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Abstract 

We propose a dynamic network sampling scheme to optimize block recovery for 
stochastic blockmodel in the case where it is prohibitively expensive to observe the 
entire graph. Theoretically, we provide justification of our proposed Chernoff-optimal 
dynamic sampling scheme via the Chernoff information. Practically, we evaluate the 
performance, in terms of block recovery, of our method on several real datasets from 
different domains. Both theoretically and practically results suggest that our method 
can identify vertices that have the most impact on block structure so that one can only 
check whether there are edges between them to save significant resources but still 
recover the block structure.

Keywords:  Dynamic network sampling, Stochastic blockmodel, Community 
detection, Chernoff information

Introduction
In network inference applications, it is important to detect community structure, i.e., 
cluster vertices into potential blocks. However, it can be prohibitively expensive to 
observe the entire graph in many cases, especially for large graphs. For example, in a 
network where vertices represent landline phones and edges represent whether there is 
a call between two landline phones. Based on the size of the network, in terms of the 
number of vertices, it can be extremely expensive to check whether there is a call for 
every landline phone pairs. Therefore, if one can utilize the information carried by a par-
tially oberverd graph, that is only a small number of landline phone pairs are verified, to 
identify the landline phones that may play a more important role in formulating com-
munities. Then given limited resources, one can choose to only check whether there are 
calls between those landline phone pairs to achieve the goal of detecting potential block 
structure. Thus it becomes essential to identify vertices that have the most impact on 
block structure and only check whether there are edges between them to save significant 
resources but still recover the block structure.

Many classical methods only consider the adjacency or Laplacian matrices for com-
munity detection (Fortunato and Hric 2016). By contrast, vertex covariates can also 
be taken into consideration for the inference. These covariate-aware methods rely on 
either variational methods (Choi et al. 2012; Roy et al. 2019; Sweet 2015) or spectral 
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approaches (Binkiewicz et al. 2017; Huang and Feng 2018; Mele et al. 2022; Mu et al. 
2022). However, none of them focus on the problem of clustering vertices for partially 
observed graphs. To address this issue, existing methods propose different types of 
random and adaptive sampling strategies to minimize the information loss from the 
data reduction (Yun and Proutiere 2014; Purohit et al. 2017).

We propose a dynamic network sampling scheme to optimize block recovery for 
stochastic blockmodel (SBM) when we only have limited resources to check whether 
there are edges between certain selected vertices. The innovation of our approach is 
the application of Chernoff information. To our knowledge, this is the first time that it 
has been applied to network sampling problems. Motivated by the Chernoff analysis, 
we not only propose a dynamic network sampling scheme to optimize block recovery, 
but also provide the framework and justification for using Chernoff information in 
subsequent inference for graphs.

The structure of this article is summarized as follows. Section  2 reviews relevant 
models for random graphs and the basic idea of spectral methods. Section  3 intro-
duces the notion of Chernoff analysis for analytically measuring the performance of 
block recovery. Section  4 includes our dynamic network sampling scheme and the-
oretical results. Section  5 provides simulations and real data experiments to meas-
ure the algorithms’ performance in terms of actual block recovery results. Section 6 
discusses the findings and presents some open questions for further investigation. 
Appendix provides technical details for our theoretical results.

Models and spectral methods
In this work, we are interested in the inference task of block recovery (community 
detection). To model the block structure in edge-independent random graphs, we 
focus on the SBM and the generalized random dot product graph (GRDPG).

Definition 1  (Generalized Random Dot Product Graph Rubin-Delanchy et al. 2022) Let 
Id+d− = Id+ −Id−  with d+ ≥ 1 and d− ≥ 0 . Let F be a d-dimensional inner product 
distirbution with d = d+ + d− on X ⊂ R

d satisfying x⊤Id+d−y ∈ [0, 1] for all x, y ∈ X  . 
Let A be an adjacency matrix and X = [X1, · · · ,Xn]⊤ ∈ R

n×d where Xi ∼ F  , i.i.d. for all 
i ∈ {1, · · · , n} . Then we say (A,X) ∼ GRDPG(n, F , d+, d−) if for any i, j ∈ {1, · · · , n}

Definition 2  (K-block Stochastic Blockmodel Graph Holland et al. 1983) The K-block 
stochastic blockmodel (SBM) graph is an edge-independent random graph with 
each vertex belonging to one of K blocks. It can be parametrized by a block connec-
tivity probability matrix B ∈ (0, 1)K×K  and a vector of block assignment probabilities 
π ∈ (0, 1)K  summing to unity. Let A be an adjacency matrix and τ be a vector of block 
assignments with τi = k if vertex i is in block k (occuring with probability πk ). We say 
(A, τ ) ∼ SBM(n,B,π) if for any i, j ∈ {1, · · · , n}

(1)Aij ∼ Bernoulli(Pij) where Pij = X⊤
i Id+d−Xj .

(2)Aij ∼ Bernoulli(Pij) where Pij = Bτiτj .
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Remark 1
The SBM is a special case of the GRDPG model. Let (A, τ ) ∼ SBM(n,B,π) as in Defini-
tion 2 where B ∈ (0, 1)K×K  with d+ strictly positive eigenvalues and d− strictly negative 
eigenvalues. To represent this SBM in the GRDPG model, we can choose ν1, · · · , νK ∈ R

d 
where d = d+ + d− such that ν⊤k Id+d−νℓ = Bkℓ for all k , ℓ ∈ {1, · · · ,K } . For example, we 
can take ν = UB|SB|1/2 where B = UBSBU

⊤
B  is the spectral decomposition of B after re-

ordering. Then we have the latent position of vertex i as Xi = νk if τi = k.

The parameters of the models can be estimated via spectral methods (Von Luxburg 2007), 
which have been widely used in random graph models for community detection (Lyzin-
ski et al. 2014, 2016; McSherry 2001; Rohe et al. 2011). Two particular spectral embedding 
methods, adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE), 
are popular since they enjoy nice propertices including consistency (Sussman et al. 2012) 
and asymptotic normality (Athreya et al. 2016; Tang and Priebe 2018).

Definition 3  (Adjacency Spectral Embedding) Let A ∈ {0, 1}n×n be an adjacency 
matrix with eigendecomposition A =

∑n
i=1 �iuiu

⊤
i  where |�1| ≥ · · · ≥ |�n| are the mag-

nitude-ordered eigenvalues and u1, · · · ,un are the corresponding orthonormal eigen-
vectors. Given the embedding dimension d < n , the adjacency spectral embedding 
(ASE) of A into Rd is the n× d matrix X̂ = UA|SA|1/2 where SA = diag(�1, . . . , �d) and 
UA = [u1| · · · |ud].

Remark 2
There are different methods for choosing the embedding dimension (Hastie et al. 2009; Jol-
liffe and Cadima 2016); we adopt the simple and efficient profile likelihood method (Zhu 
and Ghodsi 2006) to automatically identify “elbow”, which is the cut-off between the signal 
dimensions and the noise dimensions in scree plot.

Chernoff analysis
To analytically measure the performance of algorithms for block recovery, we consider the 
notion of Chernoff information among other possible metrics. Chernoff information enjoys 
the advantages of being independent of the clustering procedure, i.e., it can be derived no 
matter which clustering methods are used, and it is intrinsically relating to the Bayes risk 
(Tang and Priebe 2018; Athreya et al. 2017; Karrer and Newman 2011).

Definition 4  (Chernoff Information Chernoff 1952, 1956) Let F1 and F2 be two con-
tinuous multivariate distributions on Rd with density functions f1 and f2 . The Chernoff 
information is defined as

(3)
C(F1, F2) = − log

[
inf

t∈(0,1)

∫

Rd
f t1 (x)f

1−t
2 (x)dx

]

= sup
t∈(0,1)

[
− log

∫

Rd
f t1 (x)f

1−t
2 (x)dx

]
.
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Remark 3
Consider the special case where we take F1 = N (µ1,�1) and F2 = N (µ2,�2) ; then the 
corresponding Chernoff information is

where �t = t�1 + (1− t)�2.

The comparsion of block recovery via Chernoff information is based on the statistical 
information between the limiting distributions of the blocks and smaller statistical informa-
tion implies less information to discriminate between different blocks of the SBM. To that 
end, we also review the limiting results of ASE for SBM, essential for investigating Chernoff 
information.

Theorem  1  (CLT of ASE for SBM Rubin-Delanchy et  al. 2022) Let 
(A(n),X(n)) ∼ GRDPG(n, F , d+, d−) be a sequence of adjacency matrices and associated 
latent positions of a d-dimensional GRDPG as in Definition 1 from an inner product dis-
tribution F where F is a mixture of K point masses in Rd , i.e.,

where δνk is the Dirac delta measure at νk . Let �(z,�) denote the cumulative distribu-
tion function (CDF) of a multivariate Gaussian distribution with mean 0 and covar-
iance matrix � , evaluated at z ∈ R

d . Let X̂(n) be the ASE of A(n) with X̂(n)
i  as the i-th 

row (same for X(n)
i  ). Then there exists a sequence of matrices Mn ∈ R

d×d satisfying 
MnId+d−M

⊤
n = Id+d− such that for all z ∈ R

d and fixed index i,

where for ν ∼ F

with

For a K-block SBM, let B ∈ (0, 1)K×K be the block connectivity probability matrix and 
π ∈ (0, 1)K be the vector of block assignment probabilities. Given an n vertex instantiation 
of the SBM parameterized by B and π , for sufficiently large n, the large sample optimal error 
rate for estimating the block assignments using ASE can be measured via Chernoff infor-
mation as (Tang and Priebe 2018; Athreya et al. 2017)

(4)C(F1, F2) = sup
t∈(0,1)

[
1

2
t(1− t)(µ1 − µ2)

⊤�−1
t (µ1 − µ2)+

1

2
log

|�t |
|�1|t |�2|1−t

]
,

(5)F =
K∑

k=1

πkδνk with ∀k , πk > 0 and

K∑

k=1

πk = 1,

(6)P

{√
n
(
MnX̂

(n)
i − X

(n)
i

)
≤ z

∣∣ X(n)
i = νk

}
→ �(z,�k),

(7)�k = �(νk) = Id+d−�
−1

E

[(
ν⊤k Id+d−ν

)(
1− ν⊤k Id+d−ν

)
νν⊤

]
�−1Id+d− ,

(8)� = E

[
νν⊤

]
.

(9)ρ = min
k �=l

sup
t∈(0,1)

[
1

2
nt(1− t)(νk − νℓ)

⊤�−1
kℓ (t)(νk − νℓ)+

1

2
log

|�kℓ(t)|
|�k |t |�ℓ|1−t

]
,
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where �kℓ(t) = t�k + (1− t)�ℓ , �k = �(νk) and �ℓ = �(νℓ) are defined as in Eq. (7). 
Also note that as n → ∞ , the logarithm term in Eq. (9) will be dominated by the other 
term. Then we have the approximate Chernoff information as

where

We also introduce the following two notions, which will be used when we describe our 
dynamic network sampling scheme.

Definition 5  (Chernoff-active Blocks) For K-block SBM parametrized by the block 
connectivity probability matrix B ∈ (0, 1)K×K  and the vector of block assignment prob-
abilities π ∈ (0, 1)K  . The Chernoff-active blocks (k∗, ℓ∗) are defined as

where Ck ,ℓ(B,π) is defined as in Eq. (10).

Definition 6  (Chernoff Superiority) For K-block SBMs, given two block connectivity 
probability matrices B,B′ ∈ (0, 1)K×K  and a vector of block assignment probabilities 
π ∈ (0, 1)K  . Let ρB and ρB′ denote the Chernoff information obtained as in Eq. (10) cor-
responding to B and B′ respectively. We say that B is Chernoff superior to B′ , denoted as 
B ≻ B′ , if ρB > ρB′.

Remark 4
If B is Chernoff superior to B′ , then we can have a better block recovery from B than B′ . In 
addition, Chernoff superiority is transitive, which is straightforward from the definition.

Dynamic network sampling
We start our analysis with the unobserved block connectivity probability matrix B for 
SBM and then illustrate how to migrate the proposed methods for real applications 
when we have the observed adjacency matrix A.

Consider the K-block SBM parametrized by the block connectivity probability matrix 
B ∈ (0, 1)K×K  and the vector of block assignment probabilities π ∈ (0, 1)K  with K > 2 . 
Given initial sampling parameter p0 ∈ (0, 1) , initial sampling is uniformly at random, i.e.,

This initial sampling simulates the case when one only obersves a partial graph with a 
small portion of the edges instead of the entire graph with all existing edges.

Theorem  2  For K-block SBMs, given two block connectivity probability matri-
ces B, pB ∈ (0, 1)K×K  with p ∈ (0, 1) and a vector of block assignment probabilities 
π ∈ (0, 1)K  , we have B ≻ pB.

(10)ρ ≈ min
k �=l

Ck ,ℓ(B,π),

(11)Ck ,ℓ(B,π) = sup
t∈(0,1)

[
t(1− t)(νk − νℓ)

⊤�−1
kℓ (t)(νk − νℓ)

]
.

(12)(k∗, ℓ∗) = arg min
k �=l

Ck ,ℓ(B,π),

(13)B0 = p0B.
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The proof of Theorem  2 can be found in Appendix. As an illustration, consider a 
4-block SBM parametrized by block connectivity probability matrix B as

Figure 1 shows Chernoff information ρ as in Eq. (10) corresponding to B as in Eq. (14) 
and pB for p ∈ (0, 1) . In addition, Fig. 1a assumes π = ( 14 ,

1
4 ,

1
4 ,

1
4 ) and Fig. 1b assumes 

π = ( 18 ,
1
8 ,

3
8 ,

3
8 ) . As suggested by Theorem  2, for any p ∈ (0, 1) we have ρB > ρpB and 

thus B ≻ pB.
Now given dynamic network sampling parameter p1 ∈ (0, 1− p0) , the baseline sam-

pling scheme can proceed uniformly at random again, i.e.,

This dynamic network sampling simulates the situation when one is given limited 
resources to sample some extra edges after observing the partial graph with only a small 
portion of the edges. Since we only have limited budget to sample another small por-
tion of edges, one would benefit from identifying vertex pairs that have much influ-
ence on the community structure. In other words, the baseline sampling scheme just 
randomly choosing vertex pairs without using the information from the initial observed 
graphs and our goal is to design an alternative scheme to optimize this dynamic network 
sampling procedure so that one could have a better block recovery even with limited 
resources to only observe a partial graph with a small portion of the edges.

Corollary 1  For K-block SBMs, given block connectivity probability matrix 
B ∈ (0, 1)K×K  and a vector of block assignment probabilities π ∈ (0, 1)K  . We have 
B ≻ B1 ≻ B0 where B0 is defined as in Eq.  (13) with p0 ∈ (0, 1) and B1 is defined as in 
Eq. (15) with p1 ∈ (0, 1− p0).

The proof of Corollary 1 can be found in Appendix. This corollay implies that we can 
have a better block recovery from B1 than B0.

(14)B =



0.04 0.08 0.10 0.18
0.08 0.16 0.20 0.36
0.10 0.20 0.25 0.45
0.18 0.36 0.45 0.81


 .

(15)B1 = B0 + p1B = (p0 + p1)B.

Fig. 1  Chernoff information ρ as in Eq. (10) corresponding to B as in Eq. (14) and pB for p ∈ (0, 1)
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Assumption 1  The Chernoff-active blocks after initial sampling is unique, i.e., there 
exists an unique pair 

(
k∗0 , ℓ

∗
0

)
∈ {(k , ℓ) | 1 ≤ k < ℓ ≤ K } such that

where B0 is defined as in Eq. (13) and π is the vector of block assignment probabilities.

To improve this baseline sampling scheme, we concentrate on the Chernoff-active 
blocks 

(
k∗0 , ℓ

∗
0

)
 after initial sampling assuming Assumption  1 holds. Instead of sam-

pling from the entire block connectivity probability matrix B like the baseline sampling 
scheme as in Eq.  (15), we only sample the entries associated with the Chernoff-active 
blocks. As a competitor to B1 , our Chernoff-optimal dynamic network sampling scheme 
is then given by

where ◦ denotes Hadamard product, πk∗0
 and πℓ∗0

 denote the block assignment probabil-
ities for block k∗0 and ℓ∗0 respectively, and 1∗ is the K × K  binary matrix with 0’s eve-
rywhere except for 1’s associated with the Chernoff-active blocks 

(
k∗0 , ℓ

∗
0

)
 , i.e., for any 

i, j ∈ {1, · · · ,K }

Note that the multiplier 1(
πk∗0

+πℓ∗0

)2 on p1B ◦ 1∗ assures that we sample the same number 

of potential edges with B̃1 as we do with B1 in the baseline sampling scheme. In addition, 
to avoid over-sampling with respect to B , i.e., to ensure B̃1[i, j] ≤ B[i, j] for any 
i, j ∈ {1, · · · ,K } , we require

Assumption 2  For K-block SBMs, given a block connectivity probability matrix 
B ∈ (0, 1)K×K  and a vector of block assignment probabilities π ∈ (0, 1)K  . Let 
p∗1 ∈ (0, pmax

1 ] be the smallest positive p1 ≤ pmax
1  such that

is not unique where pmax
1  is defined as in Eq. (19) and B̃1 is defined as in Eq. (17). If the 

arg min is always unique, let p∗1 = pmax
1 .

For any p1 ∈ (0, p∗1) , we can have a better block recovery from B̃1 than B1 , i.e., our Cher-
noff-optimal dynamic network sampling sheme is better than the baseline sampling scheme 
in terms of block recovery.

(16)
(
k∗0 , ℓ

∗
0

)
= arg min

k �=l
Ck ,ℓ(B0,π),

(17)
B̃1 = B0 +

p1(
πk∗0

+ πℓ∗0

)2B ◦ 1k∗0 ,ℓ∗0 ,

(18)1k∗0 ,ℓ
∗
0
[i, j] =

{
1 if (i, j) ∈

{(
k∗0 , k

∗
0

)
,
(
k∗0 , ℓ

∗
0

)
,
(
ℓ∗0, k

∗
0

)
,
(
ℓ∗0, ℓ

∗
0

)}

0 otherwise
.

(19)p1 ≤ pmax
1 = (1− p0)

(
πk∗0

+ πℓ∗0

)2
.

(20)arg min
k  =l

Ck ,ℓ(B̃1,π)
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As an illustaration, consider the 4-block SBM with initial sampling parameter p0 = 0.01 
and block connectivity probability matrix B as in Eq.  (14). Figure  2 shows the Chernoff 
information ρ as in Eq.  (10) corresponding to B as in Eq.  (14), B0 as in Eq.  (13), B1 as in 
Eq. (15), and B̃1 as in Eq. (17) with dynamic network sampling parameter p1 ∈ (0, p∗1) where 
p∗1 is defined as in Assumption 2. In addition, Figure 2a assumes π = ( 14 ,

1
4 ,

1
4 ,

1
4 ) and Fig. 2b 

assumes π = ( 18 ,
1
8 ,

3
8 ,

3
8 ) . Note that for any p1 ∈ (0, p∗1) we have ρB > ρ

B̃1
> ρB1 > ρB0 

and thus B ≻ B̃1 ≻ B1 ≻ B0 . That is, in terms of Chernoff information, when given same 
amount of resources, the proposed Chernoff-optimal dynamic network sampling scheme 
can yield better block recovery results. In other words, to reach the same level of perfor-
mance, in terms of Chernoff information, the proposed Chernoff-optimal dynamic network 
sampling scheme needs less resources.

As described earlier, it may be the case that p∗1 < pmax
1  at which point Chernoff-active 

blocks change to (k∗1 , ℓ
∗
1) . This potential non-uniquess of the Chernoff argmin is a conse-

quence of our dynamic network sampling scheme. In the case of p1 > p∗1 , our Chernoff-
optimal dynamic network sampling scheme is adopted as

Similarly, the multiplier 1(
πk∗0

+πℓ∗0

)2 on p∗1B ◦ 1k∗0 ,ℓ∗0 assures that we sample the same num-

ber of potential edges with B̃∗
1 as we do with B1 in the baseline sampling scheme. In addi-

tion, to avoid over-sampling with respect to B , i.e., B̃∗
1[i, j] ≤ B[i, j] for any 

i, j ∈ {1, · · · ,K } , we require

For any p1 ∈ [p∗1, p
max
11 ] , we can have a better block recovery from B̃∗

1 than B1 , i.e., our 
Chernoff-optimal dynamic network sampling sheme is again better than the baseline 
sampling scheme in terms of block recovery.

(21)B̃∗
1 = B0 +

(
p1 − p∗1

)
B+

p∗1(
πk∗0

+ πℓ∗0

)2B ◦ 1k∗0 ,ℓ∗0 ,

(22)p1 ≤ pmax
11 = 1− p0 −

p∗1(
πk∗0

+ πℓ∗0

)2 + p∗1.

Fig. 2  Chernoff information ρ as in Eq. (10) corresponding to B as in Eq. (14), B0 as in Eq. (13), B1 as in Eq. (15), 
and B̃1 as in Eq. (17) with initial sampling parameter p0 = 0.01 and dynamic network sampling parameter 
p1 ∈ (0, p∗1) where p∗1 is defined as in Assumption 2
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As an illustration, consider a 4-block SBM with initial sampling parameter p0 = 0.01 
and block connectivity probability matrix B as in Eq. (14). Figure 3 shows the Cher-
noff information ρ as in Eq. (10) corresponding to B as in Eq. (14), B0 as in Eq. (13), B1 
as in Eq.  (15), and B̃∗

1 as in Eq.  (21) with dynamic network sampling parameter 
p1 ∈ [p∗1, p

max
11 ] where p∗1 is defined as in Assumption  2 and pmax

11  is defined as in 
Eq.  (22). In addition, Fig.  3a assumes π = ( 14 ,

1
4 ,

1
4 ,

1
4 ) and Fig.  3b assumes 

π = ( 18 ,
1
8 ,

3
8 ,

3
8 ) . Note that for any p1 ∈ [p∗1, p

max
11 ] we have ρB > ρ

B̃∗1
> ρB1 > ρB0 and 

thus B ≻ B̃∗
1 ≻ B1 ≻ B0 . That is, the adopted Chernoff-optimal dynamic network sam-

pling scheme can still yield better block recovery results, in terms of Chernoff infor-
mation, given the same amout of resources.

Now we illustrate how the proposed Chernoff-optimal dynamic network sampling 
sheme can be migrated for real applications. We summarize the uniform dynamic 
sampling scheme (baseline) as Algorithm 1 and our Chernoff-optimal dynamic net-
work sampling scheme as Algorithm  2. Recall given potential edge set E and initial 
sampling parameter p0 ∈ (0, 1) , we have the initial edge set E0 ⊂ E with |E0| = p0|E| . 
The goal is to dynamically sample new edges from the potential edge set so that we 
can have a better block recovery given limited resources.

Fig. 3  Chernoff information ρ as in Eq. (10) corresponding to B as in Eq. (14), B0 as in Eq. (13), B1 as in Eq. (15), 
and B̃∗1 as in Eq. (21) with initial sampling parameter p0 = 0.01 and dynamic network sampling parameter 
p1 ∈ [p∗1 , pmax

11 ] where p∗1 is defined as in Assumption 2 and pmax
11  is defined as in Eq. (22)
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Experiments
Simulations

In addition to Chernoff analysis, we also evalute our Chernoff-optimal dynamic 
network sampling sheme via simulations. In particular, consider the 4-block SBM 
parameterized by block connectivity probability matrix B as in Eq. (14) and dynamic 
network sampling parameter p1 ∈ (0, pmax

11 ] where pmax
11  is defined as in Eq. (22). We fix 

initial sampling parameter p0 = 0.01 . For each p1 ∈ (0, p∗1) where p∗1 is defined as in 
Assumption 2, we simulate 50 adjacency matrices with n = 12000 vertices from B1 as 
in Eq. (15) and B̃1 as in Eq. (17) respectively. For each p1 ∈ [p∗1, p

max
11 ] , we simulate 50 

adjacency matrices with n = 12000 vertices from B1 as in Eq. (15) and B̃∗
1 as in Eq. (21) 

respectively. In addition, Fig.  4a assumes π = ( 14 ,
1
4 ,

1
4 ,

1
4 ) , i.e., 3000 vertices in each 



Page 11 of 18Mu et al. Applied Network Science             (2023) 8:5 	

block, and Fig. 4b assumes π = ( 18 ,
1
8 ,

3
8 ,

3
8 ) , i.e., 1500 vertices in two of the blocks and 

4500 vertices in the other two blocks. We then apply ASE ◦ GMM (Step 3 and 4 in 
Algorithm 1) to recover block assignments and adopt adjusted Rand index (ARI) to 
measure the performance. Figure  4 shows ARI (mean±stderr) associated with B1 
for p1 ∈ (0, pmax

11 ] , B̃1 for p1 ∈ (0, p∗1) , and B̃∗
1 for p1 ∈ [p∗1, p

max
11 ] where the dashed lines 

denote p∗1 . Note that we can have a better block recovery from B̃1 and B̃∗
1 than B1 , 

which argee with our results from Chernoff analysis.
Now we compare the performance of Algorithms  1 and  2 by actual block recov-

ery results. In particular, we start with the 4-block SBM parameterized by block con-
nectivity probability matrix B as in Eq. (14). We consider dynamic network sampling 
parameter p1 ∈ (0, 1− p0) where p0 is the initial sampling parameter. For each p1 , we 
simulate 50 adjacency matrices with n = 4000 vertices and retrieve associated poten-
tial edge sets. We fix initial sampling parameter p0 = 0.15 and randomly sample ini-
tial edge sets. We then apply both algorithms to estimate the block assignments and 
adopt ARI to measure the performance. Figure 5 shows ARI (mean±stderr) of two 
algorithms for p1 ∈ (0, 0.85) where Fig.  5a assumes π = ( 14 ,

1
4 ,

1
4 ,

1
4 ) , i.e., 1000 verti-

ces in each block, and Fig. 5b assumes π = ( 18 ,
1
8 ,

3
8 ,

3
8 ) , i.e., 500 vertices in two of the 

blocks and 1500 vertices in the other two blocks. Note that both algorithms tend to 
have a better performance as p1 increases, i.e., as we sample more edges, and Algo-
rithm 2 can always recover more accurate block structure than Algorithm 1. That is, 
given the same amout of resources, the proposed Chernoff-optimal dynamic network 
sampling scheme can yield better block recovery results. In other words, to reach the 
same level of performance, in terms of the empirical clustering results, the proposed 
Chernoff-optimal dynamic network sampling scheme needs less resources.

Real data

We also evaluate the performance of Algorithms 1 and 2 for real application. We con-
duct real data experiments on a diffusion MRI connectome dataset (Priebe et al. 2019). 
There are 114 graphs (connectomes) estimated by the NDMG pipeline (Kiar et al. 2018) 
in this dataset. Each vertex in these graphs (the number of vertices n varies from 23728 
to 42022) has a {Left, Right} hemisphere label and a {Gray, White} tissue label. We con-
sider the potential 4 blocks as {LG, LW, RG, RW} where L and R denote the Left and 
Right hemisphere label, G and W denote the Gray and White tissue label. Here we 
consider initial sampling parameter p0 = 0.25 and dynamic network sampling param-
eter p1 = 0.25 . Let � = ARI(Algo2)− ARI(Algo1) where ARI(Algo1) and ARI(Algo2) 
denotes the ARI when we apply Algorithms 1 and 2 respectively. The following hypoth-
esis testing yields p-value=0.0184. Figure 6 shows algorithms’ comparative perfor-
mance via boxplot and histogram.

Furthermore, we test our algorithms on a Microsoft bing entity dataset (Agterberg 
et al. 2020). There are 2 graphs in this dataset where each has 13535 vertices. We treat 
block assignments estimated from the complete graph as ground truth. We consider 
initial sampling parameter p0 ∈ {0.2, 0.3} and dynamic network sampling parameter 

(23)H0 : median(�) ≤ 0 v.s. HA : median(�) > 0.
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p1 ∈ {0, 0.05, 0.1, 0.15, 0.2} . For each p1 , we sample 100 times and compare the overall 
performance of Algorithm 1 and 2. Figure 7 shows the results where ARI is reported as 
mean(±stderr).

We also conduct real data experiments with 2 social network datasets.

•	 LastFM asia social network data set (Leskovec and Krevl 2014; Rozemberczki and 
Sarkar 2020): Vertices (the number of vertices n = 7624 ) represent LastFM users 
from asian countries and edges (the number of edges e = 27806 ) represent mutual 
follower relationships. We treat 18 different location of users, which are derived 
from the country field for each user, as the potential block.

•	 Facebook large page-page network data set (Leskovec and Krevl 2014; Rozem-
berczki et  al. 2019): Vertices (the number of vertices n = 22470 ) represent offi-
cial Facebook pages and edges (the number of edges e = 171002 ) represent mutual 
likes. We treat 4 page types {Politician,  Governmental  Organization,  Televi-
sion Show, Company}, which are defined by Facebook, as the potential block.

Fig. 4  Simulations for 4-block SBM parameterized by block connectivity probability matrix B as in Eq. (14) 
with initial sampling parameter p0 = 0.01 and dynamic network sampling parameter p1 ∈ (0, pmax

11 ] where 
pmax
11  is defined as in Eq. (22). The dashed lines denote p∗1 which is defined as in Assumption 2

Fig. 5  Simulations for 4-block SBM parameterized by block connectivity probability matrix B as in Eq. (14) 
with initial sampling parameter p0 = 0.15 and dynamic network sampling parameter p1 ∈ (0, 0.85)
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We consider initial sampling parameter p0 ∈ {0.15, 0.35} and dynamic network sam-
pling parameter p1 ∈ {0.05, 0.1, 0.15, 0.2, 0.25} . For each p1 , we sample 100 times 
and compare the overall performance of Algorithm 1 and 2. Figure 8 shows the results 
where ARI is reported as mean(±stderr). Again it suggests that given the same 
amout of resources, the proposed Chernoff-optimal dynamic network sampling 
scheme can yield better block recovery results. In other words, to reach the same level 
of performance, in terms of the empirical clustering results, the proposed Chernoff-
optimal dynamic network sampling scheme needs less resources.

Discussion
We propose a dynamic network sampling scheme to optimize block recovery for SBM 
when we only have a limited budget to observe a partial graph. Theoretically, we provide 
justification of our proposed Chernoff-optimal dynamic sampling scheme via the Cher-
noff information. Practically, we evaluate the performance, in terms of block recovery 
(community detection), of our method on several real datasets including diffusion MRI 
connectome dataset, Microsoft bing entity graph transitions dataset and social network 
datasets. Both theoretically and practically results suggest that our method can identify 
vertices that have the most impact on block structure and only check whether there are 
edges between them to save significant resources but still recover the block structure.

As the Chernoff-optimal dynamic sampling scheme depends on the initial clustering 
results to identify Chernoff-active blocks and construct dynamic edge set. Thus the per-
formance could be impacted if the initial clustering is not very ideal. One of the future 
direction is to design certain strategy to reduce this dependency such that the proposed 
scheme is more robust.

Appendix

Proof of Theorem 2
Let B = USU⊤ be the spectral decomposition of B and B′ = pB with p ∈ (0, 1) . Then we 
have

Fig. 6  Algorithms’ comparative performance on diffusion MRI connectome data via ARI with initial sampling 
parameter p0 = 0.25 and dynamic network sampling parameter p1 = 0.25
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By Remark  1, to represent these two SBMs parametrized by two block connectivity 
matrices B and B′ respectively (with the same block assignment probability vector π ) in 
the GRDPG models, we can take

Then for any k ∈ {1, · · · ,K } , we have ν′k = √
pνk ∈ R

d . By Theorem 1, we have

(24)B′ = U′S
(
U′)⊤ where U′ =

√
pU.

(25)
ν =

[
ν1 · · · νK

]⊤ = U|S|1/2 ∈ R
K×d ,

ν′ =
[
ν′1 · · · ν′K

]⊤ = U′|S|1/2 =
√
pU|S|1/2 =

√
pν ∈ R

K×d .

(26)

� =
K∑

k=1

πkνkν
⊤
k ∈ R

d×d ,

�′ =
K∑

k=1

πkν
′
k

(
ν′k
)⊤ = p

K∑

k=1

πkνkν
⊤
k = p� ∈ R

d×d .

Fig. 7  Algorithms’ comparative performance on Microsoft bing entity data via ARI with different initial 
sampling parameter p0 and dynamic network sampling parameter p1

Fig. 8  Algorithms’ comparative performance on social network data via ARI with different initial sampling 
parameter p0 and dynamic network sampling parameter p1
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Note that B and B′ have the same eigenvalues, thus we have Id+d− = I′d+d− . See also 
Lemma 2 (Gallagher et al. 2019). Then for k ∈ {1, · · · ,K } , we have

where

Recall that by Remark  1, we have ν⊤k Id+d−νℓ = Bkℓ ∈ (0, 1) for all k , ℓ ∈ {1, · · · ,K } . 
Then we have Dk(p) is positive-definite for any k ∈ {1, . . . ,K } and p ∈ (0, 1) . For 
k , ℓ ∈ {1, . . . ,K } and t ∈ (0, 1) , let �kℓ(t) and �′

kℓ(t) denote the matrics as in Eq. (10) cor-
responding to B and B′ respectively, i.e.,

where

Recall that Dk(p) and Dℓ(p) are both positive-definite for any k , ℓ ∈ {1, . . . ,K } and 
p ∈ (0, 1) , thus Dkℓ(p, t) is also positive-definite for any k , ℓ ∈ {1, . . . ,K } andp, t ∈ (0, 1) . 
Now by the Sherman-Morrison-Woodbury formula (Horn and Johnson 2012), we have

(27)

�k = Id+d−�
−1

E

[(
ν⊤k Id+d−ν

)(
1− ν⊤k Id+d−ν

)
νν⊤

]
�−1Id+d−

= Id+d−�
−1

[
K∑

ℓ=1

πℓ

(
ν⊤k Id+d−νℓ

)(
1− ν⊤k Id+d−νℓ

)
νℓν

⊤
ℓ

]
�−1Id+d− ∈ R

d×d ,

[1em]�′
k =

1

p2
Id+d−�

−1

[
p2

K∑

ℓ=1

πℓ

(
ν⊤k Id+d−νℓ

)(
1− pν⊤k Id+d−νℓ

)
νℓν

⊤
ℓ

]
�−1Id+d−

= Id+d−�
−1

[
p

K∑

ℓ=1

πℓ

(
ν⊤k Id+d−νℓ

)(
1− ν⊤k Id+d−νℓ

)
νℓν

⊤
ℓ

]
�−1Id+d−

+ Id+d−�
−1

[
(1− p)

K∑

ℓ=1

πℓ

(
ν⊤k Id+d−νℓ

)
νℓν

⊤
ℓ

]
�−1Id+d−

= p�k + V⊤Dk(p)V ∈ R
d×d ,

(28)
V = ν�−1Id+d− ∈ R

K×d ,

Dk(p) = (1− p)diag
(
π1ν

⊤
k Id+d−ν1, · · · ,πK ν

⊤
k Id+d−νK

)
∈ (0, 1)K×K .

(29)

�kℓ(t) = t�k + (1− t)�ℓ ∈ R
d×d ,

[1em]�′
kℓ(t) = t�′

k + (1− t)�′
ℓ

= t
[
p�k + V⊤Dk(p)V

]
+ (1− t)

[
p�ℓ + V⊤Dℓ(p)V

]

= p[t�k + (1− t)�ℓ]+ V⊤[tDk(p)+ (1− t)Dℓ(p)]V

= p�kℓ(t)+ V⊤Dkℓ(p, t)V ∈ R
d×d ,

(30)Dkℓ(p, t) = tDk(p)+ (1− t)Dℓ(p) ∈ R
K×K
+ .
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where

Recall that for any k , ℓ ∈ {1, . . . ,K } and p, t ∈ (0, 1) , Dkℓ(p, t) and �kℓ(t) are both pos-
itive-definite, thus Mkℓ(p, t) is also positive-definite. Then for any k , ℓ ∈ {1, . . . ,K } and 
p, t ∈ (0, 1) , we have

where

Recall that for any k , ℓ ∈ {1, . . . ,K } and p, t ∈ (0, 1) , Mkℓ(p, t) is positive-definite, thus 
we have hkℓ(p, t) > 0 . Together with Eq. (33), we have

Thus for any k , ℓ ∈ {1, . . . ,K } , we have

Let ρB and ρB′ denote the Chernoff information obtained as in Eq.  (10) corresponding 
to B and B′ respectively (with the same block assignment probability vector π ). Then we 
have

(31)

[
�′

kℓ(t)
]−1 =

[
p�kℓ(t)+ V⊤Dkℓ(p, t)V

]−1

=
1

p
�−1

kℓ (t)−
1

p2
�−1

kℓ (t)V
⊤
[
D−1

kℓ (p, t)+
1

p
V�−1

kℓ (t)V
⊤
]−1

V�−1
kℓ (t)

=
1

p
�−1

kℓ (t)−
1

p2
�−1

kℓ (t)V
⊤M−1

kℓ (p, t)V�
−1
kℓ (t) ∈ R

d×d ,

(32)Mkℓ(p, t) = D−1
kℓ (p, t)+

1

p
V�−1

kℓ (t)V
⊤ ∈ R

K×K .

(33)

(ν′k − ν′ℓ)
⊤[�′

kℓ(t)
]−1

(ν′k − ν′ℓ) = p(νk − νℓ)
⊤

[
1

p
�−1

kℓ (t)−
1

p2
�−1

kℓ (t)V
⊤M−1

kℓ (p, t)V�
−1
kℓ (t)

]

(νk − νℓ)

= (νk − νℓ)
⊤�−1

kℓ (t)(νk − νℓ)

−
1

p
x⊤M−1

kℓ (p, t)x

= (νk − νℓ)
⊤�−1

kℓ (t)(νk − νℓ)− hkℓ(p, t),

(34)
x = V�−1

kℓ (t)(νk − νℓ) ∈ R
K ,

hkℓ(p, t) =
1

p
x⊤M−1

kℓ (p, t)x.

(35)t(1− t)(νk − νℓ)
⊤�−1

kℓ (t)(νk − νℓ) > t(1− t)(ν′k − ν′ℓ)
⊤[�′

kℓ(t)
]−1

(ν′k − ν′ℓ).

(36)

Ck ,ℓ(B,π) = sup
t∈(0,1)

[
t(1− t)(νk − νℓ)

⊤�−1
kℓ (t)(νk − νℓ)

]
,

> sup
t∈(0,1)

[
t(1− t)(ν′k − ν′ℓ)

⊤[�′
kℓ(t)

]−1
(ν′k − ν′ℓ)

]

= Ck ,ℓ(B
′,π).
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Thus we have B ≻ B′ = pB for p ∈ (0, 1) . �

Proof of Corollary 1
By Eq. (13) and Eq. (15), we have

Recall that p0 ∈ (0, 1) and p1 ∈ (0, 1− p0) . Then by Theorem 2, we have B ≻ B1 ≻ B0 . �
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