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Abstract 

The Artificial Benchmark for Community Detection graph (ABCD) is a random graph 
model with community structure and power-law distribution for both degrees and 
community sizes. The model generates graphs with similar properties as the well-
known LFR one, and its main parameter ξ can be tuned to mimic its counterpart in 
the LFR model, the mixing parameter µ . In this paper, we extend the ABCD model 
to include potential outliers. We perform some exploratory experiments on both the 
new ABCD+o model as well as a real-world network to show that outliers pose some 
distinguishable properties. This ensures that our new model may serve as a benchmark 
of outlier detection algorithms.

Keywords: ABCD model, Outliers, Community detection, ABCD+o

Introduction
One of the most important features of real-world networks is their community structure, 
as it reveals the internal organization of nodes (Fortunato 2010). In social networks, com-
munities may represent groups by interest; in citation networks, they correspond to related 
papers; on the Web, communities are formed by pages on related topics, etc. Being able to 
identify communities in a network could help us to exploit this network more effectively. 
Grouping like-minded users or similar-looking items together is important for a wide 
range of applications, including controlling epidemics (Ghalmane et al. 2019), recommen-
dation systems, anomaly or outlier detection, fraud detection, rumor or fake news detec-
tion, etc. Javed et al. (2018). There is also growing literature introducing community-aware 
centrality measures that exploit both local and global properties of networks (Curado et al. 
2023; Rajeh et al. 2023). For more discussion around various aspects of mining complex 
networks, see for example, Newman (2018); Kamiński et al. (2021b).

One of the major current challenges in detecting communities is that most of the exist-
ing algorithms treat all nodes the same way. That is, they try to assign them to precisely 
one community. On the other hand, many complex networks (regardless of whether 
their nodes correspond to, say, users of some social media or movies on Netflix) consist 
of nodes that are active participants of their own communities while others are not (Liu 
et al. 2020). As a result, there is a need to detect nodes that are not a strong part of any of 
the communities. In this paper we refer to such nodes as outliers.

*Correspondence:   
pralat@torontomu.ca

1 SGH Warsaw School 
of Economics, Warsaw, Poland
2 Toronto Metropolitan 
University, Toronto, ON, Canada
3 The Tutte Institute 
for Mathematics and Computing, 
Ottawa, ON, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-023-00552-9&domain=pdf


Page 2 of 22Kamiński et al. Applied Network Science            (2023) 8:25 

Another feature of empirical graphs is that some communities might be overlapping, 
which is reflected by some of the nodes belonging to a few communities via fuzzy mem-
bership. For example, a label propagation method  (Gregory 2010) and a non-negative 
matrix factorization approach (Yang and Leskovec 2013) are introduced to find overlap-
ping communities. Independently, a Louvain-based algorithm is proposed in Singh and 
Garg (2021) to detect overlapping communities with influence analysis.

The survey  Akoglu et  al. (2015) reviews various methods and approaches to graph 
anomaly detection. In particular, Section 2.1.2 in this survey contains a review of various 
methods that are used for identifying community-based outliers. This type of outlier is a 
subject of interest in this paper.

Selected relevant approaches related to community-based outliers detection can be 
found in  Bandyopadhyay et  al. (2020), Chakrabarti (2004), Gaucher et  al. (2021), Liu 
et  al. (2015), Sun et  al. (2005), Viswanath et  al. (2010), but more research is expected 
to be pursued in the near future. There are two reasons supporting such observation. 
Firstly, in many applications, outliers themselves are objects of interest. Secondly, 
proper handling of graph outliers when mining complex networks is, in our opinion, 
more important and more sophisticated than in standard machine learning when work-
ing with tabular data. Indeed, many procedures used in mining complex networks (e.g., 
graph embeddings) are affected by the presence of outliers. However, one cannot sim-
ply remove them from the data, as opposed to standard machine learning, where such 
a procedure is sometimes applied. The issue is that removing nodes in networks affects 
the properties of other nodes and changes the underlying graph’s structure and topology.

Another well-known challenge recognized by researchers is that there is a limited 
number of datasets with ground truth identified and labeled. As a result, there is a need 
for synthetic random graph models with community structure that resemble real-world 
networks in order to benchmark algorithms that aim to analyze graph community struc-
ture. The LFR (Lancichinetti, Fortunato, Radicchi) model  Lancichinetti and Fortunato 
(2009); Lancichinetti et al. (2008) generates networks with communities, and at the same 
time, it allows for the heterogeneity in the distributions of both node degrees and of 
community sizes. It became a standard and extensively used method for generating arti-
ficial networks with (non-overlapping) community structure.

Unfortunately, the situation is much more challenging if one needs a synthetic model 
with outliers. There seems to be no standard model that one may use. For example, 
in Gaucher et al. (2021) the authors adjust the classical Stochastic Block Model to simul-
taneously take into account the community structure and outliers by introducing differ-
ent probabilities of connection between inliers and pairs involving outliers. To validate 
algorithms tested in Bandyopadhyay et al. (2020), the authors start with a synthetic LFR 
network or a real-world one and then randomly perturb edges around some randomly 
selected nodes in order to create artificial outliers. LFR itself (Lancichinetti and Fortu-
nato 2009) has some basic functionality to create overlapping clusters but not outliers.

This paper is an extended version of the proceeding paper  (Kamiński et  al. 2022d) 
in which we revisit the Artificial Benchmark for Community Detection (ABCD) 
graph (Kamiński et al. 2021a). This model was recently introduced and implemented,1 

1 https:// github. com/ bkami ns/ ABCDG raphG enera tor. jl/.

https://github.com/bkamins/ABCDGraphGenerator.jl/
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including a fast implementation that uses multiple threads (ABCDe)  (Kamiński et  al. 
2022b).2 Undirected variant of LFR and ABCD produce synthetic networks with com-
parable properties but ABCD/ABCDe is significantly faster than LFR and can be easily 
tuned to allow the user to make a smooth transition between the two extremes: pure 
(disjoint) communities and random graph with no community structure. Moreover, it is 
easier to analyze theoretically. For example, various theoretical asymptotic properties of 
the ABCD model are analyzed in Kamiński et al. (2022c), including the modularity func-
tion that is, arguably, the most important graph property of networks in the context of 
community detection.

In this paper, we extend the original ABCD model to include potential outliers, ABCD+o 
model (see “Adjusting the ABCD Model to Include Outliers” section). We examine one of 
the few real-world networks with identified outliers, the College Football Graph (see “The 
College Football Graph” section), and identify distinctive properties of outliers that are pre-
sent in this network. We then perform simulations with our new ABCD+o model to show 
that its outliers possess similar properties (see “Participation coefficient”, “ECG coefficient”, 
“Community association strength” and “Entropy—geometric Chung–Lu model” sections). 
This validates that our model mimics real-world networks with the presence of outliers and 
so may serve as a benchmark of outlier detection algorithms. Additionally, to illustrate the 
need for proper outlier-detection algorithms, we show in “Node properties” section that 
some classical and widely used centrality measures fail to distinguish outliers from regular 
nodes both for College Football Graph and ABCD+o model.

The applications presented in “Experiments—distinguishing properties of outliers” 
section show usefulness of the proposed ABCD+o model as a benchmark for such tests. 
In particular, we show that, as opposed to real-world graphs (which have a fixed struc-
ture), we can analyze the impact of varying graph parameters, such as the average degree 
or strength of communities, on the process of outlier detection.

Future directions are briefly mentioned in “Conclusions and future directions” section. 
The associated Jupyter notebook can be found on GitHub repository.3

Adjusting the ABCD model to include outliers
We start this section with a brief description of the ABCD model taken from Kamiński 
et  al. (2022b); details can be found in  Kamiński et  al. (2021a) or in  Kamiński et  al. 
(2022c). We then carefully explain the adjustments needed to incorporate the existence 
of outliers.

The original model

As in the LFR model (Lancichinetti et al. 2008; Lancichinetti and Fortunato 2009), for 
a given number of nodes n, we start by generating a power law distribution both for the 
degrees and community sizes. Those are governed by the power law exponent param-
eters (γ ,β) . We also provide additional information to the model, again as it is done in 
LFR, namely, the average and the maximum degree, and the range for the community 
sizes. The user may alternatively provide a specific degree distribution and/or commu-
nity sizes.

2 https:// github. com/ tolcz/ ABCDe Graph Gener ator. jl/..
3 https:// github. com/ ftheb erge/ ABCDo Exper iments.

https://github.com/tolcz/ABCDeGraphGenerator.jl/
https://github.com/ftheberge/ABCDoExperiments
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For each community, we generate a random community subgraph on the nodes from 
a given community using either the configuration model  (Bollobás 1980) (see Bender 
and Canfield 1978; Wormald 1984, 1999 for related models and results) which preserves 
the exact degree distribution, or the Chung–Lu model  (Chung and Lu 2006) which 
preserves the expected degree distribution. On top of it, we independently generate a 
background random graph on all the nodes. Everything is tuned so that the degree distri-
bution of the union of all graphs follows the desired degree distribution (only in expecta-
tion in the case of the Chung–Lu variant). The mixing parameter ξ guides the proportion 
of edges that are generated via the background graph. In particular, in the two extreme 
cases, when ξ = 1 the graph has no community structure while if ξ = 0 , then we get 
disjoint communities. In order to generate simple graphs, we may have to do some re-
sampling or edge re-wiring, which are described in Kamiński et al. (2021a).

During this process, larger communities will additionally get some more internal edges 
due to the background graph. As argued in Kamiński et al. (2021a), this “global” variant 
of the model is more natural and so we recommend it. However, in order to provide a 
variant where the expected proportion of internal edges is exactly the same for every 
community (as it is done in LFR), we also provide a “local” variant of ABCD in which 
the mixing parameter ξ is automatically adjusted for every community.

Two examples of ABCD graphs on n = 100 nodes are presented in Fig. 1 (a standard 
Fruchterman-Reingold layout was used to plot them). Degree distribution was gener-
ated with power law exponent γ = 2.5 with minimum and maximum values of 5 and 15, 
respectively. Community sizes were generated with power law exponent β = 1.5 with 
minimum and maximum values 20 and 40, respectively; communities are shown in dif-
ferent colors. The global variant and the configuration model were used to generate the 
graphs. The left plot has the mixing parameter set ξ = 0.2 while the “noisier” graph on 
the right plot has the parameter fixed to ξ = 0.4.

Adjusting the model to include outliers

The adjusted model, ABCD+o (ABCD with outliers), will have an additional parameter 
s0 which is equal to the number of outliers. Because of a well-structured and flexible 
design of the original model, adjusting it to include outliers is simple. One trivial adjust-
ment needed is the way the distribution of community sizes is generated. A slightly more 
delicate modification is needed in the process of assigning nodes to communities. How-
ever, before that, the algorithm needs to select suitable nodes for outliers. Below, we 
independently discuss these issues and explain how they are generalized.

Fig. 1 Two examples of ABCD graphs with low level of noise ( ξ = 0.2 , left) and high level of noise ( ξ = 0.4 , 
right)
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The ABCD+o extension is defined only for the default settings of the original ABCD 
algorithm, namely, for the global version of the algorithm, configuration model used to 
generate community and background graphs, and accepts only parameter ξ as the level 
of noise. As in the original ABCD model, the degree distribution is generated randomly 
following the (truncated) power-law distribution P(γ , δ,�) with exponent γ ∈ R+ , mini-
mum value δ , and maximum value � ≥ δ . No adjustment is needed.

Distribution of community sizes

Let β ∈ R+ , s, S ∈ N such that δ < s ≤ S . Community sizes in the original ABCD model 
are generated randomly following the (truncated) power-law distribution P(β , s, S) 
with exponent β , minimum value s, and maximum value S. It is recommended to use 
β ∈ (1, 2) , some relatively small value of s such as 100 or 500, and S larger than � . The 
condition for S is needed to make sure large degree nodes have large enough communi-
ties to be assigned to. Similarly, the assumption that s ≥ δ + 1 is required to guarantee 
that small communities are not too small and in consequence that they can accommo-
date small degree nodes. These conditions are needed to make sure that generating a 
simple graph with the desired properties is feasible.

Communities in the original model are generated with this distribution as long as the 
sum of their sizes is less than n, the desired number of nodes. After drawing a predeter-
mined number of samples from this distribution, the algorithm is selecting one sequence 
with a sum as close to n as possible and carefully adjusts it, if needed.

Since there are s0 outliers in the new model (ABCD+o), the community sizes ( si , 
i ∈ [ℓ] := {1, . . . , ℓ} ) are generated as in the original model but this time with the condi-
tion that the sum of their sizes is equal to n− s0 (instead of n).

Assigning nodes to outliers

Parameter ξ ∈ (0, 1) reflects the amount of noise in the network. It controls the fraction 
of edges that are between communities. Indeed, in the original ABCD model, asymp-
totically (but not exactly) 1− ξ fraction of edges end up within one of the communi-
ties. Each node in the original model has its degree wi split into two parts: community 
degree yi and background degree zi ( wi = yi + zi ). The goal is to get yi ≈ (1− ξ)wi and 
zi ≈ ξwi . However, both yi and zi have to be non-negative integers, and for each com-
munity C ⊆ V  , i∈C yi has to be even. Fortunately, this can be easily achieved by an 
appropriate random rounding of (1− ξ)wi to the nearest integers.

In the generalized ABCD+o model, each non-outlier has its degree wi split into yi 
and zi , as in the original model. These nodes will be assigned to one community. On 
the other hand, the outlier nodes will not get assigned to any community so all of the 
incident edges will be generated in the background graph, thus the corresponding neigh-
bors will be sampled from the entire graph. As a result, their degrees will satisfy wi = zi . 
Note that the only potential problem with outliers that might occur is when ξ is close to 
zero. In the extreme case when ξ = 0 , only outliers have a non-zero degree in the back-
ground graph. In order to make sure that there exists a simple graph that satisfies the 
required degree distribution, in such extreme situations all outliers must have degrees 
smaller than s0 . The model needs to be prepared for such potential problems but in prac-
tice (when the number of nodes n is large, the number of outliers s0 is relatively small, 
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and the level of noise ξ is not zero) there are plenty of nodes with a non-zero degree in 
the background graph and so there is no restriction for outliers.

To prepare for potential problems we do the following. Once the degree of each node 
wi is split into yi and zi , we get a lower bound for the number of nodes that will have a 
non-zero degree in the background graph, namely,

Note that L̄ = E[L] =
∑

i∈V min(1, ξwi) since each node with ξwi ≥ 1 satisfies zi ≥ 1 
and each node with ξwi < 1 has zi = 1 with probability ξwi and zi = 0 otherwise. More-
over, since by default outliers have zi = wi ≥ 1 , there will be at least s0 nodes of posi-
tive degree in the background graph. Assuming that outliers are selected uniformly at 
random, we expect L+ (n− L)(s0/n) nodes of positive degree in the background graph. 
(In fact, since there is a slight bias toward selecting small degree nodes for outliers and L 
has a bias toward large degree nodes, we expect slightly more nodes of positive degree in 
the background graph, which is good.) We introduce the following constraint: a node of 
degree wi can become an outlier if

Finally, s0 nodes satisfying (1) are selected uniformly at random to become outliers. (In 
the implementation, these nodes simply form an independent “community” with yi = 0 
and zi = wi.)

Assigning nodes to communities

Similarly to the potential problem with outliers, we need to make sure that non-outliers 
of a large degree are not assigned to small communities. Based on the parameter ξ we 
know that roughly (1− ξ)wi neighbors of a node of degree wi will be present in its own 
community. However, this is only the lower bound as some neighbors in the background 
graph might end up there by chance. Hence, in order to make enough room in the com-
munity graph for all neighbors of a given node, the original ABCD algorithm needs to 
compute xi , the expected number of neighbors of a node of degree wi that end up in its 
own community. We need to recompute xi to incorporate the existence of outliers.

Assuming that nodes are assigned randomly with a distribution close to the uniform 
distribution, we expect Ws0/n points (in the corresponding configuration model) in the 
background graph to be associated with outliers, where W :=

∑

i∈[n] wi is the volume 
of the graph (equivalently, the total number of points in the corresponding configura-
tion model). Similarly, we expect ξ fraction of the points associated with non-outliers to 
end up in the background graph, that is, W (1− s0/n)ξ points. In order to estimate what 
fraction of neighbors of a given non-outlier node is expected to be within the same com-
munity, we need to answer the following question: what is the probability that a random 
point in the background graph associated with a non-outlier is matched with a point 
within the same community? It is equal to

L := |{v ∈ V : zi ≥ 1}|.

(1)wi ≤ L̄+ s0 − L̄s0/n− 1.
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Indeed, with probability sj
n−s0

 a random point belongs to community j. There are 
sj

n−s0
W (1− s0/n)ξ points associated with community j and the total number of points 

in the background graph is W (1− s0/n)ξ +Ws0/n . Hence, one can easily estimate the 
probability that the point from community j is matched with another point from the 
same community. The expected number of neighbors of a node of degree wi that stay 
within the same community is then

where

In particular, we expect (1− ξφ)(1− s0/n) fraction of edges to stay within one of the 
communities. Moreover, as expected, if s0 = 0 , then we recover the value of φ used in 
the original ABCD model, namely,

As in the original ABCD model, a node of degree wi can be assigned to a community of 
size sj if xi ≤ sj − 1 . We select one admissible assignment of non-outliers to communi-
ties uniformly at random which turns out to be relatively easy from both theoretical and 
practical points of view.

Two examples of ABCD+o graphs on n = 100 nodes are presented in Fig. 2 (as in the 
previous figure, a standard Fruchterman-Reingold layout was used to plot them). The 
number of outliers is s0 = 5 and the remaining parameters are exactly the same as the 
ones to produce Fig. 1. Communities are shown in different colors and outliers are dis-
played as triangles. The left plot has the mixing parameter set ξ = 0.2 while the “noisier” 
graph on the right plot has the parameter fixed to ξ = 0.4 . In the left plot, it is visible that 
4 out of 5 outliers are clearly located between the communities, while one of them falls 
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Fig. 2 Two examples of ABCD+o graphs with low level of noise ( ξ = 0.2 , left) and high level of noise 
( ξ = 0.4 , right). The number of outliers is s0 = 5 (depicted as triangles)
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within a single community. (Recall that outlier nodes have all of their incident edges gen-
erated in the background graph. As a result, neighbors of outliers are selected randomly 
from the entire graph. For large networks, it will be highly unlikely that most neighbors 
belong to one community but for small graphs, it could happen with non-negligible 
probability which turned out to be the case in our experiment. After all, it is a stochastic 
process and natural fluctuations may and do occur.) In the right plot, which is noisier, we 
still see that outliers are surrounded by nodes belonging to different communities.

Scalability

The implementation of the algorithm is done in Julia language  (Bezanson et al. 2014). 
It is an extension of the ABCD model implementation  (Kamiński et al. 2021a) and so 
it does not change its computational complexity. For this reason, as reported earlier 
in  Kamiński et  al. (2021a), ABCD+o generates typical graphs on 10 million nodes in 
under 2 min, which is of the order of 100 times faster than the reference LFR algorithm 
implementation.

Experiments—distinguishing properties of outliers
In order to better understand the properties of outliers, we perform a few experiments 
on the well-known College Football real-world network with known community struc-
ture and the presence of outliers. We consider four different ways to detect outliers. In 
order to show that our new ABCD+o model exhibits similar desired properties, we 
generated graphs on n = 10,000 nodes with s0 = 500 outliers (5%). Degree distribution 
was generated with power law exponent γ = 2.5 with minimum and maximum values 
of 5 and 500, respectively. Community sizes were generated with power law exponent 
β = 1.5 with minimum and maximum values 100 and 1,000, respectively. We indepen-
dently generated graphs for all values of ξ ∈ {0.1, 0.2, . . . , 1.0} but the degree distribution 
and the distribution of community sizes were coupled so that all 10 graphs use the same 
distributions.

With the experiments presented in this section, we illustrate the usefulness of bench-
marks such as ABCD+o to compare various anomaly detection methods under different 
scenarios such as graphs with more or less noise, nodes with varying degrees, etc.

The College Football Graph

The College Football real-world network represents the schedule of United States foot-
ball games between Division IA colleges during the regular season in Fall 2000  (Girvan 
and Newman 2002). The data consists of 115 teams (nodes) and 613 games (edges). The 
teams are divided into conferences containing 8–12 teams each. In general, games are 
more frequent between members of the same conference than between members of differ-
ent conferences, with teams playing an average of about seven intra-conference games and 
four inter-conference games in the 2000 season. There are a few exceptions to this rule, as 
detailed in Lu et al. (2018): one of the conferences is really a group of independent teams, 
one conference is really broken into two groups, and 3 other teams play mainly against 
teams from other conferences. As it is commonly done in the literature, we refer to those 14 
teams as outlying nodes, which we represent with distinctive triangles in Fig. 3.
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Participation coefficient

The following definitions are commonly used in the literature  (Flake et  al. 2000; Radicchi 
et al. 2004) (see also Kamiński et al. 2021b). We say that a set of nodes C ⊆ V  forms a strong 
community if each node in C has more neighbors in C than outside of C. One may relax this 
strong notion and say that C forms a weak community if the average degree inside the com-
munity C (over all nodes in C) is larger than the corresponding average number of neighbors 
outside of C. In this context, an outlier could be formally defined as a node that does not have 
the majority of its neighbors in any of the communities. In the ABCD+o model, non-outliers 
are expected to have more than half of their neighbors in their own community, provided that 
ξ < 0.5 . On the other hand, outliers in our model are expected to satisfy the above-desired 
property, unless there is an enormous community spanning more than 50% of nodes.

A more refined picture is provided by the next coefficient which is a natural measure of 
concentration. For any partition A = {A1, . . . ,Aℓ} of the set of nodes, the participation 
coefficient of a node v (with respect to A ) is defined as follows:

where degAi
(v) is the number of neighbours of v in Ai . The participation coefficient p(v) 

is equal to zero if v has neighbors exclusively in one part. Members of strong commu-
nities satisfy, by definition, p(v) < 3/4 . In the other extreme case, the neighbors of v 
are homogeneously distributed among all parts and so p(v) is close to the trivial upper 
bound of

For the experiments shown below, even though we have the ground truth communi-
ties available to use (which is almost always not the case in practice), we computed the 
participation coefficients using communities (partition A ) we obtained with the ECG 
clustering algorithm (we describe this algorithm in the following subsection). The dis-
tribution of the participation coefficient among outliers and non-outliers for the College 
Football Graph is presented on the box plot in Fig. 4 (left). We see that outliers have a 
significantly larger average value of p(v) than the corresponding value for non-outliers. 

p(v) = 1−

ℓ
∑

i=1

(

degAi
(v)

deg(v)

)2

,

1−

ℓ
∑

i=1

(

deg(v)/ℓ

deg(v)

)2

= 1−
1

ℓ
≈ 1.

Fig. 3 The College Football Graph; outliers are displayed triangles
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We also computed the AUC score (the area under the ROC curve), which corresponds 
to the probability that a randomly selected outlier node has a larger score than a ran-
domly selected non-outlier node. We see that this value is almost one (approximately 
0.998), showing a very good separation between the two classes.

The corresponding averages (together with associated standard deviations) for the 
ABCD+o model with different levels of noise are presented in Fig. 4 (right). For a low 
level of noise (small values of ξ ) there is a clear difference between outliers and non-out-
liers but the discrepancy diminishes for noisy graphs (large values of ξ ). In the extreme 
case when ξ = 1 there is no difference between the two classes and so the averages are 
close to each other as they should be. This is also well illustrated by the corresponding 
AUC scores we computed for various values of ξ , showing very good class separation for 
small to mid-range values of ξ , but tending toward 0.5 for large ξ , which amounts to hav-
ing no separation between the two classes.

ECG coefficient

Ensemble Clustering algorithm for Graphs (ECG)  Poulin and Théberge (2018)4 is a 
consensus clustering method based on the classical Louvain algorithm. A convenient 
“side-effect” of this algorithm, which is useful from the perspective of our experiments, 
is that it can be used to define simple scores to identify outliers. In its first phase, sev-
eral low-level partitions are computed with different randomization (the ensemble). In 
the next phase, for each edge, we compute the proportion of partitions in the ensemble 
where both nodes incident to this edge were assigned to the same community. Those are 
the ECG edge scores. High scores are indicative of stable pairs that often appear in the 
same part. For a given node v, we define E(v) to be the average ECG score over all edges 
incident to v, and we call it the ECG coefficient of a node v. It is expected that outliers are 
more challenging to cluster which should be manifested by relatively small ECG coeffi-
cients E(v) associated with these nodes.

As it was done for the participation coefficient, we investigate the distribution of the 
ECG coefficient among outliers and non-outliers for the College Football Graph—see 
Fig.  5 (left). We see that it is another distinguishing coefficient—outliers have a sig-
nificantly smaller average value of E(v) than the corresponding value for non-outliers, 
and the AUC shows perfect separation between the classes. Similar conclusions can be 

Fig. 4 Distribution of the participation coefficient for regular and outlier nodes: College Football Graph (left) 
and ABCD+o model (right)

4 https:// github. com/ ftheb erge/ graph- parti tion- and- measu res.

https://github.com/ftheberge/graph-partition-and-measures
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derived from the corresponding averages for the ABCD+o model—see Fig. 5 (right). As 
before, the difference becomes less visible as more noise is present.

Community association strength

With the participation coefficient we described earlier, we consider the distribution of 
communities amongst each node’s neighbors, so that nodes that are strongly associated 
with one of the communities have skewed distributions. Here, given some node v, we 
only consider the node’s own community Ai and compute the fraction of edges that are 
within this community, namely, degAi

(v)/ deg(v) . We then subtract the expected num-
ber of such edges under random assignment (approximately vol(Ai)/vol(V ) ) to obtain 
each node’s community association strength:

We repeat the same experiments as we did for the previous methods. Results are shown 
in Fig. 6, with very similar results and conclusions as with the previous two methods.

Impact of node degree

In this subsection, we reconsider the three methods presented so far but this time 
we group the nodes by their degrees for the ABCD+o graphs. We distinguish three 
families of nodes with respect to their degrees: (i) low-degree nodes (of degree 7 or 
less), (ii) medium-size degree nodes (from 8 to 20) and (iii) high-degree nodes (over 
20). With this split, low-degree nodes make up over 50% of the nodes, medium size 
a little under 40%, and high-degree nodes about 10%. For the College Football Graph 
introduced earlier, degree distribution is very homogeneous, so we do not consider it 
in this analysis.

Let us note an important property that in the ABCD+o model, the degree itself is 
not a discriminating feature between outlier and regular nodes, as both types follow 
the same expected degree distribution. For the graphs we generated, we have 5.1% of 
outliers for the low and medium-size degree nodes, and 4.3% for the (less frequent) 
high-degree nodes. In Fig.  7, we show the AUC scores for each method and node 
degree category in the ABCD+o graphs. It can be seen that it is slightly easier to 
detect high-degree outliers.

d(v) =
degAi

(v)

deg(v)
−

vol(Ai)

vol(V )
.

Fig. 5 Distribution of the ECG coefficient for regular and outlier nodes: College Football Graph (left) and 
ABCD+o model (right)
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Entropy—geometric Chung–Lu model

For this experiment, we use node embeddings that recently gain a lot of interest. For 
each graph considered, we ran the node2vec embedding algorithm (Grover and Lesk-
ovec 2016) over a range of parameters, and we selected the best one using an “unsu-
pervised framework for comparing graph embeddings”  (Kamiński et al. 2020, 2022a).5 
This framework is based on a geometric Chung–Lu model, which allows the computa-
tion of edge probability in embedded space. With such selected embedding at hand, for 
each node v, one can compute pv,i , the expected fraction of neighbors of v that are in 
the community i ∈ [ℓ] , assuming that there are ℓ communities found by some algorithm 
(we used ECG). From this distribution, we compute the entropy for each node in the 

Fig. 6 Distribution of the community association strength for regular and outlier nodes: College Football 
Graph (left) and ABCD+o model (right)

Fig. 7 AUC scores grouped by node degrees for the ABCD+o model

5 https:// github. com/ Krain skiL/ CGE. jl.

https://github.com/KrainskiL/CGE.jl
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network: H(v) = −
∑

i∈[ℓ] pv,i ln(pv,i) . High entropy is an indicator of anomalies so we 
can use it to rank the nodes from the most likely to the least likely to be anomalous.

Results of the set of experiments for the College Football Graph and for several 
ABCD+o graphs are shown in Fig. 8. In both cases, while some good class separation can 
be observed, the separation is not as strong as with the three methods introduced earlier.

Node properties

In this subsection, we investigate the possible use of various node centrality meas-
ures as a way to distinguish regular nodes from outliers. For the ABCD+o model, we 
grouped the nodes into three families with respect to their degrees, as we did in earlier 
experiments, and compared distributions of four different centrality measures: closeness 
centrality, eigen-centrality, PageRank, and betweenness. All plots are provided in the 
Appendix (see Figs. 9, 10, 11 and 12). We also plot those four centrality measures for the 
College Football Graph, where the proportion of “noise” edges is about 0.37 (see Fig. 13).

From those experiments, we see a slight difference in the distribution of closeness cen-
trality (Fig. 9) and betweenness (Fig. 12) for low-noise graphs. For closeness centrality, 
this can be explained by the fact that with low noise, non-outlier nodes have most of 
their edges within their community, thus are not very central in that sense. Outlier nodes 
have a higher betweenness since they act as bridges between the communities. In the 
case of the College Football Graph, we also do not see much discriminative power in the 
distributions except for a slight difference in the betweenness scores (see Fig. 13). In gen-
eral, except for graphs with a very low noise level (that is, almost pure communities), it 
seems that such measures are not enough to distinguish regular (community) nodes and 
outliers. This indicates that, indeed, specialized methods for community outlier detec-
tion are needed and that ABCD+o model has similar properties to real-world networks.

Real graph example

In this section we present an additional justification of the definition of community out-
liers we used and implemented in the ABCD+o algorithm, which assumes that outliers 
should have neighbors in various communities, while non-outliers should have neigh-
bors concentrated in a single community. For this analysis, we selected a graph that 
has weak communities (as opposed to College Football Graph that has relatively strong 
communities).

Fig. 8 Distribution of the entropy for regular and outlier nodes: College Football Graph (left) and ABCD+o 
model (right)
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For the test we consider the email-Eu graph built from email data from a European 
institution. In this dataset, taken from  Leskovec and Krevl (2014), an edge represents 
an email between two users. The data also has some “ground-truth” communities corre-
sponding to 42 departments. Note, however, that most communities are “very weak” in 
the sense that there are more edges coming out of the community than within the com-
munity, as we discussed in “Participation coefficient” section. Formally, we say that a set 
of nodes C forms a community if

where N(v) denotes the set of neighbours of v. This property is not satisfied for most 
communities in this dataset. Some communities are also very small: 16 communities 
have less than 10 nodes, and there are even some communities of size 1. We treat the 
graph as undirected and reduce it to its 2-core, which yields 934 nodes and 25,500 edges, 
with 580 nodes of degree 25 or more.

Another way to measure the presence of community structure in a network is the 
modularity function, which is at the same time a quality function of many community 
detection algorithms. The definition of modularity for graphs was first introduced by 
Newman and Girvan in  Newman and Girvan (2004). It favors partitions of the set of 
nodes of a graph G in which a large proportion of the edges falls entirely within the parts, 
but benchmarks it against the expected number of edges one would see in those parts 
in the corresponding Chung–Lu random graph model  (Chung and Lu 2006) (the null 
model), which generates graphs with the expected degree sequence following exactly the 
degree sequence in G.

Formally, for a graph G = (V ,E) and a given partition A = {A1,A2, . . . ,Aℓ} of V, the 
modularity function is defined as follows:

where for any A ⊆ V  , e(A) is the number of edges in the subgraph of G induced by set A, 
and vol(A) =

∑

v∈A deg(v) is the volume of set A. The first term in (2), 
∑

Ai∈A
e(Ai)/|E| , 

is called the edge contribution and it computes the fraction of edges that fall within one 
of the parts. The second one, 

∑

Ai∈A
(vol(Ai)/vol(V ))2 , is called the degree tax and it 

computes the expected fraction of edges that do the same in the corresponding ran-
dom graph. The modularity measures the deviation between the two. Coming back to 
the dataset we use in our experiment, the modularity of the ground-truth communities 
(departments) is only qgt = 0.315 even after reducing the network to its 2-core.

When applying clustering algorithms to such graphs with weak community struc-
ture, it is likely that the communities that are found are denser than the “ground truth” 
communities. This is due to the very nature of graph clustering algorithms which try to 
group nodes so that the corresponding communities are as dense as possible. Clustering 
this graph with ECG yields a smaller number of communities (33), many of which have a 
size less than 10 and the modularity is qECG = 0.430 , larger than the one corresponding 
to the ground-truth communities. The communities found are also denser which can be 

∑

v∈C

|N (v) ∩ C| >
∑

v∈C

|N (v)\C|,

(2)q(A) =
∑

Ai∈A

e(Ai)

|E|
−

∑

Ai∈A

(

vol(Ai)

vol(V )

)2

,
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seen by computing the edge contribution portion of the modularity function that meas-
ures the proportion of edges that fall within communities. This value is equal to 0.363 
with the ground truth communities but climbs to 0.567 with ECG communities.

In practical applications ground-truth communities are often not known. This can 
especially be an issue if we work with graphs that have weak communities, such as the 
one we picked here. For this reason, we perform analysis of properties of nodes that are 
strongly identified as outliers against nodes that are strongly identified as non-outliers 
both against ground-truth communities and communities identified using community 
detection algorithm (which, as we discussed above for “weak communities” can signifi-
cantly differ).

We consider two out of the four measures we introduced earlier to find outliers, 
namely, the ECG coefficient (see “ECG coefficient” section), and the community associa-
tion strength (see “Community association strength” section). We investigate the prop-
erties of the nodes with the highest (respectively lowest) scores, where low scores are 
indicative of outliers. In Table 1, we plot some statistics for the nodes with a degree of 25 
or more having small scores with respect to both measures, while in Table 2, we do the 
same for nodes with high scores. For each node, we look at (i) the proportion of edges 
in its own ECG community, (ii) the proportion of edges in its own ground-truth com-
munity, and (iii) the number of ground-truth communities in the neighborhood. For the 
first group of nodes, we clearly see that a minority of edges are internal to its ECG com-
munity, even more so if we look at the ground-truth communities. We also see that those 
nodes have neighbors is several different departments (ground-truth communities). The 
conclusions are exactly the opposite for the second group of nodes, as expected.

The email-Eu graph investigated in this subsection does not have outliers identified 
in its ground truth. Nevertheless, even with such a “noisy” graph, we find that nodes 
with the lowest scores are in contact with a very large number of distinct communi-
ties (Table 1), while nodes with the highest scores are almost only in contact with other 
nodes in their own community (Table 2). This agrees with the concept of outlier which 
consists of nodes that appear to be making connections randomly to different commu-
nities, while non-outlier nodes make most of their connections within one or a small 

Table 1 Statistics for nodes with degree 25 or more and small ECG coefficients and community 
association strength scores

Prop. of edges in own ECG 
community

Prop. of edges in own ground-truth 
community

 Number of ground-
truth communities 
touched

0.223 0.052 34

0.145 0.048 32

0.275 0.076 31

0.143 0.037 36

0.185 0.222 31

0.079 0.059 29

0.217 0.137 26

0.159 0.038 29

0.167 0.056 27
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number of communities. These observations support the design assumptions behind the 
ABCD+o benchmark graph generator.

Conclusions and future directions
In this paper, we extended the ABCD model to ABCD+o which incorporates the pres-
ence of outliers. We investigated selected properties that are able to distinguish outliers 
from regular nodes. We used two real-world graphs: College Football Graph and email-
Eu graph, that are structurally significantly different, to both justify the design decisions 
behind ABCD+o generator and test the usefulness of this generator as a benchmark 
model. However, as a future direction, it would be valuable to perform more experi-
ments with larger and topologically as well as structurally different networks to confirm 
our observations of which graph features are good predictors of outliers and which are 
not. After such verification, one may try to extend these ideas further and build an out-
lier detection algorithm and, in particular, use the ABCD-o benchmark we propose in 
this paper to validate it.

Another important extension of the original ABCD model that we leave for the future 
is to design a variant of the model to include overlapping clusters. ABCD+o and the 
experience we gained by investigating properties of outliers are important stepping 
stones in that direction. Indeed, informally speaking, outliers are the nodes that do not 
strongly belong to any of the communities. But, clearly, one should distinguish a situ-
ation in which most of the neighbors of a given node belong to e.g. two communities 
from a situation in which neighbors are “sprinkled” across the entire graph. More refined 
properties may be able to extract information that is needed to distinguish the two sce-
narios and be used to build an unsupervised algorithm that is able to separate outliers 
from nodes that belong to multiple communities. With a better understanding of these 
properties, we should be able to adjust the ABCD model one more time to incorporate 
both types of nodes.

An orthogonal future direction that we (and industry partners that we collaborate 
with) are interested in is to design a hypergraph model with known community struc-
ture and outliers. The first step is already made toward this goal (Kamiński et al. 2022e).

Table 2 Statistics for nodes with degree 25 or more and large ECG coefficients and community 
association strength scores

Prop. of edges in own ECG 
community

Prop. of edges in own ground-truth 
community

Number of ground-
truth communities 
touched

1.00 0.983 2

1.00 1.000 1

0.97 0.970 2

1.00 0.981 2

1.00 1.000 1

1.00 0.967 2

1.00 0.969 2

1.00 1.000 1
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Appendix: Node properties—plots associated with “Node properties” section
In Figs.  9, 10, 11 an d12, we compare the distribution of four centrality measures 
between outlier and non-outlier nodes: closeness centrality, eigen-centrality, PageR-
ank, and betweenness. In each case, we show three plots looking at nodes with a low, a 
medium, and a high degree, respectively. We show results for the same measures for the 
College Football Graph in Fig. 13.

Fig. 9 Comparing closeness centrality of outlier and regular nodes for the ABCD+o graphs, respectively, for 
low, medium, and high degree nodes
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Fig. 10 Comparing eigen-centrality of outlier and regular nodes for the ABCD+o graphs, respectively, for 
low, medium, and high degree nodes
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Fig. 11 Comparing pagerank scores of outlier and regular nodes for the ABCD+o graphs, respectively, for 
low, medium, and high degree nodes
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Fig. 12 Comparing betweenness scores of outlier and regular nodes for the ABCD+o graphs, respectively, 
for low, medium, and high degree nodes
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