PC was used.

Approximation

This subsection proves the existence of bipolarization using the approximate formula in 
(37). Note from Sect.  that bipolarization is identified if there is only one peak at k  = 0 . 
Figure 5 shows that this identification condition holds. The two graphs in the figure are 
the same except for the scale of the vertical axis. As shown in the figure, the left peak 
becomes lower and the right peak shifts to the right as � increases. This behavior agrees 
with the result in Oida (2021).

Discussion
This paper dealt with two cases of network size N: finite and infinite. If network size N is 
sufficiently greater than cascade size B, the infinite model can be used. Contrarily, if B is 
close to N, the effect of finiteness of N becomes dominant. Because the Twitter network 

Table 2 Percentages of decrease (increase) in the upper (lower) bound. The improvement is small 
even when |S∗| = |S∗| = 10

7 . N = 100 , f = 50 , and � = 0.02

|S∗| = |S∗| 0 10
4

10
5

10
6 10

7

Upper bound B∗ 0% 0.016% 0.076% 0.096% 0.126%

Lower bound B∗ 0% 0.037% 0.135% 0.173% 0.211%

Fig. 5 Bipolarization phenomenon generated with approximate formula (37). The two graphs are the same 
except for the scale of the vertical axis. The number of samples, m in (37), is 15× k2 , which provides smooth 
and stable distribution shape. N = 20 and f = 20
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is considerably large and the majority of Twitter cascades are small, the infinite model 
can be used for comparison with previous Twitter data analytical results.

The infinite model showed that Bτ follows a power law if f � = 1 (Fig.  2) and that 
even if f �  = 1 , the decay exponent is approximately −1.5 over a limited range (Fig. 3). 
According to Bakshy et  al. (2011), in which 1.03× 109 tweets and 74 × 106 diffusion 
events were collected over the two-month period of Sep. 13 to Nov. 15, 2009, the cas-
cade size has a power-law distribution, and interestingly, the exponent is −1.5 over the 
range of [101, 103].

Some researchers have collected large-scale cascade samples to identify the sources of 
large-scale cascade emergence (Zhao et al. 2015; Yu et al. 2015; Li et al. 2015; Krishnan 
et  al. 2016; Cheung et  al. 2017; Bakshy et  al. 2011; Cheng et  al. 2014), while some 
attempted to extract features of large cascade samples using machine learning algo-
rithms (Bourigault et al. 2016; Wang et al. 2017, 2018; Horawalavithana et al. 2020; Zhou 
et al. 2021). The outcomes of this paper imply that these approaches might bring contra-
dictory or ambiguous consequences regarding the effects of network properties and user 
behavior on cascade growth due to the stochastic duality, which implies the possibility of 
two extreme outcomes occurring under the same conditions (i.e., cascades may acciden-
tally live long or may die immediately).

As a next step of this work, the following prediction method is promising. According 
to Fig.  4, one of the distribution peaks is at k = 0 . Thus, an appropriate small integer 
K > 0 can be selected such that the distribution of P(Bτ = k|τ > K ) becomes almost 
unimodal. The proposed method is to obtain the mean and confidence interval of the 
final cascade size from this unimodal distribution. This method should yield better 
results for larger cascades because the finite-size effect (i.e., bipolarization) becomes 
more pronounced as the cascade size grows.

Conclusions
To theoretically verify the existence of bipolarization, this paper derived various math-
ematical equations from an urn model, a model mimicking the fundamental mechanism 
of Twitter-type information diffusion, and has revealed the followings through numeri-
cal computation:

• The infinite network size assumption simplified the final cascade size distribution. 
The distribution was a strictly decreasing function of the cascade size. The product of 
the retweet rate ( � ) and number of followers (f) determined the shape of the distribu-
tion. A power law (over a limited range) appeared if f � = 1 ( f �  = 1).

• Calculation of the distributions assuming the network size is finite required a very 
large amount of computation power. The upper and lower bounds of the distribution 
showed that the distribution was a decreasing function of the cascade size if f � is 
small. The bounds also suggested that another peak could emerge in the distribution 
as f � grows.

• The approach of using random numbers to approximate the shape of the distribu-
tion revealed the existence of another peak. The two peaks of the distribution moved 
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apart as f � increased. This result was consistent with that reported in a previous 
simulation work.
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