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Abstract 

By applying network analysis techniques to large input–output system, we identify 
key sectors in the local/regional economy. We overcome the limitations of traditional 
measures of centrality by using random-walk based measures, as an extension of 
Blöchl et al. (Phys Rev E 83(4):046127, 2011). These are more appropriate to analyze 
very dense networks, i.e. those in which most nodes are connected to all other nodes. 
These measures also allow for the presence of recursive ties (loops), since these are 
common in economic systems (depending to the level of aggregation, most firms buy 
from and sell to other firms in the same industrial sector). The centrality measures we 
present are well suited for capturing sectoral effects missing from the usual output and 
employment multipliers. We also develop and make available an R implementation for 
computing the newly developed measures.
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Introduction
Wassily Leontief won the Nobel prize in economics in 1973 for developing the Input-
Output [I–O] modeling system, in the years before and during WWII. The original 
purpose of the I–O approach was to identify flows among economic sectors of a 
region or a country. Those flows represent the exchanges that take place among sec-
tors. In market economies, this functions as a fair representation of sectors buying 
from and selling to one another. Over time it was clear that the identification of key 
sectors in the economy was emerging as a new and exciting application as shown 
in the early contributions of Rasmussen (1956), Laumas (1975), Schultz (1977) and 
Hewings (1982). In those early times, the implication was that any industrial policy 
intended to protect or stimulate specific sectors would start with the proper identifi-
cation of their importance to the system. Today this application still remains relevant, 
even though I–O systems themselves have been superseded by more sophisticated 
and complex economic modeling approaches, such as general equilibrium (Jorgen-
son 2016). Local and regional policy makers and planners can certainly refer to the 
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sectors thus identified to allocate infrastructure funds, grant tax exemptions, employ-
ment support programs, and implement other policy actions geared toward strength-
ening the economic system and ensuring its resilience.

The identification of the most relevant sectors is not, however, an easy task. Is the 
most important sector the one that produces the highest output? or the one with the 
highest employment? or the one that buys the most from local suppliers? It is quite 
obvious that the choice of measurement will greatly affect the results; different sec-
tors are “key” under different assumptions, and for different purposes.

The I–O approach provides a rather straight forward process to describing local 
economies. This was discovered very early by economic geographers, planners and 
others who began using it to, first, describe, and later analyze the relationships among 
local sectors and the emergence or presence of clusters or other groupings that were 
meaningful in the performance of the local/regional economy as a system (Hubbell 
1965; Streit 1969; Roepke et al. 1974 and Campbell 1975).

In recent years, there has a been a growing interest in revisiting those early 
attempts, but this time with the aid of network analysis techniques. For the most part 
those efforts have focused on national economies, either at the country level (Giuliani 
2013), the regional block level (Guo and Planting 2000; García Muñiz et  al. 2008; 
Montresor and Marzetti 2009; Aroche  Reyes and Marquez  Mendoza 2012; García 
Muñiz 2013) or at the global scale (Blöchl et al. 2011). On the other hand, there are 
relatively few examples of this type of analysis at the sub-national level.

Therefore, there remains a clear and strong motivation to find alternative ways for 
the identification of key sectors in the local and regional economy, or at the very least 
the systematic analysis of the connections among sectors (Reid et al. 2008). One such 
approach is social network analysis (SNA). Though the roots of SNA, as a field, stretch 
back to the 1930s with Jacob Moreno’s sociometry (Moreno 1934), the field experi-
enced its greatest initial growth and expansion beginning with advances in computing 
power and ubiquity in the 1970s (Freeman 2004). Although the vast majority of early 
efforts in SNA applied to networks that are interpersonal and social in nature, the 
field has since bloomed and has become well-developed, with extensions into a vari-
ety of disciplines, such as biology, genetics, physics, and economics. At the core of the 
network analysis approach is a set of measures that provide a variety of conceptual-
izations of how one may operationalize the concept of relative prominence of each of 
the nodes that constitute the network. At its simplest, prominence may be measured 
as a function of the frequency in which a node is connected to others. Somewhat more 
nuanced conceptualizations of such measures, however, will consider the structure 
of the pathways that the ties create and relative distances between nodes in the net-
work when traveling such paths. Frequency, path, and distance considerations have 
been incorporated into dozens of centrality measures (degree, closeness, between-
ness, eigenvector, reach, and flow, just to mention some of the most commonly used 
measures). The concept of prominence within a network, as operationalized through 
centrality measures, remains fairly fluid and context-dependent. Even the earliest 
treatments on the topic, Freeman (1978) asserted that there was no unanimity on 
what centrality is or on the proper method(s) for its measurement. Despite attempts 
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to evaluate and prioritize various centrality measures (e.g., Harrison et al. 2016; Meng 
et al. 2017), context and interpretability remain the most valid determinants of their 
selection and application.

As we see it, we contribute to the advancement of the field by setting multiple objec-
tives. First, we want to consolidate definitions and interpretations from existing frame-
works. As it is common with methods that extend into other fields, multiple terms are 
used to refer to the same concept, and vice-versa. We are not aware of similar efforts. 
Second, we test whether the newly developed network metrics are applicable to I–O sys-
tems at the subnational level (state, and even municipal). This is not a technical issue, but 
one of interpretation. As we show, the same metrics have different values at the national, 
state and local level, hinting at the different role that specific industrial sectors play at 
different level of geographic aggregation. We have not identified other contributions in 
the literature that analyze subnational geographies in similar fashion. Finally, we imple-
ment all the metrics discussed in the paper in R. The code is publicly available and—with 
relatively little pre-processing—a user can compute all metrics for any network.1

Theoretical considerations
As discussed above, I–O systems can be represented by networks in which the nodes 
(also referred to as vertices) are economic sectors or industries, and the links connect-
ing them (also conceptialized as ties) represent the flows among those industries. More 
precisely, I–O systems are very dense, valued, directed networks. In a network, density 
refers to the proportion of links that actually exist as a share of all possible links. I–O 
networks are very dense because–especially at high levels of aggregation–most, if not all, 
nodes (industries) will be connected to almost all other nodes.That is, network density 
(d) approaches 1 (in symbols, d →1).2 They are valued networks because the links do 
not only represent the presence of a connection, but such a connection has a specific 
magnitude. Finally, they are also directed networks because I–O systems represent bi-
directional flows between economic sectors. That is, each pair of nodes is connected by 
two links, one for each of the directions in which transactions may take place, typically 
with differing values. At greater levels of sectoral disaggregation, a more granular classi-
fication captures narrower and narrower definitions of industries and commodities. This 
results in more differentiation in the flows between sectors, with one direction poten-
tially overshadowing the other by orders of magnitude (Lovász 2009; Miller and Blair 
2009). Ties with similar values in both directions are extremely rare in I–O systems.

If the objective is to determine how important a sector is in the economic network, 
one may consider using vertex centrality measures such as those introduced by Free-
man (Freeman 1977, 1978; Freeman et  al. 1991). Common vertex centrality measures 
are of ambiguous applicability in the case of I–O networks. The difficulties associated 
with applying such vertex centrality measures to I–O systems become apparent when 
considering some common features that describe such networks. Of particular relevance 

1  NOTE: In the field of network analytics it is very common to find multiple definitions and implementations for the 
same metric, or one with very slight variations. Whenever possible, we refer to the earliest definition of a measure or 
concept.
2  One reason for high density is high levels of sectoral aggreation. But even highly disaggregated systems, with hundreds 
of nodes, can have, for example d > 0.7, where 70% of all possible ties are present.
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are the values of the ties between vertices, loops representing recursive trade within an 
industry, and the overall density of I–O networks.3

The simplest of the measures Freeman defined, degree, is calculated as the number of 
ties that are incident upon a node.4 As such, the degree of a node describes how often 
each industry participates in the production function of others, and which sectors are 
part of its own production function. Given the high density found in I–O networks, 
however, the number of links that are incident upon any given node is not likely to vary 
greatly throughout the network, making degree a relatively poor measure of a given 
industry’s relative prominence in a local economy.5 In addition, because degree measures 
only direct access to others, it fails to capture the larger systemic effects that are distrib-
uted throughout the wider network.

Path-based measures were introduced to take into account a node’s place within the 
larger network. Two measures that were introduced to take the entire network into 
account were closeness and betweenness Freeman (1978). Closeness provides a measure 
of the inverse distance between a node and all other nodes reachable from it. More spe-
cifically, closeness centrality for a given node i is calculated as

where dij is the distance of the shortest path (i.e., geodesic distance, or, simply, geodesic) 
between node i and any other node j. In this manner, closeness provides a measure of a 
node’s strategic positioning within an network in terms of the speed or efficiency with 
which the flows within a network will pass through a particular node. Larger measures 
of closeness may, for example, indicate a node that will be able to access information or 
materials more frequently or quickly than others with lower values.

Another means of conceptualizing prominence of a node in terms of flows through 
a network is betweenness, which measures a node’s potential for being able to capture, 
enable, or impede the passage of informaiton or materials in a network. As such, it is 
calculated as

where gjk is the number of shortest paths (i.e., geodesics) between node j and node k, 
and gjk(i) is the number of those paths that include i. In this manner, betweenness meas-
ures the degree to which a particular node i commands strategic junctures within the 
network.

(1)CCLO
i =

n

j=1

d(i,j)

−1

(2)CBET
i =

gjk(i)

gjk

3  Loops may disappear (or be drastically reduced) at higher levels sectoral aggregation.
4  In directed networks, the degree measure can be separated into in-degree and out-degree to account for ties coming to 
or going from a node, respectively.
5  When running the analysis at the 2-digic NAICS level (North American Industrial Classification System level which 
contains 20 sectors), we found degree values averaging around 19, meaning the almost every sector was connected to 
every other sectors.
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A major weakness of both betweenness and closeness, as they are commonly used, is 
that neither measure was conceived to take the value of the ties into account. For I–O 
networks, this is a major shortcoming, as the actual magnitudes of intersectoral flows 
are a critical consideration. A solution has been proposed by Dijkstra (1959), Brandes 
(2001) and Newman (2001) and further modified by Opsahl et al. (2010) to seek the path 
with the least cumulative impedance, as opposed to the one with the fewest steps. The 
idea that drives this modification is that ties with lower values transmit less, and may be 
considered to impede flow more than ties with greater tie values. The resulting imple-
mentation is a weighted distance measure given by

where the inverse of the tie values (i.e., weights) wij is summed for each of the paths 
between node i and node j, and the path of least resistance (i.e., the one with the lowest 
value) is selected. The α coefficient functions as a tuning parameter that is used to either 
emphasize or deemphasize whether the number of steps should be taken into account. 
Setting α = 0 produces the same measure as if the ties were of binary values; setting 
α = 1 sums the inverse tie values; setting 0 < α < 1 favors fewer steps; and setting α > 1 
favors stronger tie weights in calculating shortest path distances.

Opsahl et  al. (2010) employed the weighted geodesic measure shown in (3) in both 
closeness (4) and betweenness (5) in a manner that is fairly straightforward.

In each case, the weighted geodesic (i.e., shortest path) distance measure has been sub-
stituted for the binary form. In the case of weighted closeness, depending on the α set-
ting, the relative distance in terms of summed inverse tie values is substituted for a count 
of the number of steps in each path when selecting the lowest value. For, weighted 
betweenness, on the other hand, gwαjk  is a count of the number of geodesics occurring 
between node j and node k (Opsahl 2015).

Weighted path-based centrality measures hold the potential to reveal the relative 
prominence of nodes in a valued network. Each is well suited for use with valued net-
works, though there are some shortcomings for each that should be noted in regard to 
their potential for application in I–O networks. The characteristics of I–O networks that 
make them a challenge for both standard and weighted network metrics include the val-
ues of ties in I–O networks, the recursive loops present in aggregated networks, and 
their density merit consideration in modeling the flow of resources.

If one considers the weighted distance equation given in Eq. (3) to modify closeness 
(4) and betweenness (5), it should quickly become apparent that such a weighting metric 
will function in a manner similar to the measures designed for dichotomous ties (Eqs. 

(3)dwα(i,j) = min

(

1

(wih)
α
+ · · · +

1

(whj)
α

)
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
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(5)CWBET
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gwαjk (i)
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(1) and (2)) only when the tie values are limited to a relatively narrow range of integer 
values. Given that I–O networks are expected to take a theoretically unlimited range 
of positive continuous values, it becomes increasingly likely that the measure will pro-
duce one unique shortest path for any given node pair. Such a solution would emphasize 
the prominence of nodes that are situated in some of the most proiminent production 
sectors in the region being evaluated. Although prominence within key sectors will 
produce useful information, the lack of alternate shortest paths between nodes holds 
the potential to mask the relative importance of other nodes that may hold secondary 
importance–something that is also important from a planning and disaster mitigation 
standpoint. The ability to tune the measure using the α setting helps to reduce this ten-
dency, but also requires a more standardized approach to tuning that has not yet been 
evaluated in I–O networks at this point.

An additional challenge to the anlaysis of I–O networks occurs when considering the 
recursive loops that are used to best model flows within a system that has been aggre-
gated to create a set of nodes that would normally trade amongst themselves into a 
metanode that represents an entire industrial sector. Depending on the level of aggrega-
tion, the presence of loops within I–O networks can be substantial. However, both the 
classic binary and the weighted assessments of shortest paths through a network will 
logically always ignore such loops, as they would not normally constitute a “shorter” 
path through the network. This is not a realistic representation of the actual behavior of 
flows within an I–O network.

The final consideration that should be important to those modeling I–O networks is 
the high density of ties within the network. Using path-based measures that treat ties 
as binary tends to make it look as though all nodes are relatively “close” to one another 
since, on average, the paths throughout exceptionally dense networks will be of roughly 
the same length. This tendency is somewhat reduced by using weighted ties. When 
employing weighted measures, both closeness and betweenness will produce meas-
ures of prominence that are relative to the total network. They do not provide any spe-
cial consideration for the more immediate neighborhood (e.g., manufacturing sector) 
around each node.

One way of avoiding most of those limitations is adopting measures of centrality based 
on random walks. Newman (2005) explored and further developed the notion of a meas-
ure of centrality based on random walks to overcome the need for a pre-determined, 
known flow from each source (s) to each target (t), and stated that “the random-walk 
betweenness of a vertex i is equal to the number of times that a random walk starting at s 
and ending at t passes through i along the way, averaged over all s and t.”

Experts in I–O modeling, not yet familiar with network metrics, perceive the notion of 
random walk as one that does not correctly represent the relationships in the economic 
system. Their complaints are not without merit because, after all, industrial sectors do 
not consume a random collection of inputs in the hopes of producing a very specific 
output. Those input are indeed very well defined by a sector’s production function. In 
the same vein, one could conceptualize random walks as representing a way of exhaust-
ing all possible combinations of inputs that produce all outputs in the economy. Because 
the computation of any random walk-based measure involves the “value” of the flow 
between two given sectors, only the ties that are present will influence the magnitude of 
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the metric. Therefore, all random walked-based measures of an I–O system will reflect 
the true underlying production functions that link those sectors.

Network metrics that use random walks could identify those sectors that participate 
in all other sectors’ production functions more often and with a greater insidence. This 
is one of the most significant differences between simple measures of centrality (which 
would identify the “presence” of the tie, in an on–off fashion) and random walk-based 
measures of centrality, which also include an apt representation of the intensity of the 
tie.

Methods
Following Friedkin (1991) we present a means of measuring immediate effects and medi-
ative effects, in addition to the already defined total effects. Lee (2006) provides a more 
extended discussion about the equivalency between total, immediate and mediative 
effects and eigenvector, closeness and betweenness centrality, respectively. In this sec-
tion we discuss approaches that provide a better definition of mediative and immedi-
ate effects within a network, as presented in García Muñiz et al. (2008) and Blöchl et al. 
(2011). Table 1 presents our own attempt to establish the equivalence between the meas-
ures proposed by each author.

What follows is a discussion of two alternative conceptualizations and corresponding 
definitions for closeness and betweenness centrality. In each case, these metrics provide a 
measurement that more closely mimics flows within I–O networks than the more widely 
shared (Freeman 1978) versions. We have elected to implement the definitions set by 
Blöchl et al. (2011). The metrics proposed in García Muñiz et al. (2008) are the inverse 
of those considered in Blöchl et al. (2011). This does not alter the outcome in terms of–
for instance–sectoral rankings because the information transmitted by those metrics is 
equivalent.

One question remains. Is it appropriate to add the immediate and mediative effects 
to obtain a sort of total effects? Friedkin (1991)  refers to total effects in the context of 
social networks but we have not found any work in which such definition is applied to 
I–O networks. Our cursory examination shows that immediate and mediative effects 
could show opposite directions, producing ambiguous interpretation of total effects. 
This is perhaps a computational confirmation of our intuition, which is that immedi-
ate and mediative effects correspond to two substantially different processes, and their 
combination is–at least–questionable. This is certainly an area for further investigation.

Random walk centrality for immediate effects

Sectors that have effects transmitted over long sequences of economic relations have 
lower economic impacts than those sectors that have a large number of direct linkages. 

Table 1  Equivalency of measurements

García Muñiz et al. (2008) Blöchl et al. (2011)

Immediate effects Random walk centrality (analogous to closeness centrality)

Mediative effects Counting betweenness (analogous to betweenness centrality)
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The measure immediate effects is the reciprocal of the mean length of the sequences of 
relations from the jth sector to all others.

Consider a weighted network, either directed or undirected, with n nodes denoted by 
j = 1,..., n; and a random walk process on this network with a transition matrix M.6 The 
mjk element of M describes the probability of the random walker that has reached node 
i, proceeds directly to node j. These probabilities are defined by Eq. (6).

where aij is the (i, j)th element of the weighting matrix A of the network. When there 
is no tie between two nodes, the corresponding element of the A matrix is zero. In the 
case of I–O system as we implement it, A is a matrix of regional absorption coefficients. 
Equation (7) shows the random walk closeness centrality of a node i as a function of the 
inverse of the average mean first passage time to that node.

The mean first passage time (MFPT) from node i to node j is the expected number of 
steps it takes for the process to reach node j from node i for the first time (Eq. (8)). Ran-
dom walk centrality is the inverse of MFPT to a given sector. MFPT is the starting point 
in the computation of a random walk-based measure. Noh and Rieger (2004) define it 
as the expected number of steps a random walker who starts at source i needs to reach 
target j for the first time, Hij.

where Pijr denotes the probability that it takes exactly r steps to reach j from i for the first 
time. To calculate these probabilities of reaching a node for the first time in r steps, it is 
useful to regard the target node as an absorbing one, and introduce a transformation of 
M (in Eq. (6) by deleting its jth row and column and denoting it by M−j.

As the probability of a process starting at i and being in k after r-1 steps is simply given 
by the (i, k)th element of Mr−1

−j  , P(i, j, r) can be expressed as:

where mjk is a column of M with the element mkk deleted. Substituting Eq. (9) into equa-
tion(8), and vectorizing for computational convenience yields:

(6)Mij =
aij

∑n
j=1 aij

(7)CRWC
i =

n
∑n

j=1Hij

(8)Hij =

∞
∑

j=1

rPijr

(9)Pijr =
∑

k �=j

((Mr−1
−j ))ikmkj

(10)H(•, j) = (I −M−j)
−1e

6  In a random walk process (such as a Markov chain), for pair of “states”, there is a transition probability of going from 
the source node to the target node. The “transition matrix” M contains the probability of each step of the process of 
being at the source or the target. For detailed discussions, see Blum et al. (2015) and Schulman (2016).
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where H(•,j) is the vector of first passage times for a walk ending at node j, e is an n-1 
dimensional vector of ones and I is the identity matrix. The result is then used in Eq. (7). 
The calculation of random walk betweenness centrality is very computationally inten-
sive; for that reason we conducted most of our calculation at the 86-sector level of aggre-
gation7 rather at the 536-sector aggregation8, which proved to be excessively challenging.

Counting betweenness for mediative effects

Mediative effects capture the prominence of sectors as instruments of transmission of 
total effects. The assumption is that it measures the involvement of a sector in the paths 
connecting other sectors, as if they were intermediaries in the transactions among other 
sectors. The more paths a sector participates in, the more its relevance as a connector 
or conduit in the overall economy. Counting Betweenness generalizes Newman’s random 
walk for directed networks with loops. It measures how often a sector (a node in the net-
work) is visited on first-passage walks, averaged over all source-target pairs, Nst

ij  , and it is 
shown in Eq. (11).

where Njk(i) is a measure of the frequency with which a random walker reaches node i 
while going from j to k.9

Data and application to two cases
In the U.S., the commercial product IMPLAN® is regarded as an industry standard in 
terms of its widespread use as a tool for regional economic analysis. IMPLAN captures 
the inter-sector relationships with the parameter “gross absorption,” which is the total 
amount of each commodity that is needed for production in one sector.10 We decided to 
use “regional absorption,” which is the amount of the required inputs (gross absorption) 
purchased locally.11 This, we think, captures the relationships at the local level better 
than gross absorption, and is a better starting point in the identification of key sectors 
in the local economy. A sector’s relative importance in the local economy increases as it 
uses more locally sourced inputs.

•	 Gross Absorption describes the total amount of each commodity that is needed in the 
production of a sector’s output.

•	 Regional Absorption describes the amount of the required inputs that can be 
obtained locally (the total amount of production requirements that can be sourced 
within the model’s geography).

(11)CCB
i =

∑n
j=1

∑n
k �=j N

jk(i)

n(n− 1)

7  Equivalent to the 3-digit level of NAICS.
8  Full specification of the IMPAN dataset.
9  For a detail discussion of the calculations, see Blöchl et al. (2011). They provide the corresponding Matlab code, but it 
did not work as stated by the authors.
10  IMPLAN granted us special permission to use internal components of their software for the development of our 
research, for which we are grateful.
11  The relationship between gross and regional absorption is capture by “regional purchase coefficients”.
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We developed two different settings for the application of our algorithms. In the first 
case, we examine the economic structure of Monterey County, California. Here we show 
the differences between the more commonly used multipliers (total output and employ-
ment multipliers) and the centrality measures defined above. For the second application, 
we compare a metro area (Wayne County, Michigan, where the Detroit metropolitan 
region is located), a state (Michigan), and the whole country (United States). In this case, 
we show how the same centrality measures vary with the geographic scale and offer 
some interpretations.

At the time of the analysis, the IMPLAN system provided data at the local level, coun-
ties or zipcodes, using a 536-sector aggregation schema. Sectoral aggregations at 2- 
and 3-digit NAICS were also available. We produced datasets at all three levels: 2-digit 
NAICS (20 sectors); 3-digit NAICS (86 sectors); and native IMPLAN format (536 sec-
tors). At the 86-sector level, the base matrix is a grid which cells are 86 by 86 matrices, 
that is, its full dimension is 7396 by 7396, or almost 55 million cells; at the 536-sector 
level, the full dimension is over 82 billion cells. These values are a measure of the com-
putational demands under each aggregation schema.12 The results presented below 
correspond to the 86-sector, 3-digit NAICS structure because we think that is the best 
sectoral map for this application. There are enough sectors to distinguish between sub-
activities that would be masked under the 20-sector schema, but not so many sectors 
that would result in the processing of huge matrices. The 3-digit NAICS aggregation 
has the additional advantage of providing a realistic description of almost any local or 
regional economy, with relatively very few missing sectors.

Results and interpretation
When applying our algorithm to the datasets in Blöchl et al. (2011), we replicated their 
results for a variety of countries. Although, they do not report the actual values of their 
metrics, we are confident our algorithm performs as expected because the high concord-
ance between the rankings they report and our own computations. The R code is avail-
able on RPubs.13

For Monterey County, “Appendix 1” shows both sets of results, that is the traditional 
multipliers and the network metrics developed in our research. It shows the top-10 sec-
tors, ranked by each of the measures (Output multiplier, Employment multiplier, Ran-
dom Walk Centrality and Counting Betweenness). “Appendix 2” shows the ranking of all 
86 sectors for the same four measures.

For the metropolitan area of Detroit, the state of Michigan, and the United States, 
“Appendix 3”, “Appendix 4” and “Appendix 5” show the top ten sectors for Random Walk 
Centrality and Counting Betweenness, and the complete ranks in all three measures for 
all 86 sectors, respectively.

Both measures, Random Walk Centrality (RWC) and Counting Betweenness (CBET), 
are dynamic in nature as they capture the impacts on each sector as effects propagate 
throughout the local economy.14 Random walk centrality measures to what extent a 

12  IMPLAN has since shifted to a browser-based implementation and the data structure might have changed.
13  Contact the corresponding author for additional details.
14  In this context, I–O modelers can simulate “shocks” to the systems by, for instance, increasing or decreasing the value 
of output in a sector



Page 11 of 19DePaolis et al. Applied Network Science            (2022) 7:86 	

sector will be impacted earlier or later during the shock transmission process. Count-
ing betweenness is a measure of impedance in the flow of a shock. A shock will reach a 
sector with a higher RWC before a sector with lower value of RWC. A shock will transit 
faster–or will reach more sectors from–an industry with a larger value of CBET. The 
commonly used output and employment multipliers cannot capture these dynamic 
effects. In fact, if the objective is to identify systemic weakness in the local economy, the 
multipliers could be misleading. Compared to a game of falling dominoes, the multipli-
ers would be equivalent to the size of a single domino, while RWC and CBET would 
show how fast and in which direction the flow of falling dominoes will move, once the 
initial wave is set in motion (i.e. a shock).15

In the case of Monterey County, the sectors at the top of the RWC and CBET rankings 
are quite different from those for the output and employment multipliers. Professional 
and Scientific Services and Management of Companies are first and second for RWC and 
first and eight for CBET, while they are 32nd and 12th, and 41st and 50th for output 
and employment multipliers, respectively. One interpretation is that RWC and CBET for 
those sectors show that, although their output and employment levels are not very high, 
they do participate in many (or most) other sectors’ production functions. This is one 
way of assigning preeminence to a sector in the context of the local economy.

When comparing the results for the Detroit metro region, the state of Michigan and 
the United States, the rankings of RWC and CBET show some interesting effects. For 
example, sector #9, Utilities, has RWC ranking values 8, 10 and 13 respectively for each 
geography. That would imply that at the smaller geography (Detroit metro), the “Utili-
ties” sector plays a more important role than in the larger geographies (although it is 
quite important in all of them). The rankings in CBET show a similar effect. Conversely, 
for sector #20, Chemical Manufacturing, the effects seem to be opposite. The ranking is 
much lower for the Detroit metro area (70) than for the state and the nation (37 and 12, 
respectively). This means one of two things: (1) There is some production for the sector 
in the Detroit metro region but its output is consumed mostly outside the region, and 
therefore its local effect is lower; or (2) There is some local production but other local 
sectors utilize inputs from outside the region (this could be the result of the sectoral 
aggregation being too coarse to capture sub-sector effects). On the other end of the geo-
graphic scale, at the national level the Chemical Manufacturing sector provides inputs 
to all local production. That becomes meaningless when considering that “local” in this 
case refers to the whole of the United States.

The reader can derive similar inferences for all other sectors shown in “Appendix 5”. 
Regardless of the remaining ambiguity, the interpretation confirms that both RWC and 
CBET measures performed as expected in identifying those sectors that are more rele-
vant as contributors of locally sourced production. This attribute is not directly captured 
by output multipliers, which makes the identification of key sectors in the local economy 
more difficult.

15  The description of the process gives the appearance of dynamics, but in reality we are just computing the aggregate 
effects as if it were happening instantaneously. In our metrics, there is no explicit modeling of time.
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Closing remarks
Following the work of Blöchl et  al. (2011) and García Muñiz et  al. (2008), we imple-
mented random walk-based measures of centrality in I–O networks to identify key sec-
tors in the local and regional economy, using IMPLAN data and our own R code. The 
brief examination of the literature confirmed that the need for identifying key sectors 
remains and that improved network analysis techniques are apt instruments for the task. 
Thus we completed the three original objectives of our research (1) implement RWC 
and CBET in R; (2) test the implementation on subnational regional datasets; and (3) 
the presenting a preliminary consolidated version of network metrics from the existing 
literature.

Future explorations include the analysis of other applications of these network met-
rics, such as identification of industrial clusters.We posit that the measures developed 
in this paper could uncover previously unidentified clusters and analyze their evolution 
over time; both could be instrumental in informing future policy actions.

Appendix 1: Top 10 sectors by selected indicators for Monterey County

Order Output multiplier Employment 
multiplier

Random walk 
centrality

Counting betweenness

1 Securities other financial Social assistance Professional, scientific, 
tech svcs

Professional, scientific, 
tech svcs

2 Funds, trusts, other finan Misc retailers Management of com-
panies

Real estate

3 Electronics, appliances 
stores

Personal, laundry svcs Real estate Admin support svcs

4 Broadcasting Private households Admin support svcs Wholesale Trade

5 Food products Admin support svcs Wholesale Trade Construction

6 Personal, laundry svcs Educational svcs Construction Insurance carriers, related

7 Social assistance Nursing, residential care Government, non 
NAICs

Monetary authorities

8 Sightseeing transporta-
tion

Sports, hobby, book, 
music stores

Monetary authorities Management of com-
panies

9 Religious, grantmaking, 
similar orgs

Food svcs, drinking 
places

Securities, other 
financial

Securities, other financial

10 Telecommu-nications Ag, Forestry Svcs Food svcs, drinking 
places

Government, non NAICs

Appendix 2: Complete rankings for Monterey County

Sector ID Sector description Output 
multiplier

Employment 
multiplier

Random 
walk 
centrality

Counting 
betweenness 
centrality

1 Crop Farming 66 36 38 37

2 Livestock 20 66 49 48

3 Forestry & Logging 35 29 78 79
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Sector ID Sector description Output 
multiplier

Employment 
multiplier

Random 
walk 
centrality

Counting 
betweenness 
centrality

4 Fishing- Hunting & Trapping 70 19 79 72

5 Ag & Forestry Svcs 55 10 81 49

6 Oil & gas extraction 72 68 35 34

7 Mining 83 73 71 71

8 Mining services 58 53 37 31

9 Utilities 85 85 27 20

10 Construction 23 44 6 5

11 Food products 5 62 26 23

12 Beverage & Tobacco 36 70 64 64

13 Textile Mills 78 58 74 75

14 Textile Products 42 43 70 70

15 Leather & Allied 15 31 80 80

16 Wood Products 59 46 65 65

17 Paper Manufacturing 71 74 75 76

18 Printing & Related 47 37 56 57

19 Petroleum & coal prod 27 83 59 59

20 Chemical Manufacturing 79 84 46 44

21 Plastics & rubber prod 81 69 76 77

22 Nonmetal mineral prod 69 65 72 73

23 Primary metal mfg 61 61 69 69

24 Fabricated metal prod 74 55 60 60

25 Machinery Mfg 75 76 30 28

26 Computer & oth electron 65 71 36 35

27 Electircal eqpt & appliances 77 67 77 78

28 Transportation eqpmt 80 80 53 51

29 Furniture & related prod 60 47 58 58

30 Miscellaneous mfg 51 51 68 68

31 Wholesale Trade 54 60 5 4

32 Motor veh & parts dealers 67 40 33 36

33 Furniture & home furnishings 37 27 61 61

34 Electronics & appliances stores 3 11 66 66

35 Bldg materials & garden dealers 33 25 45 46

36 food & beverage stores 50 15 51 52

37 Health & personal care stores 26 20 39 39

38 Gasoline stations 34 34 43 43

39 Clothing & accessories stores 49 22 21 24

40 Sports- hobby- book & music stores 38 8 52 53

41 General merch stores 48 16 31 32

42 Misc retailers 17 2 41 41

43 Non-store retailers 68 35 15 16

44 Air transportation 41 64 32 33

45 Rail Transportation 29 59 62 62

46 Water transportation 86 86 86 86

47 Truck transportation 28 39 19 22

48 Transit & ground passengers 40 17 20 30

49 Pipeline transportation 45 63 73 74

50 Sightseeing transportation 8 32 18 15

51 Couriers & messengers 18 14 24 25

52 Warehousing & storage 30 33 28 27
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Sector ID Sector description Output 
multiplier

Employment 
multiplier

Random 
walk 
centrality

Counting 
betweenness 
centrality

53 Publishing industries 76 72 57 56

54 Motion picture & sound recording 82 77 34 26

55 Broadcasting 4 56 47 42

56 Internet publishing and broadcasting 62 82 12 13

57 Telecommunications 10 52 48 47

58 Internet & data process svcs 64 81 63 63

59 Other information services 43 75 50 50

60 Monetary authorities 16 45 8 7

61 Credit inmediation & related 19 48 14 14

62 Securities & other financial 1 13 9 9

63 Insurance carriers & related 57 54 13 6

64 Funds- trusts & other finan 2 18 55 55

65 Real estate 84 78 3 2

66 Rental & leasing svcs 63 49 17 21

67 Lessor of nonfinance intang assets 56 79 16 18

68 Professional- scientific & tech svcs 32 41 1 1

69 Management of companies 12 50 2 8

70 Admin support svcs 39 5 4 3

71 Waste mgmt & remediation svcs 53 57 22 17

72 Educational svcs 21 6 54 54

73 Ambulatory health care 25 30 67 67

74 Hospitals 22 38 82 81

75 Nursing & residential care 13 7 84 83

76 Social assistance 7 1 84 83

77 Performing arts & spectator sports 14 21 23 19

78 Museums & similar 11 26 25 83

79 Amusement- gambling & recreation 31 23 44 45

80 Accommodations 46 24 29 29

81 Food svcs & drinking places 24 9 10 11

82 Repair & maintenance 52 28 11 12

83 Personal & laundry svcs 6 3 42 40

84 Religious- grantmaking- & similar orgs 9 12 40 38

85 Private households 44 4 86 86

86 Government & non NAICs 73 42 7 10

Appendix 3: Top 10 sectors by random walk centrality for Detroit (Wayne 
County), State of Michigan, and the United States

Order Detroit Michigan United States

1 Professional- scientific and tech 
svcs

Professional- scientific and tech 
svcs

Professional- scientific and tech 
svcs

2 Management of companies Management of companies Management of companies

3 Real estate Real estate Real estate

4 Admin support svcs Admin support svcs Admin support svcs

5 Construction Construction Wholesale Trade

6 Wholesale Trade Wholesale Trade Construction

7 Petroleum and coal prod Insurance carriers and related Petroleum and coal prod
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Order Detroit Michigan United States

8 Utilities Monetary authorities Securities and other financial

9 Monetary authorities Securities and other financial Monetary authorities

10 Insurance carriers and related Utilities Oil and gas extraction

Appendix 4: Top 10 sectors by counting betweenness for Detroit (Wayne 
County), State of Michigan, and the United States

Order Detroit Michigan United States

1 Professional- scientific and tech 
svcs

Professional- scientific and tech 
svcs

Professional- scientific and tech 
svcs

2 Utilities Insurance carriers and related Insurance carriers and related

3 Real estate Real estate Real estate

4 Admin support svcs Admin support svcs Admin support svcs

5 Insurance carriers and related Utilities Utilities

6 Construction Construction Chemical Manufacturing

7 Wholesale Trade Wholesale Trade Wholesale Trade

8 Petroleum and coal prod Monetary authorities Securities and other financial

9 Management of companies Securities and other financial Management of companies

10 Monetary authorities Management of companies Monetary authorities

Appendix 5: Complete rankings for Detroit (Wayne County), State of Michigan, 
and the United States

Sector  ID Sector description Random walk centrality Counting betweenness

Detroit Michigan United States Detroit Michigan United States

1 Crop Farming 11 61 55 70 59 54

2 Livestock 78 69 58 76 64 55

3 Forestry and Logging 83 65 66 81 56 58

4 Fishing- Hunting and 
Trapping

82 68 69 77 79 77

5 Ag and Forestry Svcs 80 67 67 78 66 65

6 Oil and gas extraction 31 23 10 28 24 14

7 Mining 79 46 29 79 46 25

8 Mining services 63 35 14 60 33 13

9 Utilities 8 10 13 2 5 5

10 Construction 5 5 6 6 6 11

11 Food products 39 48 41 31 45 35

12 Beverage and Tobacco 71 63 62 68 62 61

13 Textile Mills 75 78 73 73 76 70

14 Textile Products 74 81 79 72 80 78

15 Leather and Allied 81 82 82 80 81 81

16 Wood Products 62 44 49 57 42 42

17 Paper Manufacturing 77 53 35 75 49 32

18 Printing and Related 57 54 45 55 54 44
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Sector  ID Sector description Random walk centrality Counting betweenness

Detroit Michigan United States Detroit Michigan United States

19 Petroleum and coal 
prod

7 20 7 8 20 12

20 Chemical Manufac-
turing

70 37 12 67 34 6

21 Plastics and rubber 
prod

33 41 31 29 40 31

22 Nonmetal mineral 
prod

76 34 42 74 32 41

23 Primary metal mfg 47 49 23 43 47 19

24 Fabricated metal prod 45 29 18 42 30 17

25 Machinery Mfg 18 55 21 15 55 22

26 Computer and oth 
electron

40 73 25 34 70 18

27 Electircal eqpt and 
appliances

35 64 51 32 65 52

28 Transportation eqpmt 23 33 34 17 29 28

29 Furniture and related 
prod

50 74 64 48 72 62

30 Miscellaneous mfg 66 75 65 62 73 64

31 Wholesale Trade 6 6 5 7 7 7

32 Motor veh and parts 
dealers

36 38 57 36 38 57

33 Furniture and home 
furnishings

69 76 78 66 74 76

34 Electronics and appli-
ances stores

73 79 81 71 78 80

35 Bldg materials and 
garden dealers

52 56 74 49 57 72

36 food and beverage 
stores

61 71 76 59 69 74

37 Health and personal 
care stores

44 45 63 41 48 66

38 Gasoline stations 55 58 72 53 58 71

39 Clothing and acces-
sories stores

25 30 50 25 31 51

40 Sports- hobby- book 
and music stores

60 66 77 58 67 75

41 General merch stores 34 36 56 33 35 56

42 Misc retailers 46 51 71 46 51 69

43 Non-store retailers 27 26 43 27 27 43

44 Air transportation 42 25 33 38 25 37

45 Rail Transportation 54 62 46 51 63 47

46 Water transportation 68 72 70 65 71 68

47 Truck transportation 16 17 27 16 17 30

48 Transit and ground 
passengers

17 18 28 39 44 46

49 Pipeline transporta-
tion

41 39 48 37 39 48

50 Sightseeing transpor-
tation

49 24 30 47 22 24

51 Couriers and mes-
sengers

24 22 32 24 19 33

52 Warehousing and 
storage

22 28 38 21 28 39

53 Publishing industries 59 42 52 56 37 50
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Sector  ID Sector description Random walk centrality Counting betweenness

Detroit Michigan United States Detroit Michigan United States

54 Motion picture and 
sound recording

51 47 47 44 41 38

55 Broadcasting 58 57 54 54 52 49

56 Internet publishing 
and broadcasting

21 15 16 19 11 15

57 Telecommunications 43 19 24 40 21 27

58 Internet and data 
process svcs

67 52 61 64 53 63

59 Other information 
services

56 43 40 52 43 40

60 Monetary authorities 9 8 9 10 8 10

61 Credit inmediation 
and related

19 14 19 18 15 20

62 Securities and other 
financial

14 9 8 11 9 8

63 Insurance carriers and 
related

10 7 11 5 2 2

64 Funds- trusts and 
other finan

64 59 68 61 60 67

65 Real estate 3 3 3 3 3 3

66 Rental and leasing 
svcs

20 21 26 20 23 29

67 Lessor of nonfinance 
intang assets

26 16 22 26 16 26

68 Professional- scientific 
and tech svcs

1 1 1 1 1 1

69 Management of 
companies

2 2 2 9 10 9

70 Admin support svcs 4 4 4 4 4 4

71 Waste mgmt and 
remediation svcs

29 27 36 23 18 36

72 Educational svcs 65 70 75 63 68 73

73 Ambulatory health 
care

72 80 80 69 77 79

74 Hospitals 84 83 83 82 82 82

75 Nursing and residen-
tial care

84 83 83 83 83 83

76 Social assistance 84 83 83 83 83 83

77 Performing arts and 
spectator sports

28 31 37 22 26 34

78 Museums and similar 30 32 39 83 83 83

79 Amusement- gam-
bling and recreation

53 60 60 50 61 60

80 Accommodations 32 77 44 30 75 45

81 Food svcs and drink-
ing places

13 12 17 13 13 21

82 Repair and mainte-
nance

15 13 20 14 14 23

83 Personal and laundry 
svcs

48 50 59 45 50 59

84 Religious- grantmak-
ing- and similar orgs

37 40 53 35 36 53

85 Private households 38 86 86 86 86 86
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