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Abstract 

Protecting medical privacy can create obstacles in the analysis and distribution of 
healthcare graphs and statistical inferences accompanying them. We pose a graph 
simulation model which generates networks using degree and property augmentation 
and provide a flexible R package that allows users to create graphs that preserve vertex 
attribute relationships and approximating the retention of topological properties 
observed in the original graph (e.g., community structure). We illustrate our proposed 
algorithm using a case study based on Zachary’s karate network and a patient-sharing 
graph generated from Medicare claims data in 2019. In both cases, we find that 
community structure is preserved, and normalized root mean square error between 
cumulative distributions of the degrees across the generated and the original graphs is 
low (0.0508 and 0.0514 respectively).
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Introduction
Graph theory and network analysis play vital roles in the study of complex relation-
ships relevant to biology, disease, and healthcare delivery. Common structures of 
these networks include network vertices as genes, proteins, physicians, hospitals, etc. 
where edges often represent co-occurrence or correlation (Fernández-Peña et al. 2022; 
Koutrouli et al. 2020; Van Der Wijst et al. 2018; Infante et al. 2020). Such networks fre-
quently contain multiple characteristics on the vertex level (referred to as attributes or 
properties) which contain information on the individual vertices, whereas characteris-
tics on the edge level contain information between two vertices. For instance, network 
analysis has been used to study the diffusion of COVID-19 infection through hospital 
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employees (Garzaro et al. 2020), to uncover new findings in the pathogenesis of Tuber-
culosis (Bobak et al. 2022), and are frequently used to study and propose novel cancer 
biomarkers (Kosvyra et al. 2021).

Networks for healthcare applications are often constructed using confidential medi-
cal data. Social healthcare networks can be constructed from insurance claims, medi-
cal records, and electronic health records (Landon et al. 2018; Cusumano-Towner et al. 
2013; O’Malley et  al. 2020; Escribe et  al. 2022). Biological networks have traditionally 
been constructed by observing relationships between potential biomarkers (genes, pro-
teins, transcription factors, etc.) across an entire cohort, but in the era of personalized 
medicine, networks constructed from one individual’s personal biological information 
have been proposed (Koutrouli et al. 2020; Van Der Wijst et al. 2018; Infante et al. 2020). 
In both social and biological networks, necessary privacy and confidentiality precau-
tions, including storage of network data on secure servers and limitations to thoroughly 
vetted computational tools of such data, can create obstacles in the analysis and distri-
bution of healthcare networks (Clayton et al. 2019; Sathanur et al. 2017; Bonomi et al. 
2020). Thus, there is a need to generate novel networks which maintain the structural 
properties of healthcare networks without compromising or distributing confidential 
medical data.

Among the many models and approaches to generate networks that have been devel-
oped (Barabási and Albert 1999; Erdos and Rényi 1984; Watts and Strogatz  1998; Hunter 
et al. 2008; Csardi 2014; Chandrasekhar and Jackson 2018), most emphasize simulating 
the overall network topology and rarely consider the role of vertex attributes. Expo-
nential random graph models (ERGMs) are among the more flexible options (Hunter 
et al. 2008), although have been noted to have unstable parameter estimation on large 
networks and those with dyadic dependent terms (Chandrasekhar and Jackson 2018). 
In many cases, the information stored in the vertex attributes is directly related to the 
application of interest—for instance, (1) studies of homophily (i.e., do vertices with simi-
lar attributes connect more frequently than expected after conditioning on other net-
work features and properties), (2) heterophily (i.e., do differing vertices connect more 
frequently than expected), and (3) studies examining network characteristics related 
to community or clustering, the spread of health technologies, etc. All of these stud-
ies would require the preservation of vertex-level information. To address this, Kim and 
Leskovec (2010) introduced the Multiplicative Attribute Graph (MAG), which assumes 
that vertex attributes are indicative of latent graph structure, and seeks to generate 
graphs using such structure. Building on this, Pfeiffer et  al. introduced the Attributed 
Graph Model (ATG) which similarly seeks to generate graphs from attribute structure, 
but uses an accept-reject sampling procedure to do so Pfeiffer et al. (2014). It has been 
previously posited that both vertex similarity (homophily) and vertex popularity (degree) 
should be used to generate networks reflective of those observed in the real world (Papa-
dopoulos et al. 2012). In response, Sathanur et al. introduced the Property Graph Model 
(PGM) which calculates the joint label assignment probabilities for vertices and joint 
distribution probabilities over pairs of vertices for the edges. They then ’augment’ their 
original label categories by partitioning the degree distribution into bins and assigning 
each vertex a label corresponding to the bin its degree is in. They demonstrate that this 
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algorithm is scalable (linear in the number of edges), preserves attribute relationships, 
and better represents degree structure (Sathanur et al. 2017).

Community detection in networks has long been established as an important com-
ponent of network study (Newman 2006; Cherifi et  al. 2019; Fortunato and Newman 
2022). In real-world networks, nodes naturally organize into clustered communities or 
modules and these communities are often meaningful units for analysis. For instance, 
community structure is often considered in biological networks and facilitates the study 
of how groups of biomarkers work in tandem to control biological processes (Sah et al. 
2014; Alcalá-Corona et  al. 2016; Langfelder and Horvath 2008; Calderer and Kuijjer 
2021). As well, community structure of physicians at hospitals has been associated with 
patient readmission rates and overall hospitalization costs (Uddin et  al. 2015). Hence, 
graph generating algorithms which preserve community structure alongside vertex 
attributes are necessary to simulate networks which can be analyzed to study healthcare 
phenomena. In terms of recovering the community structure in real-world graphs, in 
prior work community detection algorithm have been found to be useful. For example, 
Karrer and Newman (2010) showed that stochastic blockmodels incorporating hetero-
geneity of node degree could generate benchmark graphs with similar degree distribu-
tion compared to real graphs. Also, Kirkley and Newman (2022) proposed a method, 
which outputs a representative set of community partitions and could reveal the multi-
modal community structure presented in real-world graphs.

In this work, we created an R package to allow for the easy implementation of the 
PGM generative graphs in the R programming language, favored by many social net-
work scientists. To our knowledge, no such package which allows for the generation of 
graphs using both vertex attributes and network structure exists. Additionally, we inno-
vated upon the original framework proposed by Sathanur et. al by augmenting the algo-
rithm with an additional optional community label and creating a flexible framework 
that allows researchers to embed supplemental information about network structure 
(such as centrality measures, network geometry, etc.) into graph generation. Such gener-
ated networks can be distributed and analyzed without confidentiality concerns as they 
no longer contain potentially sensitive and identifiable real-world patient or physician 
data.

Methods
Property graph models with structural augmentation

Full details on the PGM procedure can be found in Sathanur’s original manuscript 
(Sathanur et al. 2017). To form the basis for the extensions developed herein, we specify 
notation and briefly review the PGM procedure as introduced in that manuscript. Let

be a property graph or network, where Vs is the set of all vertices ( vi ) and Es ⊆ Vs × Vs 
is the set of all edges. L = {Lk}

M
k=1

 is a set of M vertex label sets; and Lk is the set of all 
possible values for the kth label such that nk = |Lk | . Then L(Vs) is the set of all label 
value vectors in 1-to-1 correspondence to Vs . Thus, each L̄(vi) is drawn from the set of 

Gs =< Vs,Es, L, L(Vs) >
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all possible joint label assignments L = ×M

k=1
Lk  based on our label vector. There are 

N =
∏M

k=1 nk possible joint label categories. The jth joint label category is denoted cj . 
The probability of drawing a joint label category cj is denoted PL(cj) and defined as fol-
lows using the observed vertex labels in G:

which uses the following indicator function:

Edge connectivity is modeled using a joint distribution over pairs of label categories 
(cj , cj′) ; which we denote PC . This probability is calculated as:

using the following indicator function:

We then leverage PL and PC to generate a target graph, GT following Algorithm  1 as 
stated in Sathanur et al. (2017).

This procedure optimizes for the preservation of PL , the proportion of vertices of each 
type, and PC , the proportion of edges between each pair of vertex types, between the 
original and generated networks, provided the generated network is constructed with 
the same number of vertices and edges. In the case where the desired generated net-
work has a different size from the original, PL and PC are preserved approximately due to 
rounding error.

To augment with degree, Sathanur et. al. proposed calculating vertex degree ∀vi ∈ Gs , 
and assigning a new label by dividing the degree distribution into nb bins, where nb is 
tuned according to some error metric (for instance, the normalized root mean square 
error between the distribution of network statistics, motif-based measurements, etc.) 
between graphs. The degree augmentation algorithm is outlined in Algorithm  2 in 
Sathanur et al. (2017).

It has previously been shown that community detection as well as degree is beneficial 
in graph generation (Karrer and Newman 2010; Kirkley and Newman 2022). Thus, we 
sought to extend the above framework to consider a community detection augmenta-
tion option. To achieve this, we added additional labels lc to represent categorical, non-
overlapping communities and appended these to the attribute labels L(v). These labels 
are then processed alongside the vertex and edge probabilities for attributes in PL and 
PC . This framework is flexible; and hence allows users to add additional structural infor-
mation as label categories by creating additional labels lstruct , adding these to Lv and 
calculating subsequent node and edge probabilities. We call our method GeneRAtive 
Networks with Degree and Property Augmentation (GRANDPA). Algorithmically, we 

PL(cj) =

|Vs|

i=1
1cj (L̄(vi))

|Vs|

1cj (L̄(vi)) =

{

1, if L̄(vi) = cj
0, otherwise

PC

(

cj , c
′
j

)

=

∑

<vi ,v
′
i∈Es>

1cj ,c
′
j
(L̄(vi), L̄(v

′
i))

|Es|

1cj ,c
′
j
(L̄(vi), L̄(v

′
i)) =

{

1, if {vi, v
′
i} ∈ Es and {L̄(vi), L̄(v

′
i)} = {cj , c

′
j}

0, otherwise
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propose the additions to the PGM fitting procedure shown in Algorithm  1 (Sathanur 
et al. 2017).

Algorithm 3 GRANDPA Algorithm: The extension of the PGM framework to consider a 
community detection augmentation option. The input to the algorithm is the generated graph 
GX =< VX , EX , L, L(VX ) > from Algorithm 1 or Algorithm 2 as seen in Sathanur et al. (2017) and the number 
of vertices and edges in the target property graph −nt = |VT | and mt = |ET |.

 1:  procedure GRANDPA (< VX , EX , L, L(VX ) >, nt , mt)

 2:  Fit community detection model on the input graph and tune appropriately
 3:  for each v ∈ VX do
 4:      Assign lc(v) value based on the community(v)
 5:      Append the label vector L̄(v) with lc(v)
 6:  end for
 7:  error ← ∞

 8:  GT =PGM-BASIC(< VX , EX , L, L(VX ) >, nt , mt)

 9:  error ← computeError(GS ,GT )
10:  while (error > tolerance) do
11:      PGM-AUGMENTED(< VT , ET , L, L(VT ) >, nt , mt)

12:  end while
13:  end procedure

The entire GRANDPA procedure is depicted in Fig. 1.

GRANDPA: a user‑friendly implementation in R

GRANDPA is available as an R package located at https:// github. com/ Carly Bobak/ grand 
pa. GRANDPA depends exclusively on the igraph framework (Csardi 2014) and calcu-
lates probabilities using tidyr and dplyr Wickham et al. (2019). To use GRANDPA, users 
feed the function an igraph object, where any attributes which should be used to gener-
ate the joint label distribution should contain the word “label”. Thus, any vertex metric 
could be flexibly added to the label space to be used as part of the network generation. 
The source code was developed and analyses conducted in R version 4.1.1 (R Core Team 
2019).

Fig. 1 A depiction of the GRANDPA methodology used to generate graphs. A Shows an example original 
network, B shows a community calculation on this network, C and D show the generation of bags of possible 
vertices and nodes using PL(cj) and Pc respectively. E Demonstrates the sampling procedure, wherein edges 
are sampled without replacement. F is an example generated graph

https://github.com/CarlyBobak/grandpa
https://github.com/CarlyBobak/grandpa
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Case study: Zachary Karate network

Contained within the igraph package is a small example network from Zachary’s 1977 
paper studying conflict in a Karate network (Csardi 2014; Zachary 1977). We created 
two node category labels associated with network structure by using sampling weights 
to fix features whose distribution we wanted to retain while allowing for natural vari-
ation in the status of any given vertex and edge. The first label has three levels and its 
sampling weight is correlated with the degree distribution of the graph. For the second 
attribute, four categories are assigned depending on the distribution of closeness cen-
trality. To easily assign sampling probabilities, we computed the quantiles of the degree 
distribution and closeness centrality scores as cutoffs, and assigned labels to nodes with 
varying sample probabilities based on those cutoffs. This sampling procedure ensures 
that the expected values of the concerned statistics are retained while allowing inher-
ent noise between our assigned labels and the network structure, providing the oppor-
tunity to test whether attribute labels contribute to and are recovered by the networks 
constructed from our generative network modeling process when additional structural 
information is augmented.

To augment generated graphs with degree distributions, we tuned nb to be optimized 
over the values of 3, 5, 7, 10, and 15, and compared the normalized root mean square 
error (NRMSE) between the complementary cumulative distribution function (CCDF) 
of the vertex degrees between the original and the generated graphs. We also calculated 
communities in the original graph using the edge betweenness algorithm (Newman and 
Girvan 2004). We used the same algorithm to identify communities in GRANDPA-gen-
erated graphs, and systematically compared both the number and size of communities 
between the GRANDPA-generated graphs.

Case study: unipartite medicare network

Bipartite networks can be constructed from insurance claims, such as those generated 
through the Centers for Medicare & Medicaid Services (CMS) Program (Landon et al. 
2018). Networks connect patients to each physician they file a claim with over a desig-
nated period of time. Such networks can be projected to a unipartite space, where physi-
cians are connected if they shared patients over a period of time (Barnett et al. 2011). To 
demonstrate the potential of GRANDPA in social network analysis for healthcare appli-
cations, we constructed a unipartite patient sharing network graph using Medicare Data 
from 2019, where two physicians are connected if they shared at least 11 patients. Such 
graphs are large, contain many nodes and edges, and are difficult to visualize (Allen et al. 
2020). For demonstration purposes, we subset this graph by randomly selecting 3 physi-
cians, finding all third-degree neighbors, and including those physicians and neighbors 
for our graph generation.

Each physician in our data had a known primary medical specialty. We calculated 
community membership for each physician based on hospital affiliation, working 
groups, geographical regions, etc. using the fast-greedy algorithm in igraph (Csardi 
2014; Clauset et al. 2004). Additionally, we calculated the linchpin centrality of each phy-
sician based on their connections to communities outside their own (Nemesure et  al. 
2021), and binned linchpin centrality into labels with no centrality (=0), low centrality 
(between 0 and 0.2), or high linchpin centrality ( ≥ 0.2 ). We approximately augmented 
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degree by forming bins with intervals of 5 (i.e., the first bin was from 0 to 4, the second 
from 5 to 9, and so on).

To compare graphs, we plotted the CCDF of the degree and eigenvector centrality 
distributions, calculated the NRMSE between the original source graph and the gener-
ated graphs, and performed a Kolmogorov–Smirnov (KS) test to evaluate if the observed 
measurements originated from different distributions (Sathanur et  al. 2017; Mas-
sey 1951). We also ran the fast-greedy community detection algorithms on the gener-
ated graphs and optimized for graphs which approximated both the size and number 
of generated communities. To compare community organization between graphs we 
used propensity matching to identify vertex matches between the original graph and 
the generated graphs using the MatchIt package in R (Ho et al. 2011). To overcome the 
label switching problem, for each generated graph we used the k Nearest Neighbours 
(Cover and Hart 1967) clustering algorithm to match vertices such that categorical labels 
were matched exactly to find the closest vertex matches. We then calculated a commu-
nity agreement score corresponding to the number of vertices with correct community 
membership over the total number of vertices, or:

We ran a binomial regression on the original graph which aimed to predict if a physi-
cian’s primary specialty was hospitalist or internal medicine using a homophily variable 
(same specialty). We repeated this analysis on our best-generated graphs, and compared 
the returned coefficients (odds ratios) to evaluate if models built on the simulated graph 
reflect the results of models built on the original.

Results
We use two real-world networks to demonstrate the utility of the GRANDPA algorithm, 
particularly in graphs with inherent community structure. The first is the canonical 
Karate network discussed by Zachary (1977). The second is a unipartite patient-sharing 
network which links healthcare providers who shared Medicare patients in 2019.

Case study: Zachary Karate network

To illustrate the generality of our GRANDPA algorithm, we first chose the network of 
a university karate club. The karate network consists of 34 vertices with 78 undirected 
edges. Each node represents a club member, and an edge between two members indi-
cates their interaction.

The plots of the three selected graphs are shown in Fig. 2. To better visualize the cor-
relation between network structure and node attributes, we selected colors to depict the 
different levels of the first label, and sized nodes to show the corresponding categories of 
the second one. The original graph, with generated labels and communities, is shown in 
Fig. 2A.

Results from tuning nb using both a PGM algorithm with degree augmentation, and 
then GRANDPA algorithm with degree and community augmentation are shown 

|{vi | lc(vi) ∈ GT = lc(vi) ∈ Gs}|

|Vs|
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in Table  1. As perfect recovery of the degree distribution occurred in the community 
model with 10 bins, we set nb = 10 for our final plots.

Two generated graphs are shown. The first, in Fig. 2B, represents a PGM-generated 
graph with both attributes and augmented degree ( nb=10). The overall degree dis-
tribution across the vertices is close to the original graph with NRMSE = 0.161 and 

Fig. 2 The original and generated graphs from Zachary’s Karate network (Zachary 1977). A The original 
graph, where vertex color indicates a category associated with degree, vertex size represents a category 
associated with centrality, and community areas are drawn. B The PGM-generated graph, if just categorical 
attributes and degree augmentation are used to generate the network. C The GRANDPA-generated graph, 
where attributes, community labels, and degree are used to generate the network. In Fig. 2C, we recaptured 
similar vertex attribute relationship and nearly identical communities in both overall number of communities, 
size of communities, and internal community structure
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shown in Fig. 3. However, visually it is clear that the community structure present in 
the original graph is missed in the PGM-generated graph.

When we create a community label following the marked areas and feed this to 
the GRANDPA algorithm, we quickly recover a graph that is highly similar to the 
original (Fig.  2C). The NRMSE between the degree distribution of the original and 
GRANDPA-generated graph with community augmentation is nearly identical, as 
shown in Fig.  3 with overall value NRMSE = 0.0508 . As well, we recaptured nearly 
identical communities, in both overall number of communities, size of communities, 
and internal community structure.

Table 1 Comparison of the degree distribution NRMSE between the original Zachary’s Karate 
Network, and the Karate network recovered using the PGM models or the GRANDPA model with 
community augmentation over the nbins parameter

PGM PGM with degree augmentation GRANDPA with 
degree and 
community

nb = 3 0.187 0.041 0.042

nb = 5 0.187 0.048 0.024

nb = 7 0.187 0.028 0.024

nb = 10 0.187 0.048 0.000

nb = 15 0.187 0.031 0.000

Fig. 3 The CCDF of the vertex degree between the original and generated networks for Zachary’s Karate 
Club network (Zachary 1977)
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Case study: medicare unipartite physician network

We sought to test our algorithm on a large, heterogeneous healthcare network which 
is more representative of those used in biomedicine and healthcare policy studies. We 
constructed a network using Medicare claims data from 2019 (8021 vertices; 82,893 
edges) and subset it to include 608 physicians (vertices) and 6480 patient-sharing 
connections (edges). The original graph is shown in Fig. 4A. Vertex colours are rep-
resentative of the physician’s primary specialty. Community-level clustering is pre-
sent, and reflective of hospitals, geographic regions, and physician working groups. 
A fast-greedy clustering algorithm detected 10 disparate communities with sizes 
{209, 134, 105, 41, 34, 32, 21, 14, 11, 7}.

Graphs were generated using just attribute-level information (Specialty), attrib-
ute information with degree augmentation, attribute information with community 
augmentation, and attribute information with community augmentation and degree 
augmentation. Similar to the Karate Case Study, PGM-generated graphs without 
community augmentation lacked the community structure observed in the original 
graph. While the GRANDPA-generated graph with only attribute information and 
community augmentation produced a graph with matching communities, the degree 
distribution was poorly recovered (NRMSE=0.237; Fig.  5). A Kolmogorov–Smirnov 
(KS) test rejects that the observed degrees originate from the same distribution as the 
original physician network. Augmenting further with a degree label ( nb = 15 ) reduced 
the NRMSE to 0.054 and a KS test statistic under which the null hypothesis of equal 
distributions is no longer rejected. Full comparisons of network characters across all 
generated graphs can be seen in Table 2. However, the GRANDPA-generated graph 
did not contain key characteristic nodes connecting communities [often referred to as 
“bridge” nodes (Ezeh et al. 2019)] as was observed in the original graph.

To attempt to ameliorate the lack of recovery of bridge nodes, we used the Linch-
pin Centrality score (Nemesure et  al. 2021) to identify nodes which are ‘one-of-
a-kind’ compared to their neighbors’ community labels, and further augmented 
our GRANDPA algorithm with a label corresponding to linchpin centrality. The 
GRANDPA-generated graph with community, degree and linchpin centrality aug-
mentation is shown in Fig. 4B. The NRMSE between the CCDF of the final graph and 
the original was 0.051 (Fig.  5) and similarly the KS-test indicates that the observed 
degrees are unlikely to have arisen from the same distributions and thus model for 
the graph. Similar to the original graph, the final graph had 10 identifiable communi-
ties with sizes {205, 132, 108, 42, 35, 33, 21, 14, 11, 7} , showing a high degree of concord-
ance with the community structure of the original graph. Mapping similar vertices 
between the original graph and the generated graph to compare community mem-
bership indicates a community agreement fraction of 0.99, wherein 6 vertices out of 
8021 were separated into different neighbouring communities between the original 
and returned graph.

We used a multi-criterion decision rule to select the final generated graph which 
sought to optimize over the degree distribution, community accuracy, and by a com-
parison of visual features across graphs. To this end, we prefer the final GRANDPA 
generated graph which used a specialty label to generate graphs with the same pro-
portion of vertices of each type and proportion of edges with each pair of vertex types 
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Fig. 4 The original and GRANDPA-generated graphs from our 2019 Medicare data. A The original graph, 
where vertex color indicates a physician’s primary specialty. B The final GRANDPA-generated graph with 
community, degree, and linchpin centrality augmentation. In Figure 4B, we recovered the same number of 
communities and similar in-between and internal community structures compared to Figure 4A 
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as nodes and also augmented with degree, community and linchpin centrality to 
recover additional salient elements of the original graph.

By default, the GRANDPA algorithm seeks to preserve the joint label probabilities 
between graphs. To demonstrate this, we calculated the joint label probabilities on 
the original and generated graphs. In every case, the joint vertex label probabilities 
are preserved exactly. Occasionally, the random sampling occurs such that the joint 
edge label probabilities cannot be matched exact without the occurrence of self-con-
nections or duplicated edges, resulting in slightly inaccurate edge label probabilities. 
This occurs in our final model where we generated a graph using specialty, degree 
augmentation, community augmentation, and linchpin centrality. We calculated this 

Fig. 5 The CCDF of the vertex degree between the original and generated networks for the 2019 Medicare 
Data from CMS

Table 2 Comparison of network measures between the original CMS subgraph and various 
generated graphs

Normalized root mean square error (NRMSE) and Kolmogorov–Smirnov (KS) test p values were calculated to evaluate the 
distribution of degree and centrality measures across the generated graphs

Propensity matching at the vertex level was conducted between the original and generated graphs to calculate community 
agreement

Degree Eigenvector centrality Community 
agreement

NRMSE KS (p value) NRMSE KS p value

PGM (specialty) 0.404 0.387 (< 0.001) 0.167 0.901 (< 0.001) 0.039

PGM (specialty and degree) 0.045 0.069 (0.109) 0.167 0.873 (< 0.001) 0.039

GRANDPA (specialty and community) 0.237 0.248 (< 0.001) 0.165 0.543 (< 0.001) 1.000

GRANDPA (specialty, community and 
degree)

0.054 0.038 (0.777) 0.088 0.173 (< 0.001) 0.993

GRANDPA (specialty, community, degree 
and linchpin)

0.051 0.033 (0.897) 0.028 0.102 (0.003) 0.990
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error rate by considering the sum of square residuals from a perfect recovery, which 
in this case is small at 0.0004. This relationship is shown in Fig. 6. This process was 
repeated on the entire CMS network which likewise essentially preserved the vertex 
join label probabilities exactly, but had a sum of square residuals of 2.92× 10−5.

We sought to evaluate if models trained on the GRANDPA-generated graph were 
reflective of results trained on the original graph. To this end, we trained a regression 
model on both the original graph and the final graph (Fig. 4) which aimed to predict if a 
physician’s primary speciality was either hospitalist or internal medicine given the pro-
portion of their neighbors with the same specialty. In the original graph, the odds ratio 
that a physician is a hospitalist or internal medicine doctor is 1.116 (95% confidence 
interval: 1.096, 1.142) when the proportion of physician neighbors within the same spe-
cialty increases by 1%. In the final GRANDPA-generated network, the same odds ratio 
as in the original graph of 1.139 obtained (95% confidence interval: 1.113, 1.174); dem-
onstrating satisfactory recovery of the true odds ratio. Full regression results across the 
generated networks are shown in Table  3 and demonstrate that the regression model 
fit on the final GRANDPA generated graph best recovered the model output fit on the 

Fig. 6 The calculated joint label probabilities between the original physician graph based on actual Medicare 
claims data and final GRANDPA generated graph. A Shows the returned vertex joint label probabilities and B 
shows the edge label probabilities

Table 3 Logistic Regression results for modelling if a physician’s specialty was classified as a 
care coordinator (hospitalists and internal medicine) or other specialist given the percentage of 
neighbours with the same specialty across the original generated networks

Intercept Same specialty AIC

Odds ratio 95% CI p value Odds ratio 95% CI p value

Original 0.063 (0.033, 0.111) < 0.001 1.116 (1.096, 1.142) < 0.001 138.61

PGM (specialty and 
degree)

< 0.001 (0.000, 0.004) < 0.001 1.386 (1.218, 1.937) 0.001 17.10

GRANDPA (specialty, 
community and degree)

0.004 (< 0.001, 0.017) < 0.001 1.203 (1.152, 1.286) < 0.001 42.88

GRANDPA (specialty, 
community, degree and 
linchpin)

0.0235 (0.009, 0.053) < 0.001 1.139 (1.113, 1.174) < 0.001 93.98
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original graph. Two regression models estimated on the generated networks did not 
converge and are omitted from the presentation of these results. Ten GRANDPA gen-
erated graphs were constructed that included specialty, community, degree, and linch-
pin labels; these were determined using different random seeds and so we recalculated 
the odds ratio for each graph. The mean odds ratio for having the same specialty in the 
GRANDPA-generated graphs was 1.143 with a standard deviation of 0.011.

Discussion
Data sharing and availability are fundamental to reproducibility of healthcare research 
and trust in the results obtained. However, concerns on protecting patient privacy need 
to be balanced (Wirth et  al. 2021; Clayton et  al. 2019; Hammack-Aviran et  al. 2020; 
McGraw and Mandl 2021). This is also true for the analysis and distribution of networks 
generated using patient health data. The American Medical Association recently sur-
veyed patients on the use of their medical data for research, and 75% of respondents 
wanted the ability to opt-in for research use. As well, 92% of respondents felt that their 
data should not be available for purchase by either corporations or individuals (Medical 
Association 2022). Separately, Hammack-Aviran et al. noted in a qualitative survey that 
patients would prefer transparency and choice in having their electronic medical records 
included in research efforts, often wanting information prior to consent on all research 
objectives and stakeholders (Hammack-Aviran et al. 2020). Moreover, open-source soft-
ware is often desirable for analyzing patient data, but may have security vulnerabilities 
which violate HIPAA compliance (Farhadi et al. 2019). Assessing open-source software 
for compliance is a non-trivial task (Farhadi et  al. 2019). Researchers are required to 
de-identify data prior to public release. However, in the case of biological data, such as 
data generated from DNA, data itself is a unique identifier (Clayton et al. 2019). More-
over, patients often view their genetic and molecular data to be private (Clayton et al. 
2019). Patient trust is a necessary component in healthcare research, and hence the dis-
tribution and analysis of networks with embedded patient data needs to be done with 
extreme care. Simulation of networks can alleviate many of these concerns as it allows 
for the creation of networks which maintain macro-level relationships without revealing 
any individual-level observations.

Hence, when generating graphs developed on sensitive or private data, we aimed to 
retain attribute values of vertices in such a way that they do not identify the original 
actor. Thus, we sought to generate a graph which retains network properties as opposed 
to partially retaining ‘real’ actors. Techniques such as Attribute Inference Attacks may 
be beneficial in demonstrating that combinations of identifiable labels are not present in 
generated networks (Gong and Liu 2018).

In this work, we demonstrated that GRANDPA can be used to generate both simple 
and complex graphs which are highly representative of original real-world networks. 
The GRANDPA framework allows the implementation of a family of methods, in which 
researchers can customize information pertaining to attributes and network structure 
to generate realistic graphs. Both case studies reproduced graphs with highly similar 
community structure and degree distributions while recovering the relational attribute 
structure by design. In our two case studies, degree distributions were highly preserved, 
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and community detection algorithms identified nearly identical communities between 
the original and GRANDPA-generated graphs.

Our case study of Zachary’s karate network reproduced a graph that is highly represen-
tational of the original graph, with many motifs within communities preserved between 
the original and GRANDPA-generated graphs. Our case study of a patient-sharing net-
work generated from CMS data likewise demonstrated that community structure could 
be preserved, and also that regression coefficients generated on the original and gener-
ated graphs overlapped, suggesting that models fit on the generated graphs are reflective 
of real-world findings.

We demonstrated that the GRANDPA algorithm can flexibly be augmented for not 
only degree and community structure, but also for vertex positional network features 
such as centrality measures. Indeed, generated graphs are only as accurate as their 
underlying models, and improvements in comparisons of graph topology may be pos-
sible with additional augmentation.

In Table  2 we demonstrated strong performance with the GRANDPA algorithm 
that considered Speciality, Community, Degree, and Linchpin labels. This algorithm 
demonstrated the strongest performance across the degree distribution in terms of 
the eigenvector centrality NRMSE and the KS statistics while maintaining strong per-
formance across the community agreement and degree distribution NRMSE. In some 
cases researchers may prioritize optimizing some accuracy measures over others with 
no one method being uniformly the best overall accuracy measures. This is a frequently 
observed phenomenon in modeling and machine learning (Wolpert and Macready 
1997). Researchers should be sure to specify models such that they optimize over the 
network similarity measures of most relevance to the given setting or study.

This was evidenced by our slightly biased estimate of the odds ratio of a physician 
being in internal medicine or classified as a hospitalist based on their proportion of 
same speciality neighbors. The bias in the estimator is likely due to a loss of information 
between the original graph and generated graphs, where medical specialty was the only 
directly measured attribute used to generate the graph, which may have over-empha-
sized the importance of connections based on medical specialty (e.g., if medical special-
ity is correlated with other measures that are also partially responsible for the generation 
of the graph). Researchers generating complex graphs should take care to confirm that 
the combination of provided labels adequately represents the target relationships of 
interest.

As well, the current framework weights all attribute and structural augmentation 
labels equally. Future directions will include optimizing a weighting function of possible 
labels using a regression framework in order to best capture information related to both 
network structure and vertex attribute relationships.

Conclusions
Graphs generated from real data have many possible use cases. Scalable graphs can be 
important for bench-marking tools and graphs generated from confidential data can be 
safely distributed with software and publications. Moreover, the distribution of gener-
ated biomedical graphs may reduce the costs of data acquisition for new researchers, 
allow greater access for trainees, reduce the risk of analyzing data with novel tools 
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that violate attempts to analyze the data securely, provide possible datasets for valida-
tion studies, support reproducible research, and be useful in pilot analyses for hypoth-
esis generation. GRANDPA is a flexible and user-friendly framework which will allow 
researchers across disciplines to generate meaningful graphs from real data when the 
original graph cannot be shared with them. We created an open-source and freely dis-
tributed R package accompanying the GRANDPA algorithm so that researchers can eas-
ily and generate graphs with a wide range of network features underlying them. As is 
true in any model building exercise; researchers should take care to include appropriate 
variables and select appropriate network similarity measures to optimize the recovery of 
their source graph.
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