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Introduction
In an urban road network, many roads and streets have complex inter-connections. Due 
to their complexity, researchers often represented road networks as spatial graphs for 
systematic analysis. This enables graph-theoretic algorithms to be applied to road net-
works. However, even a small city contains more than thousands of road segments and 
a detailed graph representation makes it challenging to use original road networks as 
input to analysis models (Bazzi et al. 2010).

To deal with this issue, researchers used a subsampled version of the city-level road 
network. Porta et al. (2006) investigated spatial graphs of four different cities by Multiple 
Centrality Assessment which assesses four different centrality measures to capture topo-
logical and geometric characteristics with different perspectives. They limited the area 
of study to 1-square-mile sub-regions of the original networks. Park and Yilmaz (2010) 
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investigated centrality measures and their entropy in road networks. In their study, small 
graphs with a maximum of 104 nodes are used to represent sub-regions of cities. Youn 
et  al. (2008) assessed the price of anarchy by computing the difference in travel time 
between an origin and destination pair in social optima and Nash equilibria. Instead of 
the original network, they used the skeleton network of each city which consists of only 
principal arterial roads. Although these subsampling approaches make the studies com-
putationally feasible, the results obtained from only a small portion of a city are biased to 
that selected part and may not be representative of the city. Also, selecting specific types 
of roads omits roads of other types regardless of their topological importance which can 
result in unexpected disconnections.

Similarly, traffic simulation studies of city-wide networks using microscopic traffic 
simulators such as VISSIM (Fellendorf and Vortisch 2010) also suffer from expensive 
computational costs. Many different user groups such as researchers and transportation 
system authorities have used traffic simulators to test new ideas and to easily collect data 
without interfering with real-world networks. However, they have considerable execu-
tion runtimes, even for moderate size cities. Furthermore, since traffic simulators must 
account for the stochastic nature of the traffic demand, they need to be run multiple 
times for reliable results. This further exacerbates the poor scalability with the size of the 
road network (Antoniou et al. 2014).

Motivated by these issues, we propose a novel road network simplification framework 
that preserves topological and geometric characteristics of the original network. Our 
method iteratively removes cul-de-sacs and gridiron patterns made of low-level roads 
from a road network represented as a directed graph. Porta et al. found that between-
ness centrality and information centrality well represent the backbone and collective 
behaviors of road networks (Porta et al. 2006) so we assessed these two centrality dis-
tributions of the original and simplified networks to examine differences in topological 
characteristics and found that this simple proposed process significantly lightened the 
volume of the original networks while the simplified networks have very similar central-
ity distribution to the original networks.

Given that our framework preserves key topological characteristics of the original 
network after simplification, it suggests that a simplified network can be used for road 
network analysis instead of the large and detailed original network. This makes road net-
work analysis more scalable with the size of the road network. Also, unlike most previous 
approaches, our method takes input as a directed graph that preserves the directionality 
of roads, which allows the simplification framework to be used for road network analysis 
of more diverse purposes such as routing of vehicles.

Related works
In practice, reduced representations of road networks are commonly used for road 
network generalization in cartographic maps. Since the real-world space has enor-
mous information, maps with limited space need to deliver information efficiently by 
highlighting relatively more important information. In this context, road network gen-
eralization methods usually work as a selective omission process, which sorts network 
elements in the order of given criteria, and selectively omits less important network ele-
ments with low importance ranks.
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There are various techniques for road network generalization. Following early work 
by Mackaness and Beard (1993), many researchers (Mackaness 1995; Thomson and 
Richardson 1995; Jiang and Claramunt 2004; Jiang and Harrie 2004) proposed graph-
based approaches for road network generalization, in which road segments and inter-
sections are represented as nodes and edges respectively (or vice versa). These studies 
identified important network elements to be selected in generalized maps by incor-
porating graph-theoretic algorithms such as minimum-spanning-tree, shortest path, 
and centrality. However, since they consider mostly on topological relationships, tra-
ditional graph-based approaches ignored semantic and geometric properties of roads.

Thomson and Richardson (1999), based on the principle of ‘Good Continuity’, 
defined a stroke as a group of road segments that have the same road type and inter-
sect at a small angle. Instead of individual road segments, they considered strokes 
for their generalization model, then computed the importance rank of strokes, and 
selected important strokes. In this approach, output networks have continuous net-
work elements after generalization. Inspired by the stroke-based method, several 
studies (Thomson and Brooks 2001; Liu et  al. 2010; Yu et  al. 2020) developed their 
methods with strokes as selection units. Chen et  al. (2009) used a mesh, a closed 
region by road segments, as a network element unit. Their method starts with the 
identification of meshes that have a density beyond a given threshold which are then 
merged with their adjacent meshes. Compared to the stroke-based approach, the 
mesh-based approach achieves an uniform distribution of roads in the generalized 
network.

More recently, data-driven approaches have been proposed to reflect traffic flow 
patterns in addition to the geometric and topological properties of networks. Yu et al. 
(2020) modified the stroke-based method by including the relationship between road 
segments and traffic flows in computing the importance score of strokes. Van De Kerk-
hof et al. (2020) sorted a set of car trajectories that consist of consecutive road segments, 
and selected the road segments that belong to high-rank trajectories. Those approaches 
can have better connectivity for routes that are frequently used by drivers.

The above-mentioned road network generalization methods can reduce the volume of 
road networks by any given threshold in continuous ways. However, the primary objec-
tive of those approaches is in making the map in different scales more “readable” and the 
threshold is set regardless of the structure of network, causing unexpected changes in 
connectivity and topological characteristics after generalization. Although recent data-
driven approaches attempt to prevent unexpected disconnection of functionally impor-
tant road segments, they rely on past data and thus potentially useful road segments can 
be removed causing undesired disconnection.

There are several road network simplification methods that work without any pre-
determined threshold for determining the size of simplified networks. Boeing (2017) 
simplified road networks by removing interstitial nodes that lie on the same road line. 
Since these nodes are just extending the roads which do not branch, they are treated as 
redundant and replaced with a single edge that concatenates all the road segments into 
one. Huynh and Selvakumar (2020) proposed a simplification method that iteratively cut 
short dangling paths, identify clusters of road network components, and then collapsed 
each cluster into a single node.
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However, there are several drawbacks in these approaches. First, the method proposed 
by Boeing (2017) only focuses on sequential road chunks on the same road line. Second, 
the method proposed by Huynh and Selvakumar (2020) is applicable only to undirected 
graphs and thus cannot be used for analysis of the dynamic nature of road networks. 
Also, their method makes the assumption that road networks are strictly planar mean-
ing that they can be well represented by a simplified two-dimensional model without any 
underpass or overpass which is not always true. In this paper, we propose a novel road 
network simplification method that preserves key topological characteristics similar to 
the original, in which a directed graph converges to a simplified directed graph without 
any pre-determined threshold.

Method
Road network data

OSMnx (Boeing 2017) is a Python package that downloads road networks from Open-
StreetMap (Haklay and Weber 2008) and constructs them into primal, non-planar and 
weighted multidigraphs. This means that nodes and directed edges represent intersec-
tions and roads respectively (primal), grade-separated roads such as overpass and 
underpass do not have an intersection (non-planar), and geographic and spatial infor-
mation of roads such as road length is included in the edge attributes that can be used 
as weights. We utilized OSMnx for our study since the above distinctive features of the 
package takes the dynamic nature of the road networks into account.

Framework

Urban road networks have hierarchical structures. High-level roads (e.g., motorways and 
arterial roads) transport a large number of vehicles at fast speeds while low-level roads 
(e.g., residential roads) have lower speed limits and are used to provide access between 
high-level roads and local areas. Low-level roads have little impact on the vehicular 
dynamics from the perspective of global transportation. However, some low-level roads 
may provide detours and shortcuts between sub-regions or distribute traffic avoiding 
congestion on high-level roads. Thus, arbitrary loss of low-level roads may have non-
trivial impact on traffic flow and topological context should be considered in any road 
network simplification process. In our method, we distinguish trivial low-level roads 
which are superfluous from topologically important roads, then selectively omit such 
roads so that the topological characteristics of the original network can be preserved 
after simplification. To identify the redundant roads, we utilize three patterns in residen-
tial street network suggested by Southworth and Ben-Joseph (2013): loops and lollipops, 
lollipops on a stick, and gridiron. Figure 1 shows an example network for each pattern.

The loops and lollipops pattern is characterized by the presence of loops and cul-de-
sacs. Both loops and cul-de-sacs are not likely to contribute to transportation func-
tionality since a loop tends to get back to its starting point and a cul-de-sac does not 
provide any through pass to the rest of the network. The lollipops on a stick pattern 
consists of a few through streets with branching off cul-de-sacs from those streets, 
where cul-de-sacs are considered as redundant as explained above. Some studies 
highlight the effect of cul-de-sacs on road networks. The studies in Batac and Ciru-
nay (2022) and Distel (2015) point out that travel from a dead-end node to another is 
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sinuous, especially if the length of the path is very short, which may translate into a 
degradation in the quality of travel. Also, in the study in Li et al. (2022), cul-de-sacs 
may provide access points where traffic may flow into a traffic analysis zone (TAZ) 
of interest from outside the TAZ. As some features of a TAZ are computed using the 
number of access points to the TAZ, cul-de-sacs are not trivial in their study. Conse-
quently, studies in Batac and Cirunay (2022), Li et al. (2022), and Distel (2015) show 
that cul-de-sacs have local impacts on road networks. Since in this study, we perform 
a city-level analysis of road networks and focus on the network-wide properties, we 
remove cul-de-sacs in the proposed simplification framework ignoring their potential 
local impacts.

The gridiron pattern is a simple system of two series of parallel streets crossing at right 
angles to form a pattern of rectangular blocks, which provides a lot of route choices. 
Also, the studies in Distel (2015) and Daganzo et al. (2011) argue that gridiron pattern 
may have a critical impact on the road network as it may cause gridlock traffic conges-
tion especially when traffic demand is very high. In our study, however, we simplify 
gridiron pattern that only consists of low-level roads. These low-level roads will remain 
unused since they have the same direction and length as their nearest high-level roads 
and will be used only when the high-level roads are highly degraded or disrupted. Thus 
we consider them as trivial elements from a network-wide traffic perspective, and 
decided to remove them through simplification. We used the road type information that 
is tagged by OSM to identify low-level roads and roads with residential tag are consid-
ered as low-level roads.

Our method identifies the target patterns using the topological, geometric, and seman-
tic information of a road network. The framework is depicted in Fig. 2 and consists of 
five steps: 

Fig. 1  Example networks of residential street patterns: a loops and lollipops, b lollipops on a stick, and c 
gridiron

Fig. 2  The five-step simplification framework and components being removed in each step
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1.	 Parallel edges are removed from the input graph leaving only the shortest edge 
between two adjacent nodes. Those edges are relatively long and generally used to 
provide access from main roads to residential areas.

2.	 Self-loop edges are removed from the graph. Circular ends for easy turning at the 
end of roads, which are represented as self-loops in a graph, not only add unneces-
sary overhead, but also make a dead-end node have at least two adjacent nodes (itself 
and its neighbor). Removing self-loops ensures dead-end nodes have a single adja-
cent node for the next step.

3.	 The graph is simplified by removing dead-ends, which are the nodes that have only 
one adjacent node and incident edges of the nodes. These components are only used 
to provide access to the end node and can be collapsed to the entrance of each cul-
de-sac.

4.	 Areas with gridiron pattern are simplified by removing low-level components. The 
nodes that satisfy all the following conditions are removed along with their incident 
edges: (1) have exactly 4 adjacent neighbors, (2) the maximum length of the incident 
edges is less than 300 m, (3) the road type of all the incident edges is residential, and 
(4) at least two nodes under the conditions above are adjacent.

5.	 The interstitial nodes on a single road line are removed by replacing the sub-edges 
with a single unified edge. We used the method proposed by Boeing (2017) for this 
step. These five steps are iterated until the input graph converges to the final graph 
upon which no further simplification can be made.

Tracking regional node density of the original network

The simplified network has lower node density than the original, especially in residen-
tial areas of the network, as the framework removes nodes in target areas. This can lead 
to different topological characteristics (e.g. centrality measures) after simplification. 
To circumvent this, we set a node attribute aggr_node_number to keep track of the 
regional node density in the original network. The value of the attribute is initialized to 
1 for each node in the original graph. When a node or a group of nodes is removed for 
simplification, the aggr_node_number value of the node, or the summation of aggr_
node_number values of the group of nodes being removed, is distributed equally to its 
neighbors. Intuitively, this attribute of a node in the simplified network represents the 
number of other nodes that were collapsed into it, which can be used to approximate the 
node density in the original network. In our study, we used it to better estimate the cen-
trality measure of original networks from simplified networks as explained in detail later. 
There are other potential benefits of this attribute such as using it for generating origin 
and destination pairs in traffic simulations.
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Centrality measures and estimation

In graph theory and network analysis, the basic idea of centrality is that there are rel-
atively more central or important nodes and edges in a network. Since the first set of 
centrality indices were defined for social network analysis by Freeman (1978), vari-
ous centrality indices have been suggested and widely applied to many other fields of 
study including road network analysis (Porta et al. 2006; Park and Yilmaz 2010; Zhang 
et al. 2011; Huynh and Selvakumar 2020). In our study, we utilized two centrality indi-
ces: betweenness centrality and information centrality. Porta et al. (2006) showed those 
centrality indices nicely capture the backbone structure of a road network and collec-
tive behaviors. Observing the difference in the distribution of centrality measurements 
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before and after simplification provides a measure of how much a simplification method 
distorts the topological characteristic of a road network.

Edge betweenness centrality

Edge betweenness centrality is a concept that generalize Freeman’s betweenness central-
ity to edges (Girvan and Newman 2002), which shows how frequently an edge lies on 
the shortest paths connecting a pair of nodes in a graph. In a road network, the higher 
betweenness an edge has, the more it provides shortest routes and is likely to contribute 
to the transportation in a city. The betweenness centrality CB of an edge e is defined by

where N is the number of nodes in a graph, V is the set of nodes, σ(s, t) is the number of 
shortest paths between an origin and destination pair (s, t), and σ(s, t|e) is the number of 
those paths that passing through edge e.

Edge information centrality

Based on the concept of efficient propagation of information over a social network, 
Latora and Marchiori defined information centrality as the relative drop in the network 
efficiency caused by the removal of a node (Latora and Marchiori 2004) where network 
efficiency represents how efficiently information is exchanged over the network (Latora 
and Marchiori 2001). Fortunato et al. (2004) generalized information centrality to edges 
and defined edge information centrality. Applying edge information centrality to a road 
network, we recognize network efficiency as the summation of the ratio between the 
length of the straight line and the shortest path between each origin and destination 
pair (s, t). The normalized network efficiency E for a weighted graph G as proposed in 
Vragović et al. (2005) is given by:

where εst is the efficiency of travel from node s to t, dEuclst  is the Euclidean distance 
between a pair of nodes s and t, and dst is the length of the shortest path from node s to t. 
In case there is no path from s to t, dst = ∞ and, consequently, εst = 0 . Thus edge infor-
mation centrality is well defined for either weakly connected or disconnected graphs. 
The removal of an edge forces origin and destination pairs to choose alternative paths 
or there may not be any available alternatives, in either case the network suffers from a 
high drop in efficiency. For example, the removal of bridges or the removal of the only 
connection to a large sub-graph is likely to cause high drop in efficiency. Thus such edges 
have high information centrality. The information centrality CI of an edge e is defined by

where Gorg is an original graph and Ge
cut is the graph that removed edge e from Gorg.

(1)CB(e) =
1

N (N − 1)
s,t∈V

σ(s, t|e)

σ (s, t)

(2)E(G) =
1

N (N − 1)

∑

s,t∈V ;s �=t

εst =
1

N (N − 1)

∑

s,t∈V ;s �=t

dEuclst

dst

(3)CI (e) =
E(Gorg )− E(Ge

cut)

E(Gorg )
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Estimating centrality from a simplified network

Roads and intersections in residential areas are significantly simplified by our method. 
To preserve the original density of nodes we use the method of preserving overall aggr_
node_number discussed above. Although the removed nodes have minimal effect on 
the transportation functionality, the decreased node density in those areas would result 
in a difference in topological characteristics and centrality distribution between the sim-
plified and original networks.

Specifically, we estimate centrality in the original network from a simplified network 
by using the value of aggr_node_number attribute which represents the number of 
nodes that are removed in the vicinity of a node. For computing centrality in a simplified 
network, we can use the attribute as a weight to estimate centrality of the same element 
in the original network.

The estimated betweenness centrality ĈB of an edge e is defined by

where V ′ is the set of nodes in the simplified graph, and aggrv is the aggr_node_num-
ber value of a node v. Similarly to ĈB , we estimate the network efficiency E of the 
original graph G from a simplified graph Gsimple . The estimated network efficiency Ê is 
defined by

By plugging in Ê into Eq. (3), the estimated information centrality ĈI can be derived.
The time complexity of computation of centrality is O(|V||E|) (Girvan and Newman 

2002) for betweenness centrality and O(|V ||E|3) (Fortunato et al. 2004) for information 
centrality where |V| is the number of nodes and |E| is the number of edges in a network. 
The attribute aggr_node_number is simply a multiplicative factor in the time complexity 
which is dominated by the size of graph defined by the number of nodes and edges in the 
graph. Thus, estimating the centrality measures in the original network from a simplified 
network has substantially lower computational cost than directly computing centrality 
measures of the original network.

Experiment and results
We simplified the road networks of three cities in the United States to evaluate our 
method. In the first experiment, we investigate three small cities where each city has 
very distinct features. The first selected city is Davis, a small college town in Califor-
nia. The city has plenty of residential areas with cul-de-sacs. On the contrary, the next 
selected city, Portales in New Mexico mostly consists of gridiron pattern such as two 
series of parallel streets crossing at right angles. Finally, we selected Petaluma in Cali-
fornia which has multiple street patterns and a geographical constraint which is a river 
that crosses the city. The latter has more general and combined street patterns than the 
two other cities. Also, as the separated regions by the river are interconnected with a 

(4)ĈB(e) =
1

N (N − 1)

∑

s,t∈V ′

σ(s, t|e)

σ (s, t)
× aggrs × aggrt

(5)Ê(Gsimple) =
1

N (N − 1)

∑

s,t∈V ′;s �=t

dEuclst

dst
× aggrs × aggrt
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few bridges, it is likely to be sensitive to possible distortion in topological characteristics 
after simplification. In the second experiment, we extend the study to a big city, Colum-
bia in South Carolina, where streets and roads in various patterns are interconnected in 
a complex manner. Since this city has multiple patterns in its road network, the analysis 
of this city demonstrates that our simplification algorithm works for general cities. The 
distinctive features of the road network in the selected cities are summarized in Table 1.

In addition to our proposed simplification method, we considered a benchmark which 
is a naive but frequently used method that omits all the residential roads in a network for 
comparison.

Figure 3 and Table 2 show the visualizations and statistical results of the network sim-
plification process for the selected cities. We observed that the proposed method effi-
ciently simplified road networks in all three cities by about the factor of two. The naive 

Table 1  Four cities with distinct features and the description of street pattern in the cities

City Distinct feature Description

Davis, CA Cul-de-Sacs Street pattern most common in residential areas

Portales, NM Gridiron pattern Street pattern most common in residential areas

Petaluma, CA Geographical constraint Sensitive to distortion due to geographical constraint
More general and combined street patterns

Columbia, SC Complex road network Various patterns are interconnected
Most general road network

Fig. 3  Visualization of original and simplified road networks. Left column (a, d, g): input network, middle 
column (b, e, h): simplified by the proposed method, right column (c, f, i): simplified by omitting all 
residential road. Top row (a, b, c): Davis, middle row (d, e, f): Portales, bottom row (g, h, i): Petaluma
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heuristic that omits all the residential roads can simplify the networks to more reduced 
representations than our method. However, it oversimplifies networks and makes arbi-
trary disconnections regardless of the functionality of transportation, distorting the top-
ological characteristics of the original networks.

To identify the difference in topological characteristics that resulted from simplifi-
cation, we measured betweenness centrality CB and information centrality CI in each 
network before and after simplification. For the networks simplified by our proposed 
method, each centrality is measured in two different ways: the standard centrality C and 
estimated centrality Ĉ using the aggr_node_number approach. Figures 4 and 5 visu-
alize the distributions of CB and CI in the city of Davis respectively. In the visualizations, 
the simplified maps resulting from the proposed method share key features and details 
with the original network especially with respect to centrality measures. However, the 
map which simply omits residential roads shows a clearly different distribution, having 
more widespread centrality or high values in erroneous components. Centrality distri-
bution in Portales and Petaluma also showed the same tendency as Davis.

For quantitative evaluation, we used correlation coefficient to compare the centrality 
of the edges of an original network and the corresponding edges of the simplified net-
work. If the correlation coefficient has a high value, there is a strong association between 

Table 2  Statistic results of simplification

Davis Portales Petaluma

Simplification Node Edge Node Edge Node Edge

Original 2110 4968 794 2428 2374 5957

Proposed 960 (− 55%) 2397 (− 52%) 373 (− 53%) 1091 (− 55%) 892 (− 62%) 2425 (− 59%)

W/o residential 782 (− 63%) 1448 (− 71%) 402 (− 49%) 821 (− 66%) 633 (− 73%) 1164 (− 80%)

Fig. 4  CB distribution in Davis road network: a original, b proposed method, c proposed method with 
centrality estimation, and d simplified by omitting all residential roads



Page 12 of 16Pung et al. Applied Network Science            (2022) 7:79 

the centrality of the original network and the simplified network, which supports that 
the key topological properties in the original network are preserved after simplification.

Specifically, we used Pearson ( ρ ) and Spearman (R) correlation coefficient. Pearson 
correlation coefficient represents the linear relationship between two variables, that is, 
a change in the centrality of the simplified network is proportional to the centrality of 
the original network. Spearman correlation coefficient can evaluate the monotonic rela-
tionship between two variables, i.e., how the rank of centrality measurements is similar 
between the original and simplified network.

Since the edge segments that lie on the same road line are replaced with a single uni-
fied edge throughout our proposed method, the maximum centrality measurement of 
such edge segments in the original network is matched to the centrality measurement of 
the unified edge in a simplified network to compute the correlation coefficient.

Table 3 is the results of quantitative analysis. In every case, the proposed method has 
the highest level of correlation with the two measures of centrality, having very high val-
ues from 0.761 to 0.998. It implies that the topological characteristics in the simplified 
networks are very similar to the original networks, and the centrality distribution in the 

Fig. 5  CI distribution in Davis road network: a original, b proposed method, c proposed method with 
centrality estimation, and d simplified by omitting all residential roads

Table 3  Pearson ( ρ ) and Spearman (R) correlation coefficient between centrality measurement of 
original and simplified networks

Simplification Davis Portales Petaluma

C
B C

I
C
B C

I
C
B C

I

Proposed, with 
estimation

ρ = 0.947 
R = 0.939

ρ = 0.978 
R = 0.933

ρ = 0.761 
R = 0.845

ρ = 0.998 
R = 0.997

ρ = 0.931 
R = 0.907

ρ = 0.947 
R = 0.891

Proposed ρ = 0.916 
R = 0.895

ρ = 0.928 
R = 0.893

ρ = 0.735 
R = 0.831

ρ = 0.980 
R = 0.964

ρ = 0.869 
R = 0.837

ρ = 0.897 
R = 0.833

W/o res. roads ρ = 0.817 
R = 0.798

ρ = 0.666 
R = 0.739

ρ = 0.593 
R = 0.687

ρ = 0.560 
R = 0.523

ρ = 0.857 
R = 0.853

ρ = 0.382 
R = 0.513
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original network can be accurately approximated in an efficient way using a simplified 
network. On the other hand, omitting all the residential roads for simplification resulted 
in low values of correlation factors from 0.382 to 0.857, and turned out to change the 
topological characteristics of the original network considerably.

We extended our experiment to a big city where streets and roads in various patterns 
are interconnected in a more complicated manner. We simplified the road network in 
Columbia which is the capital city of South Carolina in the United States. The origi-
nal network has 11,113 nodes and 29,781 edges. Our method reduced the size by 5457 
nodes (− 51%) and 15,275 edges (− 49%), whereas simply omitting all residential roads 
reduced the size by 3433 nodes (− 69%) and 6851 edges (− 77%) (Fig. 6).

Similar to the first experiment, the number of nodes and edges are simplified by the 
factor of two by our proposed method. Although the naive approach that omits all resi-
dential roads can further reduce the size of the road network, it ends up having unde-
sired disconnections between sub-regions. Figure  7 and Table  4 clearly shows our 
method has a very similar CB distribution to the original network and high correlation 
coefficient while the other naive method has a different distribution and low correlation 
coefficient.

Considering the heavy computational cost to compute the information centrality for 
Columbia, we do not obtain this result. However, here we provide an estimate of the 
time it would to take to compute information centrality in the original and simplified 
network with our machine which has a 2.6 GHz CPU. In the original network, it would 
take about 240 days, but in the simplified network by our method, it is estimated to take 
less than 42 days which is about six times faster than the original network.

Conclusion
This article proposes a road network simplification framework that selectively 
removes network components that have little impact on transportation functional-
ity: cul-de-sacs and gridiron patterns consisting of low-level roads. In this way, the 
topological characteristics of a road network are preserved while efficiently de-densi-
fying the network. The method keeps track of the regional node density of the origi-
nal network, which can be used to more precisely estimate topological characteristics 
of the original network such as centrality measurement. We applied our method to 
three small cities with distinct street patterns and a big complex city, then computed 

Fig. 6  Visualization of the road network in the city of Columbia: a input network, b simplified by the 
proposed method, and c simplified by omitting all residential road
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centrality distributions in the road networks of the cities. By measuring the correla-
tion coefficient between the centrality measurements in the original and simplified 
networks, we quantitatively showed that the topological characteristics in the origi-
nal network are successfully preserved after simplification. We argue that this is an 
important step to enable large-scale road network analysis. Having similar topological 
characteristics to the original network, the simplified network can be used for the 
analysis of vehicular dynamic behaviors instead of a massive, thus computationally 
expensive, original network.

Abbreviations
CB	� Betweenness centrality
ĈB	� Estimated betweenness centrality
CI	� Information centrality
ĈI	� Estimated information centrality

Fig. 7  CB distribution in Columbia road network: a original, b proposed method, c proposed method with 
centrality estimation, and d simplified by omitting all residential roads

Table 4  Pearson ( ρ ) and Spearman (R) correlation coefficient between centrality measurement of 
original and simplified networks in Columbia

Simplification method Correlation coefficient

Proposed, centrality estimation ρ = 0.964 , R = 0.911

Proposed ρ = 0.952 , R = 0.883

w/o residential roads ρ = 0.805 , R = 0.834
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