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Introduction
While access to COVID-19 vaccines is still lacking in many parts of the world, vaccine 
distribution is well underway in many middle- to high-income countries [1]. Given that 
vaccine supplies were initially limited, vaccine prioritization strategies were created to 
maximize health benefits and mitigate health inequities [2, 3]. These strategies com-
monly include giving vaccine priority to health care workers and the elderly. As barriers 
to access started to ease and vaccines were approved for younger age groups, vaccine 
prioritization strategies have been relaxed. However, even with a majority of the popula-
tion in the United States eligible for vaccines, there are significant challenges to over-
come before the population reaches herd immunity. For example, the uptick in cases 
associated with the Delta and Omicron variants illustrates remaining risks where vacci-
nation rates are low [4]. In the absence of herd immunity, it is important to maximize the 
impact of vaccination. Furthermore, uncertainty in the strength and duration of immu-
nity, especially in light of recent variants, highlights the importance of developing prior-
itization strategies for future vaccination.
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Vaccine prioritization strategies have been the subject of numerous recent research 
studies, many of which use analysis based on susceptible-exposed-infected-recovered 
(SEIR) models. The modeling analysis conducted by Bubar et al. [5] used an age stratified 
model with variable contact rates, along with variability in vaccine efficacy, susceptibil-
ity, seropositive status, and speed and timing of vaccine rollout to track cumulative inci-
dence, mortality, and years of life lost. They concluded that vaccination of older adults 
is near optimal considering plausible vaccine characteristics. Ferranna et  al. [6] also 
used an age stratified model to study vaccine prioritization. The study includes vaccine 
allocation based on age and essential workers and tracks avoided deaths, avoided infec-
tions, and life years gained. They also conclude that prioritizing older adults has the best 
outcomes, and high equity weights are required to prioritize essential workers over the 
elderly. Tetteh et al. [7] used random graphs to model the impact of mass vaccination 
as compared to ring vaccination, which targets individuals in contact with confirmed 
cases and was instrumental in the elimination of Smallpox [8]. The analysis concluded 
that ring vaccination could be effective at lowering the total number of infections, but 
requires rigorous contact tracing. Antonopoulos et  al. [9] use network models based 
on random, small-world, and scale-free structure to study interconnected communi-
ties with different levels of vaccination and find detrimental effects from non-vaccinated 
communities on vaccinated communities. Yang et al. [10] used network models based 
on survey data from several communities in India to study the impact of vaccination 
strategies. This work used sampling methods that reveal various amounts of information 
on the true network structure given that network metrics such as highest-degree and 
centrality are rarely known in actual populations. Results show that prioritization strate-
gies can improve epidemic outcomes even when networks are only partially observed. 
Chapman et al. [11] study the impact of vaccine prioritization strategies across Califor-
nia using multiple risk factors based on age, location, occupation and other classifica-
tion. Results show that the use of multiple risk factor can improve prioritization and that 
results vary by county.

This paper builds on previous work to create a modeling framework that compares the 
impact of vaccination and non-pharmaceutical interventions using networks that rep-
resent specific communities at the county scale. The network representations of each 
community includes heterogeneous structure with respect to age, household size, and 
contact intensity between individuals. While community transmission is governed by 
additional factors, such as contact between people at places of business, the network 
generation methods used here provide a way to generate networks from readily avail-
able data. The network representation is coupled with an SEIR based epidemiological 
model that includes vaccination and non-pharmaceutical interventions [12]. Two-dose 
vaccines are modeled with two levels of efficacy and a three-week delay between doses. 
This coupling of network and epidemiological model facilitates a detailed representation 
of how members of different age groups interact and have different disease risk factors. 
For example, older individuals are more susceptible to serious disease outcomes but gen-
erally have lower level of contacts with other members of the community. This modeling 
framework is used to compare vaccine prioritization strategies, including random mass 
vaccination, and vaccination prioritized by age, number of contacts, household size, and 
contact with known cases (i.e. ring vaccination).
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The objective of this paper is to explore the impact of vaccine prioritization strategies 
using networks that represent different demographics and connectivity and compare 
those outcomes to non-medical intervention. Several factors influencing disease pro-
gression are taken into account, including willingness to be vaccinated, the use of masks, 
and contact between and within age groups with different levels of social vulnerability. 
Sensitivity analyses are used to discover the effects of these uncertain factors on pri-
oritization objectives. Understanding these impacts is especially important for decision 
makers when managing new COVID-19 variants and planning for future booster shots 
or mass vaccinations in different communities. The paper is organized as follows: Sec-
tion 2 includes a description of the community networks, disease transmission model, 
and sensitivity analysis, Section 3 includes simulation results and sensitivity indices, and 
Section 4 presents a discussion of the findings.

Methods
The following section describes the community network models and disease transmis-
sion model used in this analysis along with parameters and metrics included in a global 
sensitivity analysis.

Community networks

Disease spread depends on the way in which members of a community interact. Dif-
ferent interaction patterns may lead to differences in a community’s response to vac-
cination strategies. For this reason, four communities of interest were identified for 
this analysis using census and health data at the county level based on several factors, 
including Social Vulnerability Index (SVI), age distribution, household size distribution, 
and population. SVI is a measure of potential negative effects on communities caused 
by stressors such as natural disasters and disease outbreaks, based on 15 social factors, 
including poverty, transportation, and housing. The data was obtained from the Cent-
ers for Disease Control and Prevention (CDC) [13]. Age, household size, and population 
data was obtained from U.S. census data through SafeGraph [14].

Communities with high SVI, high average age, high average household size, and high 
population were selected for the analysis. The communities of interest have the follow-
ing characteristics: 1) high SVI, based on data from Duval County, Texas, 2) high average 
age, based on data from Sumter County, Florida, 3) high average household size, based 
on data from Oglala Lakota County, South Dakota, and 4) high population, based on 
data from Los Angeles, California. Table 1 includes the SVI, average age, average house-
hold size, and population for all four communities. Throughout this paper, communities 
are listed in the order shown in Table 1, which reflects the level of connectivity and clus-
tering in each network as described later in the paper.

Networks for each community were generated using a two step process that inte-
grates the FARZ network generation algorithm [15] with additional household clus-
ters. Methods to generate the community networks are available in the seirsplus 
Python package [16]. Similar methods have been used to build community networks 
that represent interactions at school to study the impact of school reopening during 
COVID-19 [17]. In this application, the network structure is controlled by the popu-
lation’s age distribution, household size distribution, and contact within and between 
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age groups. Network nodes represent individuals in the community and the network 
links represent contacts between individuals. Contact networks can also be generated 
from other data sources, including contact tracing [18], statistical methods [19, 20] 
and mobility data [21, 22].

The process used to build community networks is illustrated in Fig. 1 and described 
below. Community networks were generated by first creating separate networks using 
the FARZ network generation algorithm for people in different age brackets, as shown 
in Fig. 1a. The FARZ algorithm expands the network one node at a time, using a prob-
ability of community assignment proportional to the current community size. The 
connectivity of these networks is defined by several parameters, including the num-
ber of people in each age bracket and the average number of people an individual 
comes into contact with (the average node degree). The resulting networks have a 
heavy tailed node degree and community size distribution noted in real communities. 
The following input parameters are used to generate the FARZ networks (with nota-
tion from [15]): 1) the number of people in the age bracket (n), 2) the average num-
ber of connections between individuals (2*m), defined as the average node degree 
for the age bracket minus the average household size, and 3) the number of commu-
nities (k), defined as 1 community for every 50 people. Additional parameters and 
default values (from [16]) include a clustering parameter ( α = 2), assortative param-
eter ( γ = −0.6), the probability of membership within a community ( β = 0.6), and the 

Table 1  Communities based on U.S. counties having high SVI, high average age, high average 
household size, or high population (criteria for selection shown in bold)

Community County, state Average age (yr) Population 
(people)

SVI (unitless) Average 
household size 
(people)

High age Sumter, FL 58.557 113,589 0.236 1.894

High population Los Angeles, CA 37.400 10,057,155 0.768 2.754

High SVI Duval, TX 38.616 11,510 0.999 2.746

High household 
size

Oglala Lakota, SD 29.299 14,263 0.994 3.863

Fig. 1  Illustration of the network generation process, including a FARZ network for each age bracket, b 
household clusters, and c the combined network. Gray nodes represent people, green and blue edges 
indicate connectivity between people. Age bracket 1 has 8 people with an average node degree of 5, age 
bracket 2 has 6 people with an average node degree of 4, age bracket 3 has 4 people with an average node 
degree of 3. There are 7 households, with an average household size of 2.6 (2 households contain 1 person)
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maximum number of communities each person belongs to (r= 1). The communities 
have a power law size distribution ( φ = 1). These input parameters could be adjusted 
if desired.

The individual networks are then linked together to account for people that live within 
the same household (and often span multiple age brackets), as shown in Fig. 1b. House-
hold clusters are created based on the following information: 1) household size distri-
bution and 2) household age characteristics which includes the percent of households 
that have at least one person under 20, the percent of households that have at least one 
person over 60, the percent of households that include at least one person under 20 
and over 60, the percent of households that are single-occupant with a person over 60, 
and the average number of children per household. These statistics are used to assign 
individuals to households. Additional edges are then added to the network to con-
nect individuals from the same household. Members within the same household form 
fully connected groups, while retaining connectivity to the FARZ network for their age 
bracket, as shown in Fig. 1c. An iterative approach is used to create a network that meets 
target statistics within an error tolerance.

Note that the network generation methods do not account for interactions between 
people in different age groups outside households. For this reason, in the disease trans-
mission model described below, only 90% of transmission is governed by the network 
structure (meaning that exposure is directly related to a neighboring node being able 
to transmit the disease). The remaining 10% of transmission occurs randomly, driven 
by the total number of nodes able to transmit the disease. Future research could adjust 
this threshold or add additional transmission pathways to reflect structured interactions 
outside the home.

Community networks were generated for this analysis using the age distribution, 
household size distribution, and social contact characteristics for each community as 

Fig. 2  Distribution of parameters used to define community networks including a age b household size and 
c contacts per day
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shown in Fig. 2. Age and household size distributions for each community were obtained 
from census data provided by SafeGraph [14]. The data provides a distribution of ages in 
10 year increments and groups people into households of 1 person through 7 or more 
people. The network generation methods also use household age characteristics which 
are obtained from census data for each county. This includes the percent of households 
that have at least one person under 20, percent of households that have at least one per-
son over 60, percent of households that include at least one person under 20 and over 60, 
percent of households that are single-occupant with a person over 60, and the average 
number of children per household.

Social contacts within age groups were based on a 2008 study by Mossong et  al. 
[23]. The social contacts data has an average of 13 contacts per day. Given how sharply 
COVID-19 cut social interactions, the values were reduced by 50% in each age group 
and then further modified to reflect the percent of the population staying at home in 
each community. The fraction of each population staying at home was obtained from 
SafeGraph based on mobility data from September 13, 2020 [24]. Because this date is not 
associated with peak case loads, it is assumed to be representative of contact patterns 
during the pandemic over a sustained period of time. Note that Oglala Lakota County 
was not included in the SafeGraph database for this metric and an average value from 
surrounding counties was used for that community.

While many factors determine one’s ability to stay at home, SVI is a large contribut-
ing factor [25]. In this analysis, communities with high SVI (Duval County and Oglala 
Lakota County) have a relatively low fraction of the population staying home, while 
communities with low to moderate SVI (Sumter County and Los Angeles County) have 
more people staying at home. Therefore, a simple “contact modifier” was developed to 
include the influence of SVI on contact intensity in the network construction. The con-
tact modifier was computed for each community based on an assumed 50% decrease 
in contacts and a “difference from baseline” using the fraction of people staying home. 
Duval County, having the highest SVI, was used as the baseline in this analysis and has 
an assumed contact modifier of 0.5. The contact modifiers for the other three counties 
were based on their staying home data compared to Duval County. For example, Los 
Angeles County has 36.5% of the population staying at home while Duval County has 
27.3% of the population staying at home. The difference from baseline for Los Angeles 
County is computed as (0.365 - 0.273)/0.273 = 0.34 and the contact modifier is com-
puted as 0.5*(1-0.34) = 0.33. The contact modifier is used to reduce the number of con-
tacts each day within each age group (as shown in Fig. 2c). Table 2 includes the fraction 

Table 2  Contact modifier for each community based on the fraction of each population staying at 
home

Community County, state Staying home 
(fraction)

Difference from 
baseline (unitless)

Contact 
modifier 
(unitless)

High age Sumter, FL 0.333 0.22 0.39

High population Los Angeles, CA 0.365 0.34 0.33

High SVI Duval, TX 0.273 0 0.50

High household size Oglala Lakota, SD 0.254 −0.07 0.53
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of people staying home, a difference from baseline, and the contact modifier for each 
community. More research is needed to define contact intensity in different communi-
ties based on demographics and other factors.

It is important to note that all networks are constructed using 5000 nodes even though 
the total populations in the four communities differ. The disease transmission model 
uses a representative subset of each community. For example, the High Population com-
munity is a representative sample of 5000 individuals based on the age, household, and 
contact distributions for that community. For each community, multiple realizations 
of their contact network are generated using a unique seed, which is used to populate 
the household clusters, age of people within each household, and therefore the contact 
potential between individuals.

Once constructed, the networks store several node attributes, including the number 
of contacts, age, household size, vaccine status, and disease state of each representative 
person. These attributes are used to model different vaccine strategies as described in 
the next section. Two topographic metrics are used to illustrate key differences between 
community structures that are a result of the network parameterization: average node 
degree and clustering coefficient. Node degree is defined as the number of neighbor-
ing nodes for each node and represents the number of individuals potentially involved 
in disease transmission. The clustering coefficient is a measure of the degree to which 
nodes tend to cluster using the number of connections between neighboring nodes. 
The node degree and clustering coefficient distribution from a single realization of each 
network is shown in Fig. 3. Additional realizations show similar distributions. Note that 
the High Age community has the lowest median node degree and clustering coefficient. 
High Population and High SVI have moderate median node degree and clustering. The 
High Household Size community has the highest median degree and clustering. Based 
on these topographic metrics, the High Age community is described as the most isolated 
while the High Household Size community is described as the most connected.

For illustrative purposes, smaller example networks with 1000 nodes are shown in 
Fig.  4 to illustrate differences in age distribution, clustering, and connectivity using a 
High Age and High Household Size community. The node positions are generated using 
a spring layout to avoid overlap and cluster nodes that are in the same household. Node 
locations are only used for visualization and are not a factor in the disease transmission 
model.

Fig. 3  Empirical cumulative distribution for a node degree and b clustering coefficient from a single 
realization of each community
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Disease transmission model

To study the impact of vaccine prioritization strategies using the community networks 
described above, disease transmission is simulated using each network. The Adaptive 
Recovery Model developed at Sandia National Laboratories [12] was used to simulate 
disease transmission with various vaccination strategies. This model builds on the soft-
ware developed by McGee [16], which integrates network structure into a stochastic 
compartment model. The model includes compartments that represent susceptible (S), 
exposed (E), asymptotic (A), infectious (I), hospitalized (H) recovered (R), and dead (D) 
states. The transmission paths between states are shown in Fig. 5. While additional mod-
eling options have been included to model the impact of quarantine, contact tracing, and 
surveillance sampling, those options are not used in this analysis.

The disease transmission parameters used in this analysis are shown in Table 3. Tran-
sition times between disease states are based on CDC planning scenarios which define 
some parameters as a function of age [26]. Age dependent disease progression is an 
important factor in the study of vaccine strategies, as older individuals have a higher 
chance of hospitalization and death and therefore benefit from the vaccine more. Note 
that the time from R state to S state is set to 100 years ( TR in Table 3). This means that 
individuals are rarely reinfected. In reality, this is not true. However, this focuses the 
analysis on the use of vaccines to reduce first infections. The impact of vaccine strategies 
on subsequent infections could be included in future analysis.

The community networks are initialized with 0.56% of the population in the I state, 
0.02% of the population in the H state, and 6.07% of the population in the R state. These 
values were derived from data obtained from a COVID-19 tracking dashboard in 2021 
for Bernalillo County in New Mexico. Using the cumulative cases, hospitalizations, and 

Fig. 4  Example community network realization colored by node age for a High Age community, and b High 
Household Size community

Fig. 5  Disease transmission model states and pathways
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recovery counts a relative seroprevalence was estimated to initialize the analysis. Each 
scenario is simulated for 365 days, or until there is no longer disease within the com-
munity. It is important to keep in mind that the disease transmission model has not 
been calibrated to the communities of interest. Rather, the disease transmission param-
eters and differences in community structure provide a basis for comparing the relative 
impact of disease control strategies.

To model the impact of vaccine strategies, individual vaccine status (unvaccinated, 
partially vaccinated, fully vaccinated) is tracked per network node, where each node rep-
resents an individual. A two dose vaccine is modeled in this analysis. The time between 
doses is set to 3 weeks. The vaccine efficacy is based on the Pfizer vaccine clinical trials 
(0.82 after the first dose and 0.94 after the second dose) [27]. Vaccination reduces infec-
tiousness by increasing the likelihood that an individual remains asymptomatic (A state). 
This is nominally set to 0.3 ( fA in Table 3). Vaccines are distributed based on the avail-
able stock, queue of eligible people, and a prioritization strategy.

Vaccine availability is defined as the percent of the population that could be vaccinated 
each week, based on available stock. For this analysis, it is assumed that vaccine availa-
bility is held constant over the simulation time frame. For example, a peak of 3.38 million 
doses per day were administered in the U.S. on April 13, 2020 [28]. If this peak rate was 
sustained, that is equivalent to a vaccine availability of 7.2% of the population each week.

Individuals are vaccine eligible if they are in the S, E, A, or R state. As such, a queue 
of eligible people changes over time, as a function of disease transmission and vaccine 
status. Therefore, it is possible for someone to receive a first does and then become 
ineligible for a second dose if the individual becomes symptomatic (I state) within the 
three weeks between doses. In situations where resources are limited (the length of the 
queue is greater than the available vaccine doses for a particular day), only the highest-
weighted individuals are selected for vaccination. Those that require a second dose are 

Table 3  Disease transmission parameters with age dependent values based on [26]

Parameter Value

Transmission probability, β 0.08

Fraction that remain asymptomatic, fA 0.3

Fraction that are hospitalized, fH 0.04

Fraction that recovers, fR Age < 18: 0.9999

18 >= Age < 50: 0.9995

50 >= Age < 65: 0.9940

Age >= 65: 0.9100

Time from exposed to asymptomatic, TE 4 days

Time from asymptomatic to infected, TA 6 days

Time from infected to hospital, TI Age < 18: 2 days

18 >= Age < 50: 6 days

50 >= Age < 65: 6 days

Age >= 65: 4 days

Time spent in the hospital, TH Age < 18: 3.5 days

18 >= Age < 50: 6.5 days

50 >= Age < 65: 9 days

Age >= 65: 9 days

Time from recovered to susceptible, TR 36500 days
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moved to the top of the queue. Additionally, children under 5 were not eligible for vac-
cination in the U.S until very recently. Given that the closest age bin in this analysis is 10, 
anyone under 10 is included as ineligible in this analysis. As mentioned earlier, the time 
spent in R is very large in this analysis, and therefore very few people transition back into 
the S state. In that way, vaccines given to people in the R state have very little impact on 
disease control.

People that are not willing to be vaccinated are removed from the vaccine queue. The 
fraction of the population willing to receive a vaccine has changed over the course of the 
pandemic. As of February 2022, 65% of the U.S. population was fully vaccinated [28]. 
Future research could include vaccine willingness that is a function of age, other demo-
graphics, or disease incidence in the population.

Position in the queue is determined by different factors according to a vaccine strategy. 
In this analysis, factors include age, household size, node degree, and disease state of 
neighboring nodes (for ring vaccination). Age vaccination sorts the queue based on age, 
from oldest to youngest. Household size vaccination sorts the queue based on house-
hold size, from large households to small households. Node degree vaccination sorts the 
queue based on the number of contacts a person has per day, from largest to smallest. 
Based on the way the network is generated, the number of contacts a person has per day 
is the node degree. Ring vaccination gives priority to people that are connected to some-
one that became symptomatic (transitioned into the I state). The list of people associated 
with this “ring” is updated every time step. This assumes the time associated with con-
tact tracing is very small. Random vaccination, with no prioritization, is also included 
in the study. While information on age and household size is easy to obtain within a 
population, the number of contacts and the disease state of contacts is less observable. 
Community-aware centrality measures have also been studied as a way to prioritize 
immunization to reduce the size of disease outbreaks [29–31]. While centrality is also 
hard to observe in communities, the framework presented here could be extended to 
study the impact of vaccine prioritization based on centrality. Additional vaccine strat-
egies, such as occupation and heath status could also be tested within this modeling 
framework, but would require additional data that is not currently included in this study.

To include the influence of non-pharmaceutical control measures, the use of personal 
protective equipment in the form of masks is included in the analysis. Masks can offer a 
wide range of protection, depending largely on the material and how the mask is worn. 
In this analysis, mask effectiveness is defined as the product of the probability that an 
individual wears a mask and the protection that the mask offers. For example, if an indi-
vidual wears a mask 25% of the time and the mask reduces transmission by 50%, then the 
mask effectiveness is 0.125. In the disease transmission model, mask effectiveness is used 
to modify the transmission probability such that β = β ∗ (1−m) where β̃  is the modi-
fied transmission probability, β is the original transmission probability (set to 0.08 in this 
analysis) and m is the mask effectiveness. Masks are assumed to only be used outside of 
households. Therefore, transmission probability is only modified when people interact 
with members of different households, as defined by the network structure. While addi-
tional non-pharmaceutical control measures could be included in the analysis, including 
quarantine and contact tracing, the use of these control measures has declined in most 
communities.
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Global sensitivity analysis

Global sensitivity analysis (GSA) apportions the influence that model parameter uncer-
tainties have on the uncertainty of model output [32]. In this analysis, GSA is used to 
evaluate the influence that vaccine willingness and mask effectiveness have on disease 
outcomes across the four distinct communities (High Age, High Population, High SVI, 
High Household Size) and five distinct vaccine strategies (Random, Age, Node degree, 
Household Size, and Ring). Table 4 summarizes the input variables utilized in the sensi-
tivity analysis.

The fraction of the population willing to be vaccinated is defined using a uniform dis-
tribution over the interval [0.1, 0.9]. This assumes that at least 10% of the population is 
willing and at least 10% is not willing. Mask effectiveness is defined using a uniform dis-
tribution over the interval [0, 0.8]. The lower bound reflects a case where masks are no 
longer in use. The upper bound defines a high quality mask worn correctly most of the 
time. The random seed controls the network structure, as described above, along with 
the initialized state of each person and the stochastic process of selecting transitions 
between states. Ten random seeds were used in this analysis. Additional parameters that 
control vaccine administration were held constant. This includes vaccine availability and 
vaccine efficacy. Vaccine availability maintains a vaccine supply that cover 5% of popula-
tion each week. To account for real-world conditions, vaccine efficacy from clinical trials 
was reduced by 20%. As such, the first vaccine dose provides an efficacy of 66% and the 
second dose provides an efficacy of 75%.

Several quantities of interest were derived from the simulation results to evaluate the 
impact of vaccination on the population. This includes peak hospitalization, cumula-
tive disease related deaths, and years of life lost (YLL). Peak hospitalization is defined 
as max(H(t)) for t ∈ [t0, tf ] where t0 is the start of the simulation at day 0 and tf  is the 
end of the simulation at 365 days (or until there is no longer disease within the com-
munity). Cumulative deaths is D(tf ) (total deaths at the end of the simulation). YLL uses 
the expectation of life at a specific age from the World Health Organization [33]. YLL is 
computed as YLL =

∑
n Dn(tf ) ∗ E[Xn] where n is an age bin, Dn(tf ) are the cumulative 

deaths in that age bin, and E[Xn] is the expectation of life for that age.
Stochastic models of chaotic systems requires careful consideration for numeri-

cally deriving the sensitivity indices of variance-based decompositions methods such 
as Sobol’ indices [34]. Classical GSA is theoretically grounded analysis when variability 

Table 4  Variables used in the global sensitivity analysis

Variable Type Values

Community Categorical High Age, High 
Population, High 
SVI, High House-
hold Size

Vaccine prioritization Categorical Random, Age, 
Node degree, 
Household size, 
Ring

Vaccine willing Continuous Uniform[0.1, 0.9]

Mask effectiveness Continuous Uniform[0, 0.8]

Random seed Discrete [0, 9] ∩ N  
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inherent to model input is governed by continuous random variables. In the event that 
the source of uncertainty is derived from discrete random variables it is still plausible to 
design a GSA [35, 36], but not advisable when the discrete random variable is inherent 
to the instantiation of stochastic network topologies. To obtain numerical stability with 
regards to GSA of stochastic models, Hart et al. [34] have shown that partitioning the 
influence of uncertainty inherent to the randomized algorithm from parameter uncer-
tainty is essential. Therefore a full GSA is run for each random seed, resulting in vari-
ability of results for the Sobol’ indices. Additionally, the four distinct communities and 
the five different vaccination strategies represent additional discrete random variables 
of interest. It is important to make the clarification that these random variables have 
categorical random variates that do not have a measurable relationship on their space of 
realizations, resulting in even another layer of complexity to the GSA. Thus, the variabil-
ity of GSA results is extended beyond the random initialization of the network to also 
consider the whole combinatorial space defined by 10 random seeds, 4 communities, 
and the 5 vaccine prioritization strategies.

To support efficient numerically approximation for Sobol’ indices, Saltelli sampling 
[37] was implemented using the Python package SALib [38]. The Saltelli sample was 
derived from the continuous input variables in Table  4, vaccine willingness and mask 
effectiveness. To explore first-order and second-order sensitivity, the recommended 
N ∗ (2 ∗ D + 2) sample vectors was collected, where N is the number of unique values 
for each input variable (generally a power of 2) and D is number of input variables. In 
this analysis, D is 2 and N was set to 28 , resulting in a total of 1,536 samples drawn from 
uniform distributions for each variable. The Saltelli sample is then reused for each com-
bination of categorical and discrete variables: 5 communities, 4 vaccine strategies, and 
10 random seeds. This results in 200 ∗ 1, 536 = 307, 200 simulations of the stochastic 
network model.

Since the goal of this analysis is to understand the effects that variability in vaccine 
willingness and mask effectiveness has on peak hospitalization, cumulative deaths, and 
YLL, the variability of network topology was restricted to 10 random seeds for each of 
the 20 combinations of communities and vaccine strategies. For proper treatment of 
the uncertainty of the Sobol’ indices, orders of magnitude more random variates are 
required to statistically represent the uncertainty inherent to the network topologies. 
As a qualification check on the results, 10 different seeds were run while the rest of the 
experimental design was held constant. The results of the qualification check were con-
sistent with the original analysis provided in the following section.

Results
The modeling framework described above provides a basis to study the influence of 
vaccine prioritization strategies on communities that have different demographics and 
connectivity. In this analysis, the vaccine prioritization strategies include vaccines prior-
itized by age, node degree, household size, and ring vaccination. The study also includes 
cases where people who are willing and eligible are vaccinated at random. Masking is 
included as a non-pharmaceutical control measure. The following section describes 
results from the analysis.
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Figure 6 shows the distribution of deaths and peak hospitalization for each commu-
nity. Each distribution takes into account variability in vaccine strategy, vaccine willing-
ness, mask effectiveness, and the random seed. As shown in the appendix, YLL is very 
similar to deaths given that most deaths occur within populations above 65 years of age. 
For that reason, this paper focus on deaths and peak hospitalization.

As expected, significant differences in deaths and peak hospitalization are seen across 
communities. The rate at which disease is transmitted within each community is a large 
contributing factor, as shown in Fig.  7. Peak hospitalizations are generally higher and 
occur earlier in the High SVI and High Household Size communities. These commu-
nities have relatively high node degree and clustering and relatively high number of 
contacts per day among older people. Note that the timing of peak hospitalization (at 
approximately 40 days) is roughly two and a half weeks after members of the population 
could become fully vaccinated (21 days). This means that even if vaccines are distributed 
as quickly as possible, vaccination will have limited impact on peak hospitalization in 
these highly connected communities. On the other hand, deaths are highest in the more 
isolated High Age communities. These communities have lower node degree and clus-
tering, along with a high mortality risk. The SVI communities also have relatively high 
deaths. These communities have relatively high age and high number of contacts per day 
among older populations. It is important to recognize that all communities include cases 
where disease transmission resulted in very low deaths and peak hospitalizations. This 

Fig. 6  Empirical cumulative distribution of a deaths and b peak hospitalization for each community

Fig. 7  Fraction of the population exposed as a function of time. Plot includes the median (line) and standard 
deviation (shaded region) for each community from the full set of simulations
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can occurs when mask effectiveness is very high, vaccine willingness is very high, or the 
initialized case load is in places where network connectivity, and therefore initial disease 
transmission, is very low.

Sensitivity indices

Using GSA, variability in the model output is decomposed into fractions that are attrib-
uted to each model input variable. The model output variance is quantified using deaths 
and peak hospitalization and model input variables include vaccine willingness and 
mask effectiveness. This process is repeated for each of the 200 combinations of com-
munity, vaccine prioritization strategy, and random seed. For each metric (deaths and 
peak hospitalization), this results in 200 values for first-order sensitivity (or main effects) 
for each input variable and 200 values for second-order sensitivity for each combination 
of input variables. While the same analysis was carried out for each metric, the figures 
and discussion below focus on cumulative deaths. Results from the sensitivity analysis 
using peak hospitalization are shown in the appendix. Results using peak hospitalization 
reveals that mask effectiveness is highly influential across all communities and vaccine 
prioritization strategies. As mentioned earlier, disease exposure peaks a few weeks after 
people can become fully vaccinated. As such, vaccine willingness has a lesser impact on 
peak hospitalization.

Figure 8 shows the distribution of first-order sensitivity on deaths. The results are 
grouped by community and vaccine prioritization strategy. Each bar includes vari-
ability associated with the random seed. The analysis indicates that sensitivity of mask 
effectiveness on deaths decreases as communities are more connected (Fig. 8a). While 
the High Age community is very sensitive to mask effectiveness, the High House-
hold Size community is not. Since it is assumed that people do not wear masks inside 
households, masking is a less effective control measure in these communities. This 
trend is especially pronounced when age vaccination is used. When older individu-
als are vaccinated first in highly connected communities, deaths are less sensitive to 
masking. In general, vaccine willingness has a lesser impact on deaths (Fig. 8b). Espe-
cially in more isolated High Age communities, deaths are not very sensitive to vaccine 
willingness where the immediate effect of masking can be more impactful. However, 
communities that are more connected are sensitive to vaccine willingness when using 
age prioritization. In these cases, deaths are more sensitive to vaccine willingness as 

Fig. 8  Distribution of first-order sensitivity for a mass effectiveness and b vaccine willingness on deaths. 
Results are grouped by community and vaccine prioritization. Each box includes the 25th, 50th and 75th 
percentile for the model output, with whiskers that extend to 1.5 times the interquartile range
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long as older individuals are vaccinated first. This can impact disease related out-
comes on the rest of the highly connected community.

Figure  9 shows the distribution of second-order sensitivity on deaths. Results 
indicate increasing second-order effects for communities that are more connected. 
Within highly connected communities, the combined influence of masking and vac-
cination is required to control deaths, especially when vaccine strategies other than 
age prioritization are used. In contrast, second-order sensitivity are small in the more 
isolated High Age population, where most of the sensitivity is explained by mask 
effectiveness.

In this analysis, the random seed accounts for network structure and initialization. 
The stochastic nature of this process results in more variability when communities 
are highly connected. When networks are heterogeneous, the nature of interactions 
within and between clusters and knowing disease state are critical aspects to con-
trol transmission. When networks are more uniform and isolated, understanding the 
exact nature of these interactions becomes less important.

Scenario analysis

To further investigate the influence of vaccine strategies and masking on disease out-
comes, the following analysis looks at two scenarios to identify trends. The scenario 
analysis compliments the GSA by illustrating how changes in mask effectiveness and 
vaccine willingness can drive down deaths and peak hospitalizations. The scenarios 
isolate conditions in which vaccine strategies could have an impact on disease out-
comes. Each scenario is defined using subsets of model input variables, as defined 
below:

•	 Scenario 1: Vaccine willingness is moderately high (between 0.6 and 0.8), mask effec-
tiveness varies from low to high (between 0 and 0.8).

Fig. 9  Distribution of second-order sensitivity on deaths. Results are grouped by community and vaccine 
prioritization. Each box includes the 25th, 50th and 75th percentile for the model output, with whiskers that 
extend to 1.5 times the interquartile range
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•	 Scenario 2: Mask effectiveness is low (between 0 and 0.2), vaccine willingness varies 
from low to high (between 0.1 and 0.9).

To illustrate trends and uncertainty, the simulation results from each scenario are 
grouped into 10 equally spaced bins with respect to mask effectiveness for Scenario 1 
and vaccine willingness for Scenario 2. For each community, vaccine prioritization strat-
egy, and metric (deaths and peak hospitalization) the average and standard deviation is 
computed and used to visualize results. While the trends could be explored using linear 
or higher order regression, the binned approach captures important non-linearity in the 
simulation results.

Results from Scenario 1 are shown in Fig. 10. Figure 10a uses deaths and Fig. 10b uses 
peak hospitalization. There is one subplot per community and each subplot includes 
results from all 5 vaccine strategies. The results show that a high level of mask effective-
ness can drive down deaths and peak hospitalization to very low levels. However high 
level of mask use is rarely sustained in practice. As mask effectiveness decreases, select-
ing a specific vaccine prioritization strategy can provide significant benefit. This is most 
pronounced in the High Population, High SVI, and High Household Size communities 
where age vaccine prioritization performs best when the objective is to reduce deaths. 
As compared to other vaccine strategies, the benefit to using age vaccine prioritization 
can be as high as 0.4% (based on the average from each strategy). In the High Age com-
munities, node degree and ring vaccine prioritization perform slightly better at reducing 
deaths and reducing peak hospitalization. There is less difference between vaccination 
prioritization with respect to peak hospitalization in other communities.

Results from Scenario 2 are shown in Fig. 11. Figure 11a uses deaths and Fig. 11b 
uses peak hospitalization. As with the previous figure, there is one subplot per com-
munity and each subplot includes results from all 5 vaccine strategies. The results 
show that as vaccine willingness increases, selecting a specific vaccine prioritization 

Fig. 10  Impact of mask effectiveness and vaccine strategies on a deaths and b peak hospitalization using 
Scenario 1 where vaccine willingness is moderately high
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strategy can provide significant benefit. This is most pronounced when the objective 
is to reduce deaths. In the High Age community, node degree and ring vaccine pri-
oritization provide significant benefit, whereas in the other communities age vaccine 
prioritization is the most beneficial. The difference in outcomes when using differ-
ent vaccine strategies can be as high as 0.5% (based on the average from each strat-
egy). Interestingly, all communities hit an asymptote with respect to deaths when 
using certain vaccine prioritization strategies. For example, the use of random, house-
hold size prioritization, and age prioritization in the High Age community does not 
continue to decline after willingness reaches approximately 50% of the population. 
Similar thresholds are noted in other communities. Certain vaccine prioritization 
strategies continue to drive down deaths as the population is more willing to be vacci-
nated. However, the strategy is not the same for each community. For example, there 
is an advantage to using node degree and ring vaccination in the High Age commu-
nity if a high percent of the population is willing to be vaccinated. In this case, tar-
geting individuals who contribute to transmission outweighs targeting individuals by 
age (and therefore higher mortality risk). In the High Population, High SVI, and High 
Household Size communities, the age prioritization strategy continues to outperform 
other vaccine prioritization as more people are willing to be vaccinated. These differ-
ences are a function of community structure. When the objective is to reduce peak 
hospitalization, the differences between vaccine strategies is less pronounced.

The scenarios demonstrate that under certain conditions vaccine prioritization 
strategies can reduce deaths and peak hospitalization. However, vaccination prioriti-
zation strategies do not always outperform random vaccination. The results presented 
here indicate that the structure and demographics of a community should play an 
important role in determining if prioritization strategies should be applied to achieve 
a desired objective.

Fig. 11  Impact of vaccine willingness and vaccine strategies on a deaths and b peak hospitalization using 
Scenario 2 where mask effectiveness is low
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Conclusion
Prioritizing vaccine administration was an urgent concern when COVID-19 vaccines first 
became available. Protecting people most likely to suffer severe outcomes and people that 
are essential for healthcare and other services motivated allocation of initial doses. With 
increased availability of vaccines in the U.S. and other developed countries, prioritiza-
tion is a less pressing concern. However, understanding of the differential epidemiological 
effects of different vaccine strategies remains useful. New variants and loss of immunity 
may recapitulate the initial phase of the pandemic, leading to scarcity in effective control 
measures, and the need to carefully allocate new vaccines, and motivate their uptake to 
insure maximum benefit. Additionally, many countries still face limited vaccine supply and 
might benefit from insights into the effects of different priorities. A comparative assess-
ment of vaccine strategy performance, particularly one that considers different community 
compositions and interaction patterns, can therefore provide useful guidance to decision 
makers when vaccination is impeded by constraints on either supply or demand.

This research outlines a modeling framework that explores the impact of vaccine prior-
itization based on community characteristics. Results from this analysis highlights signifi-
cant differences in vaccine strategies for communities that have different demographics and 
structure. The results also show that age vaccine prioritization does not always result in the 
best outcomes, especially in High Age communities. Furthermore, in some settings, ran-
dom vaccination can perform as well as more carefully planned strategies. This is important 
to keep in mind when strategies require additional resources, such as contact tracing for 
ring vaccination. The results also illustrate that heterogeneous network models are an effec-
tive tool for capturing the effects of interactions at the household level. This is especially 
important when modeling communities that have a high degree of clustering and when 
modeling behavior that is not uniformly applied (for example, not wearing masks inside the 
home). Understanding the complex interactions between community structure, mask use, 
and vaccination could lead to more informed decisions for vaccine prioritization.

Appendix
The following appendix includes 1) the relationship between deaths and YLL based on 
the simulations run in the global sensitivity analysis and 2) results from the global sensi-
tivity analysis using peak hospitalization.

Figure 12 shows the relationship between deaths and YLL. The slope of the best fit line 
results in an average YLL of 19.15 years which is very similar to the expectation of life for 
a person 65 years old. While the simulations include deaths across all age bins, the high 
correlation between deaths and YLL means that investigating vaccine strategies using 
deaths and YLL produce similar results.

Figures 13 and 14 show first and second-order sensitivity indices for peak hospitali-
zation. Results show that mask effectiveness is the primary driver for sensitivity across 
all communities and vaccine prioritization strategies. Vaccine willingness has a lesser 
impact on peak hospitalization. As communities are more connected, there is a slight 
increase in second-order sensitivities, indicating that combined masking and vaccina-
tions impact results.
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