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Abstract 

We present a method to extract temporal hypergraphs from sequences of 2-dimen-
sional functions obtained as solutions to Optimal Transport problems. We investigate 
optimality principles exhibited by these solutions from the point of view of hypergraph 
structures. Discrete properties follow patterns that differ from those characterizing 
their continuous counterparts. Analyzing these patterns can bring new insights into 
the studied transportation principles. We also compare these higher-order structures 
to their network counterparts in terms of standard graph properties. We give evidence 
that some transportation schemes might benefit from hypernetwork representations. 
We demonstrate our method on real data by analyzing the properties of hypernet-
works extracted from images of real systems.

Keywords:  Optimal transport theory, Hypergraph theory, Graph theory, Network 
structure, Network design

Introduction
Optimal Transport (OT) is a principled theory to compare probability distributions 
(Kantorovich 1942; Villani 2009; Santambrogio 2015; Peyré et  al. 2019). Although this 
task is usually framed as an optimization problem, recent studies have mapped it within 
the framework of dynamic partial differential equations (Evans and Gangbo 1999; Facca 
et al. 2018, 2020, 2021; Tero et al. 2007, 2010). In this context, solutions to a transporta-
tion problem are often found as the convergent state of evolving families of functions.

In some scenarios, the steady states of these evolving families are supported in net-
work-shaped structures (Xia 2003, 2014, 2015). Recently, this fact has called the atten-
tion of network scientists and graph theorists leading to the development of methods 
that convert the solutions of OT problems into actual graph structures (Baptista et al. 
2020; Leite and De Bacco 2022). This has broadened the available set of tools to under-
stand and solve these transportation problems. Recent studies have shown that common 
patterns can be unveiled in both the original mathematical setting and in the converted 
graph structures (Baptista and De Bacco 2021b).

Representations of these functions as sets of dyadic relations have been proven mean-
ingful in various applications (Baptista and De Bacco 2021a; Facca et al. 2021). Nonethe-
less, traditional dyadic representations may be limited in representing flows of quantities 
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like mass or information as observed in real systems. Various examples of systems where 
interactions happen between 3 individuals or more are observed in applications as social 
contagion (de Arruda et al. 2020; Chowdhary et al. 2021), random walks (Carletti et al. 
2020; Schaub et al. 2020) or non-linear consensus (Neuhäuser et al. 2020). Understand-
ing the relation between the structure and dynamics taking place on higher-order struc-
tures is an active field of research (Taylor et al. 2015; Patania et al. 2017). For instance, 
key elements controlling dynamics are linked to the heterogeneity of hyperedges’ sizes 
present in their higher-order representations (Patania et  al. 2017). These systems are 
hence best described by hypergraphs, generalizations of networks that encode struc-
tured relations among any number of individuals. With this in mind, a natural question 
to ask is how do OT-based structures perform in terms of higher-order representations?

To help bridge this knowledge gap about higher-order properties of structures derived 
from OT solutions, we elaborate on the results observed in Baptista and De Bacco 
(2021b). Specifically, we propose a method to convert the families of 2-dimensional 
functions into temporal hypernetworks. We enrich the existing network structures asso-
ciated with these functions by encoding the observed interactions into hyperedges. We 
study classic hypergraph properties and compare them to the predefined cost functional 
linked to the transportation problems. Finally, we extend this method and the analy-
sis to study systems coming from real data. We build hypergraph representations of P. 
polycephalum (Westendorf et al. 2016) and analyze their topological features.

Methods
The Dynamical Monge‑Kantorovich method

The Dynamical Monge‑Kantorovich set of equations

We start by reviewing the basic elements of the mechanism chosen to solve the OT 
problems. As opposed to other standard optimization methods used to solve this 
(Cuturi 2013), we use an approach that turns the problem into a dynamical set of partial 
differential equations. In this way, initial conditions are updated until a convergent state 
is reached. The dynamical system of equations as proposed by Facca et al. (2018, 2020, 
2021), is presented as follows. We assume that the OT problem is set on a continuous 
2-dimensional space � ∈ R

2 , and at the beginning, no underlying network structure is 
observed. This gives us the freedom of exploring the whole space to design an optimal 
network topology, solution of the transportation problem. The main quantities that need 
to be specified in input are source and target distributions. We refer to them as sources 
and sinks, where a certain mass (e.g. passengers in a transportation network, water in a 
water distribution network) is injected and then extracted. We denote these with a “forc-
ing” function f (x) = f +(x)− f −(x) ∈ R , describing the flow-generating sources f +(x) 
and sinks f −(x) . To ensure mass balance it is imposed 

�
f (x)dx = 0 . We assume that 

the flow is governed by a transient Fick–Poiseuille flux q = −µ∇u , where µ,u and q 
are called conductivity (or transport density), transport potential and flux, respectively. 
Intuitively, mass is injected through the source, moved based on the conductivity across 
space, and then extracted through the sink. The way mass moves determines a flux 
that depends on the pressure exerted on the different points in space; this pressure is 
described by a potential function.
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The set of Dynamical Monge–Kantorovich (DMK) equations is given by:

where ∇ = ∇x . Equation (1) states the spatial balance of the Fick–Poiseuille flux and is 
complemented by no-flow Neumann boundary conditions. Equation (2) enforces the 
dynamics of this system, and it is controlled by the so-called traffic rate β . It determines 
the transportation scheme, and it shapes the topology of the solution: for β < 1 we have 
congested transportation where traffic is minimized, whereas β > 1 induces branched 
transportation where traffic is consolidated into a smaller amount of space. The case 
β = 1 recovers shortest path-like structures. Finally, Eq. (3) constitutes the initialization 
of the system and can be thought of as an initial guess of the solution.

Solutions (µ∗,u∗) of Eqs. (1)–(3) minimize the transportation cost function L(µ,u) 
(Facca et al. 2018, 2020, 2021), defined as:

L can be thought of as a combination of M , the total energy dissipated during transport 
(or network operating cost) and E , the cost to build the network infrastructure (or infra-
structural cost). It is known that this functional’s convexity changes as a function of β . 
Non-convex cases arise in the branched schemes, inducing fractal-like structures (Facca 
et al. 2021; Santambrogio 2007). This is the case that we considered in this work, and 
it is the only one where meaningful network structures, and thus, hypergraphs, can be 
extracted (Baptista et al. 2020).

Hypergraph sequences

Hypergraph construction

We define a hypergraph (also, hypernetwork) as follows (Battiston et  al. 2020): a 
hypergraph is a tuple H = (V ,E), where V = {v1, ..., vn} is the set of vertices and 
E = {e1, e2, ..., em} is the set of hyperedges in which ei ⊂ V , ∀i = 1, ...,m, and |ei| > 1 . If 
|ei| = 2, ∀i then H is simply a graph. We call edges those hyperedges ei with |ei| = 2 and 
triangles, those with |ei| = 3 . We refer to the 1-skeleton of H as the clique expansion of 
H. This is the graph G = (V ,EG) made of the vertices V of H, and of the pairwise edges 
built considering all the possible combinations of pairs that can be built from each set of 
nodes defining each hyperedge in E.

Let µ be the conductivity found as a solution of Eqs. (1)–(3). As previously men-
tioned, µ at convergence regulates where the mass should travel for optimal 

(1)−∇ · (µ(t, x)∇u(t, x)) = f +(x)− f −(x),

(2)
∂µ(t, x)

∂t
= [µ(t, x)∇u(t, x)]β − µ(t, x),

(3)µ(0, x) = µ0(x) > 0,

(4)L(µ,u) := E(µ,u)+M(µ,u)

(5)E(µ,u) :=
1

2

∫

�

µ|∇u|2dx, M(µ,u) :=
1

2

∫

�

µ
(2−β)

β

2− β
dx.
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transportation. Similar to Baptista and De Bacco (2021b), we turn this 2-dimensional 
function into a different data structure, namely, a hypergraph. This is done as follows: 
consider G(µ) = (VG ,EG) the network extracted using the method proposed in Baptista 
et al. (2020). We define H(µ) as the tuple (VH ,EH ) where VH = VG and EH = EG ∪ TG , 
s.t., TG = {(u, v,w) : (u, v), (v,w), (w,u) ∈ EG , }. In words, H(µ) is the graph G(µ) 
together with all of its triangles. This choice is motivated by the fact that the graph-
extraction method proposed in Baptista et al. (2020) uses triangles to discretize the con-
tinuous space � , which can have a relevant impact on the extracted graph or hypergraph 
structures. Hence, triangles are the natural sub-structure for hypergraph constructions. 
The method proposed in this work is valid for higher-order structures beyond triangles. 
Exploring how these additional structures impact the properties of the resulting hyper-
graphs is left for future work.

Figure  1 shows an example of one of the studied hypergraphs. The red shapes rep-
resent the different triangles of H(µ) . Notice that, although we consider here the case 
where |e| ≤ 3 for each hyperedge e—for the sake of simplicity—higher-order structures 
are also well represented by the union of these elements, as shown in the right panels of 
the figure.

Since this hypergraph construction method is valid for any 2-dimensional transport 
density, we can extract a hypergraph not only from the convergent µ but also at any time 
step before convergence. This then allows us to represent optimal transport sequences as 
hypergraphs evolving in time, i.e. temporal hypernetworks.

Hypergraph sequences

Formally, let µ(x, t) be a transport density (or conductivity) function of both time and 
space obtained as a solution of the DMK model. We denote it as the sequence {µt}

T
t=0 , for 

some index T (usually taken to be that of the convergent state). Each µt is the t-th update 
of our initial guess µ0 , computed by following the rules described in Eqs. (1)–(3). This 
determines a sequence of hypernetworks {H(µt)}

T
t=0 extracted from {µt}

T
t=0 with the 

extraction method proposed in Baptista et al. (2020). Figure 2 shows three hypergraphs 
built from one of the studied sequences {µt} using this method at different time steps. 
The corresponding OT problem is that defined by the (filled and empty) circles: mass is 
injected in the bottom left circle and must be extracted at the highlighted destinations. 
On the top row, different updates (namely, t = 12, 18, 26 ) of the solution are shown. 
They are defined on a discretization of [0, 1]2. Darkest colors represent their support. 

Fig. 1  Hypernetwork construction. Higher order structures are built using edges and triangles as 
hyperedges. The leftmost panel shows one of the studied graphs together with the triangles (in red) used. 
The subsequent panels highlight different clusters of triangles that can be seen in the main hypergraph
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Hypergraphs extracted from these functions are displayed at the bottom row. As can be 
seen, only edges (in gray) and triangles (in red) are considered as part of H(µt) . Notice 
that the larger the t is, the less dense the hypergraphs are, which is expected for a uni-
form initial distribution µ0 and branched OT ( β > 1 ) (Facca et al. 2021).

Graph and hypergraph properties

We compare hypergraph sequences to their correspoding network counterparts (defined 
as described in the previous paragraph). We analyze the following main network and 
hypergraph properties for the different elements in the sequences and for different 
sequences. Denote with G = (VG ,EG) and H = (VH ,EH ) one of the studied graphs and 
hypergraphs belonging to some sequence {G(µt)}

T
t=0 and {H(µt)}

T
t=0 , respectively. We 

consider the following network properties: 

1.	 |EG| , total number of edges;
2.	 Average degree d(G), the mean number of neighbors per node;
3.	 Average closeness centrality c(G): let v ∈ VG , the closeness centrality of v is defined 

as 
∑

u∈VG
1/d(u, v), where d(u, v) is the shortest path distance between u and v.

Hypernetwork properties can be easily adapted from the previous definitions with 
the help of generalized adjacency matrices and line graphs (Aksoy et al. 2020). Let H 
be a hypergraph with vertex set V = {1, .., n} and edge set E = {e1, ..., em} . We define 
the generalized node s-adjacency matrix As of H as the binary matrix of size n× n , s.t., 
As[i][j] = 1 if i and j are part of at least s shared hyperedges; As[i][j] = 0, otherwise. 

Fig. 2  Temporal hypergraphs. Top row: different timestamps of the sequence {µt} ; triangles are a 
discretization of [0, 1]2 . Bottom row: hypergraphs extracted for µt at the time steps displayed on the top row; 
triangles are highlighted in red. In both rows, filled and empty circles correspond to the support of f+ and f− , 
i.e. sources and sinks, respectively. This sequence is obtained for β = 1.5
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We define the s-line graph Ls as the graph generated by the adjacency matrix As . 
Notice that A1 corresponds to the adjacency matrix of H’s skeleton (which is L1 ). Fig-
ure  3 shows a family of adjacency matrices together with the line graphs generated 
using them. We can then define hypergraphs properties in the following way: 

1.	 |EH | , total number of hyperedges;
2.	 |T | = |{e ∈ EH : |e| = 3}|, total number of triangles;
3.	 S =

∑
t∈T a(t), covered area, where a(t) is the area of the triangle t; 

4.	 Average degree ds(H) , the mean number of incident hyperedges of size greater or 
equal than s per node;

5.	 Average closeness centrality cs(H) : let v ∈ VH , the closeness centrality of v is defined 
as its closeness centrality in Ls.

S can be defined in terms of any other property of a hyperedge, e.g. a function of its 
size |e|. Here we consider the area covered by a hyperedge to keep a geometrical per-
spective. On the other hand, this area S can be easily generalized to hyperedges with 
|ei| > 3 by suitably changing the set T in the summation, e.g. by considering struc-
tures containing four nodes. As for the centrality measures, we focus our attention 
to compare the case s > 1 against s = 1 , as the latter traces back to standard graph 
properties and we are interested instead to investigate what properties are inherent 
to hypergraps. Figure  4 shows values of the ds(H) and cs(H) for convergent hyper-
graphs H (obtained from different values of β ) together with the degree and close-
ness centrality of their correspondent graph versions. The considered hypergraphs are 
displayed in the top row of the figure. As can be seen in the figure, patterns differ 
considerably for different values of β . As s controls the minimum number of shared 
connections for different nodes in the networks, the higher this number, the more 
restrictive this condition becomes, thus leading to more disconnected line graphs. In 
the case of the s-degree centrality, we observe decreasing values for increasing s, with 
nodes with the highest centrality having much higher values than nodes less central. 

Fig. 3  Adjacency matrices and line graphs. Top: generalized node s-adjacency matrices for different values of 
s from a given toy graph G. Bottom, from left to right: reference network G, and s-line graphs for s = 2, 3, and 
4



Page 7 of 16Baptista and De Bacco ﻿Applied Network Science             (2023) 8:3 	

For both s = 2, 3 we observe higher values than nodes in G. This follows from the 
fact that once hyperedges are added to G, the number of incidences per node can 
only increase. Centrality distributions strongly depend on β . For small values—more 
distributed traffic ( β = 1.1)—the number of hyperedges per node remains larger than 
the number of regular edges connected to it. But if traffic is consolidated on less space 
( β = 1.9 ), then very few hyperedges are found. This suggests that the information 
learned from hypergraphs that is distinct to that contained in the graph skeleton is 
influenced by the chosen traffic regime.

As for the closeness centrality distribution, this resembles that of G for small val-
ues of β , regardless s. For higher β it switches towards an almost binary signal. Thus, 
nodes tend to become more central as β increases, suggesting that adding hyperedges 
to networks G leads to shorter distances between nodes. The loss of information seen 
for the highest values of s is due to the fact that the line graphs Ls become discon-
nected with many small connected components. In these cases, the closeness central-
ity of a node is either 0 if it is isolated, or proportional to the diameter of the small 
connected component where it lives in.

Convergence criteria

Numerical convergence of the DMK Eqs. (1)–(3) is usually defined by fixing a threshold 
τ . The updates are considered enough once the cost associated to them does not change 
more ( ≤ τ ) than that of the previous time step. As it is usually the case when this thresh-
old is too small ( τ = 10−12 in our experiments), the cost or the network structure may 

Fig. 4  Graph and Hypergraph properties. Top row: optimal hypernetworks obtained with different traffic 
rates. Center and bottom rows: degree distributions and closeness distributions for the hypernetworks shown 
on the top row, and their 1-skeletons. The node labels in the x-axis of the center and bottom rows are sorted 
by their degree of centrality values
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consolidate to a constant value earlier than algorithmic convergence. Similar to Baptista 
and De Bacco (2021b), to meaningfully establish when is hypergraph optimality reached, 
we consider as convergence time the first time step when the transport cost, or a given 
network property, reaches a value that is smaller or equal to a certain fraction p of the 
value reached by the same quantity at algorithmic convergence (in the experiments here 
we use p = 1.05 ). We refer to tL and tP for the convergence in times in terms of cost 
function or a network property, respectively.

Results
To test the properties presented in the previous section and understand their connec-
tion to transportation optimality, we synthetically generate a set of optimal transport 
problems, determined by the configuration of sources and sinks. As done in Baptista 
and De Bacco (2021b), we fix a source’s location and sample several points in the set 
[0, 1]2 to be used as sinks’ locations. Let S = {s0, s1, ..., sM} be the set of locations in the 
space [0, 1]2, and fix a positive number 0 < r . We define the distributions f + and f − as 
f +(x) ∝ 1R0(x), and f −(x) ∝

∑
i>0 1Ri(x), where 1Ri(x) := 1, if x ∈ Ri , and 1Ri(x) := 0 , 

otherwise; Ri = C(si, r) is the circle of center si and radius r. The value of r is chosen 
based on the used discretization, and as mentioned before, the centers are sampled uni-
formly at random. The symbol ∝ stands for proportionality and is used to ensure that f + 
and f − are both probability distributions. The transportation cost is that of Eq. (4).

Synthetic OT problems

The set of transportation problems considered in our experiments consists of 100 
source-sink configurations. We place the location of the source s0 = (0, 0) (i.e. the sup-
port of f + at (0, 0)), and sample 15 points s1, s2, ..., sM uniformly at random from a reg-
ular grid. By sampling them from the nodes of the grid, we ensure that two different 
locations are at a safe distance so they are considered different once the space is dis-
cretized. We initialize µ0(x) = 1, ∀x to be a uniform distribution on [0, 1]2 . This can be 
interpreted as a non-informative initial guess for the solution. Starting from µ0, we com-
pute a maximum of 300 updates. Depending on the chosen traffic rate β more or fewer 
iterations can be needed. We claim that the sequence {µt}

T
t=0 converges to a certain func-

tion µ∗ at iteration T if either |µT − µT−1| < τ , for a tolerance τ ∈ (0, 1], or T reaches 
the mentioned maximum. For the experiments reported in this manuscript, the toler-
ance τ is set to be 10−12 . Given the dependence of the solution of traffic constraints, a 
wide range of values of β is considered. Namely, we study solutions obtained from low 
traffic cases ( β = 1.1 , and thus, less traffic penalization) to large ones ( β = 1.9 ), all of 
them generating branched transportation schemes. Our 100 problems are linked to a 
total of 900 hypergraph sequences, each of them containing between 50 and 80 higher-
order structures.

Convergence: transport cost vs hypernetwork properties

As presented in Baptista and De Bacco (2021b), we show a comparison between hyper-
network properties and the cost function minimized by the dynamics, where conver-
gence times are highlighted (Fig. 5). We focus on the property S, the area of the surface 
covered by the triangles in H. This quantity is influenced by both the amount of triangles 
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(hence of hyperedges) and their distribution in space. Hence, it is a good proxy for how 
hypergraph properties change both in terms of iteration time and as we tune β . We 
observe that tP > tL in all the cases, i.e. convergence in terms of transportation cost is 
reached earlier than the convergence of the topological property. Similar behaviors are 
seen for other values of β ∈ [1.1, 1.9] and other network properties (see “Appendix”). 
Similar to DMK-based network properties, the covered area’s decay is faster for the 
smallest values of β . This is expected, given the convexity properties of L (Facca et al. 
2018, 2020, 2021). However, the transport cost decays even faster, in a way that the value 
of S is still far away from convergence in the congested transportation case (small β).

Notice that S remains stable after the first few iterations, and then it starts decreas-
ing at different rates (depending on β ) until reaching the converged value. This suggests 
that the dynamics tend to develop thick branches—covering a large area— at the begin-
ning of the evolution, and then it slowly compresses them until reaching the optimal 
topologies.

These different convergence rates for S and L may prevent construction of converged 
hypernetwork topologies: if the solver is stopped at tL < tP , the resulting hypergraphs 
H(µt), t = tL would mistakenly cover a surface larger than that covered by the conver-
gent counterpart ( H(µt), for t ≥ tP ). This scenario is less impactful for larger values of 
β , although in these scenarios H is much more similar to a regular graph, because of 
the small number of higher-order structures. Topological differences between converged 
hypernetworks can be seen in Fig. 4.

Finally, we observe that both tL(β) and tP(β) are increasing functions on β . This is 
expected since the larger the traffic rate is, the longer it takes for the sequences to con-
verge. This particular behavior matches what is shown in Baptista and De Bacco (2021b) 
in the case of tL , but this is not the case for tP(β) : it was observed a non-monotonic 
behavior in the network case.

Fig. 5  Covered area and Lyapunov cost. Mean (markers) and standard deviations (shades around the 
markers) of the covered area S (top plots) and of the Lyapunov cost, energy dissipation E and structural cost 
M (bottom plots), as functions of time t. Means and standard deviations are computed on the set described 
in Paragraph Synthetic OT problems. From left to right: β = 1.2, 1.5 and 1.8. Red and blue lines denote tP and tL
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Convergence behavior of hypernetwork properties

Figure 6 shows how the various network properties change depending on the traffic rate. 
Mean values and standard deviations are computed across times, for a fixed value of 
β . As shown, the number of hyperedges, number of triangles, covered area, and aver-
age 1-degree exhibit decreasing patterns as functions of t. As a consequence, transport 
optimality can be thought of as reaching minimum states on the mentioned hypernet-
work properties. Another clear feature of these functions is related to the actual con-
verged values: the larger the β is, the smaller these metrics become. This is explained by 
a cost function increasingly encouraging consolidations of paths on fewer edges. Notice 
also that the gap between these converged values signals a non-linear dependence on 
the outputs of the dynamics; e.g., a converged hypernetwork obtained for β = 1.1. loses 
many more hyperedges if the traffic rate is then set to 1.2, whereas this loss would not be 
that large if β = 1.2 is increased to 1.3. The nature of these gaps is substantially different 
depending on the property itself. This also shows that certain properties better reveal 
the distinction between different optimal traffic regimes.

The behavior of the closeness centralities is distinctly different than that of the other 
properties. While its initial values are the same for all values of β (similar to the previous 
properties), no clear trend can be found as time increases. For s = 1 , on average β = 1.1 
generates sequences that tend to recover initial values after increasing and then decreas-
ing behavior. For the other traffic rates, we observe different patterns. Notice that s−
closeness centrality on the hypergraph for s = 1 is the same as the classic closeness cen-
trality on the skeleton of it. Thus, these rather noisy patterns are not due to the addition 

Fig. 6  Evolution of hypernetwork properties. Mean (markers) and standard deviations (shades around the 
markers) of number of hyperedges |EH | (upper left), number of triangles |T| (upper center), covered area S(H) 
(upper right), average 2-degree d2(H) (lower left), average 1-closeness centrality c1(H)(lower center) and 
2-closeness centrality c2(H)(lower right), computed for different values of β as a function of time
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of hyperedges. On the other hand, for s = 2 the average centrality shows increasing 
curves. This may be due to Ls getting increasingly disconnected with small connected 
components. Therefore, the larger s, the closer the nodes are seen (see Fig. 3). Moreover, 
in this case small values of β lead to more stable closeness centrality values, showing 
the impact of β in building higher-order structures. While different values of β lead to 
different behaviors of the hypergraph properties (e.g. decreasing degrees and amount 
of hyperedges for increasing β ) we remark that choosing the value of β should depend 
on the application at hand. The analysis performed here showcases how this choice may 
impact the resulting topologies. This can help practitioners to visualize possible conse-
quences in terms of downstream analysis on the transportation properties of the under-
lying infrastructure.

P. polycephalum hypernetworks
We now analyze hypernetworks extracted from images of real data. We are interested 
in the evolution of the area covered by triangles in the sequences {H(µt)}

T
t=0 extracted 

from real images of the slime mold P. polycephalum. The behavior of this organism is the 
inspiration of the modeling ideas of the DMK equations described in Methods. It has 
been shown that these slime molds follow a similar optimization strategy as that cap-
tured by the DMK dynamics while foraging for food in 2D surfaces (Nakagaki et al. 2000; 
Tero et al. 2007, 2010). We extract hypernetworks from images using the idea described 
in Methods but instead of applying (Baptista et al. 2020) to obtain the networks, we use 
the method proposed by Baptista and De  Bacco (2021a) which takes images as input. 
This pipeline uses the color intensities of the different image pixels to build a graph, by 
connecting adjacent meaningful nodes. We dedicate our attention to 4 image sequences 
from the Slime Mold Graph Repository (Dirnberger et al. 2017). The sequences are then 
describing the evolution of a P. polycephalum placed in a rectangular Petri dish. Each 
image, and thus each hypernetwork, is a snapshot of the movement of this organism 
over periods of 120 seconds.

We study the covered area for every one of the 4 sequences, and plot the results for 
one of them (namely, image set motion12; see “Appendix”) in Fig. 7. We highlight 4 times 
along the property sequence to display the used images together with the corresponding 
hypernetworks. The lower leftmost plot shows a subsection of one of the studied snap-
shots. As can be seen there, this subhypernetwork topology exhibits a significant num-
ber of hyperedges of dimension 3, mainly around the thickest parts of the slime mold. 
On the other side, in the lower rightmost plot, the evolution of S is overall decreasing in 
time (similar results are obtained for other sequences, as shown in the “Appendix”). This 
suggests that the thicker body parts tend to get thinner as the P. polycephalum evolves 
into a consolidated state. This pattern resembles what is shown above for the synthetic 
data, i.e. the covered area tends to decrease as time evolves similar to the behavior of 
the DMK-based hypernetwork sequence. This suggests that the DMK model realistically 
mirrors a consolidation phase towards optimality of real slime molds (Dirnberger et al. 
2017).
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Fig. 7  P. polycephalum hypergraphs. On top: P. polycephalum images and hypernetworks extracted from 
them. Bottom left: a zoomed-in part of the hypergraph shown inside the red rectangle on top. Bottom 
right: covered area as a function of time. The red shade highlights a tentative consolidation phase towards 
optimality

Fig. 8  S and Lyapunov cost. First and second top-down rows: from left to right we see β = 1.1, 1.3 and 1.4. 
Third and fourth top-down rows: from left to right we see β = 1.6, 1.7 and 1.9. First and third top-down rows: 
mean and standard deviation of S as a function of time t; Second and fourth top-down rows: Mean and 
standard deviation of the Lyapunov cost L , energy dissipation E and structural cost M of transport densities. 
Red and blue lines denote tP and tL for p = 1.05
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Conclusions
We proposed a method to build higher-order structures from OT sequences. This 
method maps every member of the sequence into a hypergraph, outputting a temporal 
hypernetwork. We analyzed standard hypergraph properties on these temporal families 
and compared them to their continuous counterparts. We showed that convergence in 
terms of transportation cost tends to happen faster than that given by the covered area 
of the hypernetworks. This suggests that the dynamics used to solve the OT problems 
concentrates the displaced mass into main branches, and once this task is carried out, it 
slightly reduces the area covered by them. We studied this and other hypergraph proper-
ties, and compared them to those of their network versions. In some cases, hypernet-
works reveal more information about the topology at convergence. This suggests that 
hypernetworks could be a better alternative representation to solutions of OT prob-
lems for some transportation schemes. The conclusions found in this work may further 
enhance our comprehension of OT solutions and the links between this field and that of 
hypergraphs.

Appendix
Covered area for other values of β

We present in this section a similar plot to that of Fig. 5—comparing the covered area 
and the cost function— for other values of β . As mentioned there, S shows decreasing 
behaviors for which tP > tL holds true (see Fig. 8).

Fig. 9  Other hypernetwork properties and Lyapunov cost. From left to right: β = 1.2, 1.5 and 1.8. From top to 
bottom: Mean and standard deviation of the average degree d1(H) , number of hyperedges |EH |, number of 
triangles |T|, and the Lyapunov cost L , energy dissipation E and structural cost M . Red and blue lines denote 
tP and tL for p = 1.05
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Fig. 10  P. polycephalum S evolution. From top to bottom: motion24, motion40 and motion79. Plots 
are separated in couples. For every couple, the plots on top show both P. polycephalum images and 
hypernetworks extracted from them. The hypernetwork at the lower leftmost plot is a subsection of the 
hypergraph shown inside the red rectangle on top. The plot at the bottom shows the covered area as a 
function of time. The red shade in this plot highlights a tentative consolidation phase towards optimality
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Additional hypernetwork properties

In this section we extend the comparison between the cost function—minimized by the 
dynamics—and hypernetwork properties (see Fig. 9). As mentioned in the main manu-
script, similar monotonic behaviors can be observed in these cases.

P. polycephalum hypernetworks

Data information

We explain in this section further details about the analyzed real data.
The images are taken from the Slime Mold Graph Repository (Dirnberger et al. 2017) 

as mentioned in the main manuscript. We study 4 {Hi}
T
i  sequences of different lengths. 

The length (T) varies depending on the number of images included in the sequence. This 
is because different experiments need more o fewer shots. These experiments, as men-
tioned in the repository’s documentation, consist of placing a slime mold inside a Petri 
dish with a thin sheet of agar where no food is provided. Slime mold’s exploration of 
the dish, as explained by the creators, is unbiased, due to the lack of food. Given that 
this organism is initially placed along one of the short edges of the rectangular dish, the 
experiment is considered to be finished once the plasmodium reaches the other short 
side. No more pictures are taken after this happens (Fig. 10).

Hypergraph extraction

We used the image sets motion12, motion24, motion40 and motion79, located in the 
repository, to build the studied hypernetworks. These sets contain a number of images 
ranging from 60 to 150. Hypernetworks are then extracted using the Img2net algorithm 
described in Baptista and De Bacco (2021a) as mentioned in the main manuscript, using 
the same configuration described in Baptista and De Bacco (2021b).
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