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Introduction
Many applications use networks to represent complex interactions between objects. A 
network is composed of two elements: objects (vertices) and their interactions (edges). 
The interaction between objects may express, for instance, road traffic (Gao et al. 2019), 
brain imaging (Elumalai et  al. 2022), proteins (Rao et  al. 2014), stocks (Sandhu et  al. 
2016), or semantic relations among words (Nachshon et al. 2022b).

The topology of a network that is constructed by real-world data is non-homogeneous, 
meaning that the amount of information that travels through each vertex varies from 
one vertex to another. Many networks, for example, exhibit a scale-free property, which 
means that they follow a power law distribution (Barabási 2009). In such a case, most of 
the vertices are connected to only a few other vertices, and a small number of vertices 
are connected to many other vertices. As a result, a small number of highly connected 
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vertices controls the flow of information in the network. By uncovering patterns in the 
interactions among vertices, we can identify the vertices with the greatest influence on 
network stability and robustness. These central vertices may explain phenomena such as 
the spread of disease among cities or the spread of information in a social network (Das 
et al. 2018; Grubb et al. 2021).

Intuitive understandings of centrality have generally taken three forms. In the first 
form, centrality measures the efficiency of a vertex in communicating with other vertices; 
the focus is the central object’s interactions with other vertices, with whom the central 
object is assumed to share information (Freeman 1978). In the second form, a central 
vertex is characterized by the feedback that it receives from its neighbors. The more 
that its neighbors are themselves central, the greater the centrality of the vertex in ques-
tion. This is the notion behind eigenvector, PageRank, and Katz centralities. In the third 
form, centrality is related to betweenness: objects are central in the sense that they stand 
between other objects and serve as a bridge over which information flows between those 
objects. This idea is based on the insight that a central vertex controls the information 
that flows in its environment Tutzauer (2007), Kivimäki et al. (2016). This third notion of 
centrality is what underlies the novel measure presented in this paper.

The quantification of a vertex’s level of centrality is classically based on a local or 
global topological property (Das et al. 2018). The local approach is represented by meas-
ures such as degree centrality and PageRank, which consider the vertex’s influence only 
on other vertices in the same neighborhood. The global approach, which uses meas-
ures such as closeness and betweenness, focuses on the centrality that depends on the 
network’s connectivity or on the ability to influence the entire network. In either case, 
global or local, the level of centrality is based on the information encoded by the edges, 
and novel methods have frequently combined global and local information into a uni-
fied measure (Shang et al. 2021; Sciarra et al. 2018; Ibnoulouafi et al. 2018). Recent work 
adds yet another layer to this local–global framework by considering the community 
structure (Rajeh et  al. 2021a, b [“Characterizing the interactions”]; Rajeh et  al. 2021a, 
b [“Investigating centrality measures”]; Rajeh et  al. 2022; Ghalmane et  al. 2019b). In 
what can be referred to as community-aware centrality, the main idea is to find clusters 
through a predefined algorithm and then estimate the vertex’s intra-community and/or 
inter-community impact. By making it possible to focus on intra-community or inter-
community links, the community structure facilitates both local and global perspectives. 
Some researchers have considered the impact of a vertex on the community structure 
without running a cluster algorithm as the first step. In the context of directed net-
works, for example, Curado et al. (2022) have proposed what they call the Directed Two-
Way Random Path Betweenness Centrality Algorithm. This novel measure, based on 
betweenness centrality, considers a vertex to be central if it controls transitions within 
or between clusters. Tulu et al. (2018) and Ghalmane et al. (2019a) offer similar examples 
of applying a centrality measure that already exists to the new context of community 
structure.

Our own measure is global in that it considers the shortest paths in the whole network, 
meaning that it takes into account the network’s connectivity in its entirety and assumes 
full knowledge of the network’s weights. On the other hand, our measure is local in that 
it focuses on the impact of a vertex on its neighborhood. Although the vertex may affect 
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other vertices in several different communities, all of those vertices belong to the same 
neighborhood.

As we have already pointed out, our measure relies on the notion of centrality as the 
control of information. Several measures based on this understanding of centrality 
already exist. Shortest path betweenness considers the flow of information along the 
shortest paths (Freeman 1978), an idea that Freeman et  al. (1991) expanded into flow 
betweenness centrality, which considers non-geodesic paths. The notion was pursued 
further by Newman (2005) and Brandes and Fleischer (2005), who developed random-
walk betweenness and electric current flow betweenness, which considers the contri-
bution of all paths between the source and target in computing the flow of an electric 
current. Notably, Bubboloni and Gori (2022) proposed a flow betweenness centrality 
that considers the amount of information that gets lost if it is impossible to pass through 
a given vertex.

In offering Local Detour Centrality (LDC), our novel centrality-based betweenness 
measure, we, too, take the third understanding of centrality as our starting point. Con-
sistent with the shortest path approach, LDC is a measure of connectedness constant 
that indicates the tendency of a given vertex to lie on the shortest possible path between 
other vertices. The LDC of vertex v indicates whether the possible path between vi 
and vj , i  = j is significantly shorter when v lies between them than when v does not lie 
between them. For the sake of simplicity, we compare only the shortest path to its alter-
natives. In this perspective, the vertex’s control of information flow in the graph means 
that the vertex systematically offers a faster way to move from one vertex to another 
compared to alternative vertices. The vertex in question does not necessarily offer the 
shortest possible path; instead, it offers the greatest difference between the short path 
that passes through it and the best alternative that does not pass through it.

This study presents two distinct innovations. From a general perspective, we offer an 
alternative centrality measure for weighted networks. This alternative is important to 
both the directed and the undirected case, since our measure takes into account a new 
invariant that captures whether or not there are shorter detours for a path along some 
edge. Second, in our demonstration of the use of LDC in a semantic network, we pre-
sent a psycholinguistic interpretation of the measure as a means of capturing the contex-
tual diversity (CD) of a word, meaning the extent to which that word occurs in different 
contexts.

It is possible to identify CD because of the way in which semantic context is expressed 
in the graph. A semantic context is a set of words that are interconnected by short pos-
sible paths; this set is connected by longer possible paths to words that belong to other 
semantic contexts (Newman 2018). These longer possible paths become shorter, how-
ever, when they run through words that belong to several contexts—in other words, to 
CD words, which bridge the various contexts to which they belong. For example, in a 
semantic graph in which the vertices are names of animals, we can assume that “wolf” 
and “cat” belong to two different contexts while “dog” belongs to both contexts. In this 
case, the sum of the weights from “wolf” to “dog” and then from “dog” to “cat” is shorter 
than the possible path from “wolf” to another animal and then from that other ani-
mal to “cat.” In other words, the possible paths that go through “dog” are shorter than 
the possible paths that go through other words. The word “dog,” then, functions as an 
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intermediary between vertices since it binds unrelated words from different semantic 
contexts. The novel measure presented in this study reflects the extent to which a word 
like “dog” mediates between any pair of words in its vicinity. The more a word functions 
as an intermediary—in other words, the more paths that a word shortens on the graph—
the greater the number of semantic contexts to which that word belongs.

The purpose of this demonstration is twofold. First, from a general perspective, we 
investigate whether LDC can be distinguished from existing centrality measures. Sec-
ond, within the context of semantics, we examine whether LDC can measure CD in a 
semantic graph. We validate our new measure psychologically as we control for fre-
quency, referring to findings that high CD words are processed faster than low CD 
words in tasks involving lexical decision, word naming, and recognition (Adelman et al. 
2006; Brysbaert and New 2009; Johns et  al. 2012; Baayen 2010; Caldwell‐Harris 2021; 
Steyvers and Malmberg 2003; Lohnas et al. 2011). In brief, CD words are associated with 
greater accessibility. We test this relationship in two ways. First, we examine whether 
CD words are retrieved more quickly than non-CD words in a semantic memory task. 
Second, we explore the extent to which a CD word facilitates the retrieval of the words 
that follow it. We posit that once a CD word has been retrieved, the fact that it belongs 
to many contexts should make it easier to retrieve the next word.

In sum, we expect to find an effect of CD on the level of accessibility. Here it is worth 
noting two fundamental differences between our study and the existing literature on CD. 
Our work focuses on semantic memory in a serial task, while most of the literature deals 
with episodic memory, and in most cases, a non-serial task. We discuss these differences 
in greater detail in our concluding section.

The remainder of this paper is organized as follows. After we describe related work on 
centrality measures in our first section, we devote our second section to an introduction 
of LDC. The third section presents our case study data, and the fourth section examines 
how LDC differs from measures that have already been proposed. The fifth section pre-
sents LDC as an expression of CD words and examines the relationship between CD and 
frequency. The sixth section investigates the relation between LDC and accessibility to 
information stored in memory. The final section offers some conclusions.

Related work
Each centrality measure that appears in the work related to our study falls into one of 
the three intuitive understandings of centrality that we have already described. Degree, 
closeness, and number of triangles capture the extent to which a word is close to other 
words. PageRank captures feedback centrality. Betweenness and LDC capture the extent 
to which a word functions as an intermediary. We will examine empirically the extent 
to which LDC differs from all these other measures, including betweenness, with which 
LDC shares the same notion of centrality, and then we will examine the robustness of 
these differences. To do this, we must first introduce the measures.

Degree

For a directed graph G and the vertex vǫV  , the in-degree of vertex v refers to the number 
of arcs that incident from v. The out-degree refers to the number of arcs that incident to 
v.
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Closeness

Closeness is the inverse of farness, which is defined as the mean of the shortest paths 
to all other vertices (Borgatti and Everett 2006; Freeman 1978). Closeness can be inter-
preted as the expected time of arriving at a word through the graph’s shortest paths. The 
gist of this metric is to assign more importance to the vertices that are closest. The defi-
nition is as follows:

where δ(v,u) represents the shortest path between v and u . This measure takes weight 
into account by averaging the shortest paths that emerge from v.

The number of triangles

The number of triangles calculates the number of undirected 3-cliques for each vertex in 
the graph. This measure is used to detect vertices that belong to numerous cliques. It is 
worth noting that this measure is closely related to the clustering coefficient.

PageRank

The basic idea of the PageRank algorithm, first introduced in a Google paper (Brin and 
Page 1998), is that a central vertex is determined not only by the number of incoming 
edges (in-degree) but also by the level of importance of the incoming vertices. T repre-
sents the set of vertices, Nu represents the number of vertices to which vertex v points, 
and SV  represents the set of vertices pointing to vertex v. Finally, α is the damping factor 
of the probability of jumping from a given vertex to another random vertex in the graph. 
PageRank is computed as follows:

While LDC may be compared with eigenvector centrality for undirected graphs, here 
we focus exclusively on directed graphs. The systemic comparison of centrality measures 
in an undirected graph is a subject for further research.

Betweenness

Shortest path betweenness was introduced by Freeman (1977) in order to quantify the 
extent to which a vertex tends to be on the shortest paths between other vertices—in 
other words, to serve as an intermediary. Betweenness for a vertex v is defined as follows:

where σij(v) represents the number of shortest paths between i and j that go through v, 
and σij represents the total number of shortest paths between i and j. Brandes and Fleis-
cher (2005) extended this idea to take into account all possible paths, not just the short-
est ones, between two vertices.

(1)C(v) = N−1

u δ(v,u)

(2)PR(v) =
∑

u∈SV

PR(u)
Nu

+ 1−α
T

(3)γ (v) =
∑

i �=v �=j∈V

σij(v)

σij
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Local detour centrality: definitions and examples
We begin with the main definition and essential notation of this study:

Definition  Let G = (V ,E,w) be an edge-weighted, directed graph, where w(vi, vj) rep-
resents the weight from vi to vj . We denote by δ(vi, vj) the shortest path from vi to vj as 
given by Dijkstra’s shortest path algorithm. For any vertex v,

a.	 Let L = {v1, v2 . . . vn}  such that any vi ∈ L if  δ(v, vi) ≤ r or δ(vi, v) ≤ r . The number  
r = 1

|V (G)|
∑

vi,vj∈V
δ
(
vi, vj

)
 is called the threshold.

b.	 Let Gv ⊂ G be the complete graph with V (Gv) = L , endowed with edge-weights 
w
(
vi, vj

)
= δ

(
vi, vj

)
.

c.	 Let Gv =
(
V ,E′,w′) be the complete graph above, where the new weights w′ are 

given by the following:

d.	 The local detour centrality (LDC) of the vertex v is defined as follows:

In other words, Gv denotes the shortest paths matrix (L× L) in the vicinity of v when it 
is possible to pass through v , and Gv  denotes the shortest paths matrix (L× L) in which 
the short paths are constructed by Gv  and the distance to and from v receives the maxi-
mum value of the graph. We then perform an element-wise subtraction of the matrix Gv  
from matrix Gv such that the higher the value, the longer the shortest paths in Gv  com-
pared to the shortest paths in Gv . Thus v binds unrelated objects in its local environment. 
Note that the time complexity of Dijkstra’s shortest path algorithm is O(

(
E + VlogV

)
 

and that it is repeated for each vertex in V, making the overall time complexity 
O(VE + V 2logV ) . Indeed, the term (E + VlogV ) can be reduced to (

√
E +

√
Vlog

√
V ) , 

since for each vertex v the Dijkstra’s shortest path algorithm on the network in which the 
weight to and from v is the maximum weight (see statement c above) can be done on a 
subset of vertices; the free parameter r influences the size of that subset.

In sum, vertex v will be considered an intermediary based on a comparison between 
the shortest paths linking each pair of vertices in the local environment of v , given that 
it is possible to pass through v , and the shortest paths linking those vertices, given that 
it is not possible to pass through v . A vertex constitutes a local intermediary if the paths 
are shorter when they pass through v . In Fig. 1, for example, the LDC of vertex A in (a) 
is lower than the LDC of vertex A in (b), even though the weights going in and out of 
A are shorter in (a) than they are in (b). The LDC is higher in (b) because A more sig-
nificantly shortens the path from B to C than does the second shortest path between the 
two points (i.e. B-D-C).

This attention to the weight of the edges constitutes the main distinction between 
both forms of betweenness centrality and LDC. Neither short path betweenness nor 
flow betweenness is affected if there is a short detour that bypasses a central node, but 

w′(vi, vj
)
=

{
maxvk ,vl∈V (δ(vk , vl)) vj = vorvi = v

δ
(
vi, vj

)
otherwise

(4)LDC(v) = 1
|L|

∑
e∈E′

(
w′(e)−δ(e)

)
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LDC becomes much smaller when such a bypass is readily available. While short path 
betweenness and flow betweenness consider the amount of information that travels 
through a vertex, LDC considers the extent to which the traffic would have deteriorated 
had the path through the vertex been interrupted.

Our main focus is on the comparison between the shortest paths linking each pair of 
vertices, given that it is possible to pass through v , and the shortest paths linking those 
vertices, given that it is not possible to pass through v . For an unweighted network, the 
distance between any pair of adjacent vertices is either 0 or 1. In such a case, the length 
of the shortest path from i to j is defined as the number of edges that constitute the path. 
Thus, the comparison holds true for the number of edges that can pass through v and the 
number of edges that cannot pass through v.

An important property that we applied in LDC is locality, which figures in a measure 
we call local intermediateness. This measure reflects to what extent v functions as an 
intermediary within the group of R-neighbors sufficiently close to v . The degree of close-
ness to v is defined by an upper bound, a free parameter that determines the R-neigh-
bors of v on which the intermediateness is calculated. For our purposes, we define the 
R-neighbors of v as the set of vertices whose distance from v is smaller than the average 
distance in the graph. See the Additional file 1: Appendix for additional results on how 
different thresholds of the free parameter change the extent to which LDC resembles 
other centrality measures.

Case study: LDC as contextual diversity in a semantic network
In this section, we aim to examine empirically the relationship between the proposed 
measure and centrality, and we will discuss whether LDC is indeed different from other 
centrality measures. Then we will demonstrate a possible use of LDC in semantic net-
work. As a first step, we introduce our data and graph construction.

Data and tools

The experiment was conducted on two groups (N = 2047), both consisting of native 
Hebrew speakers. One group was recruited from the Hebrew University of Jerusalem 
(HUJI: N = 691; M:F = 1:1.002; mean age = 24.6  years; range: 18–39); the members of 
this group received coupons for coffee. The second group (P4A: N = 1356; M:F = 1:1.96; 
mean age = 29.07 years; range: 18–40) was recruited through the panel4all website, and 

Fig. 1  Toy example for local detour centrality
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participants were compensated with gift certificates from the panel4all organization. The 
ethics committee of the Department of Psychology at the Hebrew University of Jerusa-
lem approved all experimental procedures.

Participants were given one minute in a category fluency test (CFT); the task was 
to produce as many unique words as possible within the semantic category of animal 
names. Participants from HUJI were recorded on a Philips DVT4010, and soundtracks 
were transcribed with the PRAAT program (Boersma and Weenink 2021), which gave us 
the words as well as the time signatures for the beginning and end of each word. Partici-
pants from P4A were recorded on a phone application, and these soundtracks, too, were 
transcribed via PRAAT.

Two lists were generated for each participant: a list of words and a list of timestamps, 
with each timestamp indicating the start time of the word’s retrieval. The timestamps 
start at 0, indicating the beginning of the recording, and end at 60.

All of the Python code, raw data and other supplementary material are publicly avail-
able via the Open Science Framework (Cohen 2022).

We will now describe how we construct the semantic graph based on the dataset 
we have just presented. Let G = (V ,E) be an edge-weighted and directed graph, with 
V = {v1, v2 . . . vn} a set of vertices and E = {(vi, vj)} a set of edges or links between words 
vi and vj in V. The words are the vertices, and the edges reflect the relationship between 
words. The R-neighbors of vertex v are the group of vertices at a distance ≤ R from v . 
The weight w

(
vi, vj

)
 is based on the assumption that the closer the semantic relationship 

between two words, the faster the transition between these two words (Collins and Lof-
tus 1975).

The weights of the edges are based on Nachshon’s proposal (Nachshon et al. 2022b) 
and are calculated by a “distance” function that assumes, as expected for a metric, 
that the “distance” is non-negative. However, we do not assume symmetry such that 
w
(
vi, vj

)
 = w

(
vj , vi

)
 . We also allow violation of the triangle inequality. Thus, our “dis-

tances” do not constitute a true metric.
Our “distance” function calculates the weights of the edges as follows. For any ordered 

pair of vertices vi, vj , p = p(s) is a sublist of participant s; the sublist starts at vi and ends 
at vj and denotes the amount of normalized time that it took s to traverse from vi to 
vj . Here, each timestamp was normalized by the number of words that s produced. The 
“distance” function has two free variables that determine the upper and lower bounda-
ries, WS (window size) and MS (minimum subjects):

1.	 The upper boundary window size (WS) which is an integer defines the maximum 
number of words between viandvj . The sublist p is therefore taken into account when 
the number of words between vi and vj is less than or equal to the number WS.

2.	 MS is a number defining the lower boundary, which is the minimum number of p’s 
containing vi and vj  in that order, and with at most WS words between them.

Let P be the  set of the amount of times it took any p to traverse from vi to vj up to 
WS words. Then, the weights between the ordered pair vi and vj is defined as being 
the median of the numbers in the set P, if |P|> MS. Otherwise, there will no distance 
between vi and vj is defined. In other words, a distance is well-defined iff |P|> MS. Given 
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a path on the graph, its length will be the sum of the weights (or distances) of the edges 
composing it, as defined above.

Note that not every pair of vertices i,j gets a weight, only those pairs that at least MS 
subject retrieved i and then j when the number of words in-between them is at most 
WS. See the Additional file 1: Appendix for complementary analyses showing how the 
network structure (e.g., network diameter, assortativity, and density) changes as a func-
tion of WS and MS.

Differentiation
As we have already pointed out, each centrality measure falls into one of the three ways 
that centrality has been intuitively understood. Centrality as efficiency is reflected in 
degree, number of triangles, and closeness; centrality as feedback is reflected in PageR-
ank; and centrality as control is reflected in betweenness and our own measure, LDC. 
We will examine empirically the extent to which LDC differs from all these other meas-
ures, including betweenness, with which LDC shares the same notion of centrality, and 
then we will examine the robustness of these differences.

To study these questions, we performed a correlation test between every possible 
pair of centrality measures. All the analyses were performed on the set of vertices that 
received a value for each centrality measure. Additionally, the correlation between each 
pair of centrality measures was tested on a range of two parameters of the distance func-
tion that we have already introduced. The first parameter, MS (minimum subjects per 
edge), comprises the values [3,5,7,9,11,13,15,17,19,21]. The second parameter, WS (win-
dow size), or the maximum number of words that determine the distance between a 
given pair of words, comprises the values [1, 2,…,9]. Note that all networks were built 
by the lists of words that the subjects provided. However, each network has a distinct 
set of weights since the weights of the edges are determined by the free parameters WS 
and MS. Words were excluded if one of the two centrality measures assigned a value 
greater or smaller than 2.5SD from the mean. Figure 2 illustrates the number of vertices 
on which the correlation test was performed, with each cell representing the number of 
vertices for a pair of parameters MS and WS. In Fig. 3, each matrix represents the corre-
lations between a pair of centrality measures, with the x-axis representing a range of MS 
and the y-axis representing a range of WS.

As Fig.  3 indicates, the correlations between LDC and the other centrality meas-
ures are relatively low. In particular, as the window size (WS) in the distance function 
increases, the correlation between LDC and the other measures decreases. This pattern 
appears only in the matrices that include LDC and is therefore unique to the correlation 
between LDC and the other measures.

We performed a cluster analysis to determine whether LDC is linked to the other 
measures and, if so, to which specific ones. In addition, we used an anomaly detection 
test to examine the extent to which LDC is different from the other measures. The clus-
ter analysis and anomaly detection tests were performed via the Scikit-learn package in 
Python (Pedregosa et al. 2011).

In the cluster analysis, hierarchical clustering merged vertices together one at 
a time, in a series of sequential steps, to result in homogeneous clusters. The goal 
was to increase within-group homogeneity and between-group heterogeneity. An 
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agglomerative hierarchical cluster algorithm defined each vertex as a cluster, and in 
each iteration, clusters were merged to create a more significant cluster, with vertices 
in the same cluster more similar and vertices in different clusters more dissimilar. All 
clusters were merged into a single cluster at the end of the process. In this analysis, 
no assumption was made regarding the number of clusters. The distances between 

Fig. 2  Vertices on which the correlation test was performed. Each cell represents the number of vertices for 
a pair of parameters MS (minimum subjects per edge) and WS (window size). The x-axis denotes the range of 
MS values, and the y- axis denotes the range of WS values. The color highlights the number of vertices. As the 
cells increase in redness, the number of vertices decreases

Fig. 3  Correlations between pairs of centrality measures. Each plot represents a correlation matrix between 
a pair of measures. The x-axis denotes the range of MS values, and the y- axis denotes the range of WS values. 
The color highlights the sign and magnitude of Spearman coefficients. The redder a cell is, the closer the 
correlation is to zero. The bluer a cell is, the closer the correlation is to one
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groups were the arithmetic mean distances between all the clusters’ vertices (i.e., 
mean linkage).

The input for the cluster analysis was based on the Spearman correlation matrix 
between the measures. The correlation distance between two points was calculated as 
1− |r| where r denotes the Spearman correlation between two points.

Overall we performed the analysis for a range of window size (WS); in other words, 
the distances were set for a range from 1 to 9 of maximum words between any pair of 
words. For a given WS value, we analyzed the two values of 11 and 13, closest to the 
median (12) of the parameter MS, the minimum number of subjects per edge. Because 
the two analyses yielded similar results, here we present only the analysis for MS = 13.

We performed the analysis on nine correlation matrices, as reflected in Fig. 5. Next, 
we used dimensionality reduction as a preprocessing step to compute the cluster 
analysis via an agglomerative hierarchical cluster. We used PCA to reduce the dimen-
sions. Out of five principal components (PCs), PC-1 and PC-II contributed 89.7% to 
93.9% of total cumulative variability. Therefore, both PC-I and PC-II were the axes 
of the final matrix in which we performed the agglomerative hierarchical clustering 
using the average criterion, which takes the average of the distances of each observa-
tion of the two clusters. Next, we produced a dendrogram that visualizes the group-
ing history (see Fig. 4). The threshold we chose was 0.4. In all cases, the number of 
clusters was two. The results indicate that the larger the window size is, the further 

Fig. 4  Visualization of the hierarchical clustering. Each plot represents a dendrogram for a given WS value. 
MS was equal to 13 in all cases
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LDC is from the other centrality measures. By contrast, out-degree, PageRank, and 
the number of triangles are separated by a shorter distance as the size of the win-
dow increases. In addition, we found that within the context of the existing measures, 
LDC and closeness are relatively similar to one other (Fig. 5).

Finally, we examined the extent to which each measure deviates from the other 
measures. To this end, we ran IsolationForest, an unsupervised algorithm that assigns 
an anomaly score to each measure. The algorithm is based on a set of decision trees 
(N = 500) and assesses how the measure in question was isolated from the others. The 
closer the score of p is to one, the more p is different from other points. The closer the 
score of p is to zero, the more likely p is a normal point.

As Fig. 6 shows, LDC is above 0.5 in most cases. The greater the WS value is, the 
higher is the anomaly score of LDC. The opposite pattern can be found for between-
ness: the lower the WS value is, the greater is the anomaly score of betweenness. In 
sum, an initial comparison indicates that LDC is different from some of the other 
measures. It can therefore be concluded that LDC captures a feature of centrality that 
is not fully expressed by closeness, betweenness, degree, number of triangles, and 
PageRank. See the Additional file 1: Appendix for additional results on how different 
thresholds of the free parameter change the extent to which LDC is similar to other 
centrality measures.

Fig. 5  Analysis on nine correlation matrices. Each color denotes a different cluster. The x-axis and y-axis are 
PC-I and PC-II, respectively. Each plot represents a space for a given WS value, and MS was equal to 13 in all 
cases
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LDC as a measure of contextual diversity
As we have already mentioned, long possible paths exist between groups of words that 
belong to different contexts, but the presence of a word that belongs to several contexts 
results in shorter possible paths between those contexts. The word that belongs to sev-
eral contexts functions as an intermediary, and it may do so either because it belongs to 
a large number of semantic contexts or because it belongs to only a few contexts, each 
containing a large number of words. The novel measure presented in this study reflects 
the extent to which a word mediates between any pair of words in its vicinity. The more a 
word functions as an intermediary—in other words, the more paths that a word shortens 
on the graph—the greater the number of semantic contexts to which that word belongs. 
LDC takes into account more than the simple number of contexts in which a word 
appears. Instead, different contexts are weighted more heavily than similar contexts. A 
word that appears in distinct yet similar contexts will have a lower value than a word 
that belongs to very different contexts, with the number of contexts remaining constant.

Our understanding of centrality means that our novel measure must reflect more than 
the number of contexts in which a word appears, a measure suggested by Adelman et al. 
(2006), Brysbaert and New (2009), and McDonald and Shillcock (2001). In our measure, 
different contexts are weighted more heavily than similar contexts. Given an equal num-
ber of contexts, we assign a lower value to a word that belongs to similar but distinct 
contexts than to a word that belongs to very different contexts. A similar approach, but 
not in regard to a semantic network, was suggested by Jones et al. (2012), who proposed 
the concept of semantic distinctiveness, the average dissimilarity across all of the docu-
ments in which the target word occurred. According to that study, semantic distinctive-
ness predicted more variance than CD and frequency in a word recognition task.

It has been suggested that degree can be used to identify CD words in a semantic 
graph. Degree consists of the number of edges that exist between a vertex, which rep-
resents a word, and other vertices (Hills et al. 2010; Sun and Pate 2017). But degree is 
highly correlated with frequency, as demonstrated in our study and others (Dorow et al. 
2004), and frequency and CD are not necessarily the same phenomenon (for a review, 
see Caldwell‐Harris 2021). For example, it has been found that CD words are recognized 

Fig. 6  IsolationForest to detect anomalies. The x-axis represents different centrality measures, and the y-axis 
represents the anomaly score. Each line represents the anomaly score for any centrality measure for a given 
WS value
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more quickly than words that are merely frequent, since words that belong to different 
contexts are more likely to appear in new contexts and are thus easier to access (Adel-
man et al. 2006). Additionally, since some edges may link words within similar contexts, 
degree—simply a count of the number of edges—does not necessarily capture the extent 
to which contexts are different. Our goal, then, is to offer a measure that expresses CD in 
a semantic graph that can be distinguished from frequency.

Results

As in the analysis we described in Sect. 4, we constructed 90 graphs, each one represent-
ing a different possible combination of the free parameters WS (window size), compris-
ing the values [1,2,…,9], and MS (minimum subjects per edge), comprising the values [3, 
5, 7, 9, 11, 13, 15, 17, 19, 21]. We will start with the relationship between the centrality 
measures and frequency (see Fig.  7). Alternative centrality measures are highly corre-
lated with log frequency: degree [M = 0.98, SD = 0.01], PageRank [M = 0.92, SD = 0.09], 
number of triangles [M = 0.98, SD = 0.01], closeness [M = 0.76, SD = 0.1], and between-
ness [M = 0.74, SD = 0.07]). By contrast, the mean correlation between log frequency 
and LDC was 0.58 (SD = 0.15). Additionally, as we will show later in this paper, the larger 
WS and MS are, the weaker is the correlation between log frequency and LDC. This 
finding reinforces the claim that alternative centrality measures express frequency and 
do not adequately reflect CD.

In this section, we have shown that the alternative existing centrality measures are 
strongly correlated with frequency. More particularly, we found that degree, which was 
proposed as a measure for CD, is perfectly correlated with frequency. This finding is 
undesirable in light of the literature that emphasizes the need to distinguish between CD 
and frequency (Adelman et al. 2006; Caldwell‐Harris 2021). In the next section, we will 

Fig. 7  Correlation matrices between a centrality measure and log frequency. Each plot represents a 
correlation matrix between a centrality measure and log frequency. The x-axis denotes the range of MS 
values, and the y-axis denotes the range of WS values. The color highlights the sign and magnitude of 
Spearman coefficients. The redder a cell is, the closer the correlation is to zero. The bluer a cell is, the closer 
the correlation is to one
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examine whether LDC also predicts accessibility to knowledge stored in memory when 
controlling for word frequency. Because the alternative centrality measures are highly 
correlated with frequency, we will not examine their performance.

Psychological validation: contextual diversity and accessibility
This section examines two questions. First, while the literature demonstrates that CD 
words are easier to access and therefore more easily recalled (Caldwell-Harris 2021), 
here we examine whether CD words as measured by LDC, are easier to access in a 
semantic memory task. In other words, are CD words recalled faster than non-CD 
words? Second, we examine whether CD words facilitate the retrieval of the words that 
follow it. Is the retrieval of a word that follows a CD word faster than the retrieval of a 
word that follows a non-CD word?

Measure

For any vertex v ∈ V  and all the paths p ∈ P , let U be the set of paths pi, . . . , pn where 
v
p
l  is the l-th vertex in the path p. We calculate the average time (not normalized) that it 

takes to move from/to v in U as follows:

Two clarifications are critical. First, as suggested by Nachshon et al. (2022b), we distin-
guish between possible and actual paths. LDC is constructed by possible paths, meaning 
paths that can be drawn on the graph by connecting vertices for which the distance is 
defined. By contrast, dt-from/dt-to are constructed by actual paths—in other words, the 
list of words that the participants in the task actually retrieved.

Second, to rule out the possibility that the correlation between LDC and df-from/df-to 
is trivial—namely, that both measures are highly dependent on the same information—
we distinguish between actual paths and random paths, which are shuffled lists of words 
from the actual paths. Note that the random paths preserve the frequency and number 
of words of each actual path. Our goal is to show that the correlation between LDC and 
dt-from/dt-to is significantly higher for the participants’ actual word sequences than for 
the random paths. This means that the correlation between LDC and dt-from/to results 
from the order of the words in the actual paths.

Results

Spearman correlation was calculated between LDC and dt-from as well as between 
LDC and dt-to. The correlation was calculated for a range of parameters of the 
distance function: window size (WS), meaning the maximum number of words 
between a given pair of words that constitute an edge [1, 2,…,9], and minimum 
number of subjects (MS), meaning the minimum number of subjects per edge 
[3,5,7,9,11,13,15,17,19,21]. Of 90 correlations between LDC and dt-to, 82.2% were sig-
nificant. For LDC and dt-from, 100% of the correlations were significant (see Fig. 9). 
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Figure 8 demonstrates some examples of the correlation between LDC and dt-from 
for a set of parameters WS: [2,7] and MS: [7,11,15].

Testing triviality

This section examines whether the correlations between LDC and dt-from/dt-to 
reflect a cognitive phenomenon rather than a trivial one. LDC and dt-from/to are 
highly dependent on the same information; our goal is to show that the correlations 
are significant only for lists of words generated by real participants.

Fig. 8  Six examples of the correlation between LDC and dt-from for WS: 2,7 and MS: 7,11,15. The x-axis 
denotes LDC and the y-axis denotes dt-from

Fig. 9  Triviality test for the correlation between LDC and dt-to and between LDC and dt-from. The color 
highlights the sign and magnitude of Spearman coefficients. The bluer a cell is, the closer the correlation is to 
zero. By contrast, red indicates negative values. The number of stars indicates the level of significance. NT/T 
denotes whether the correlation is non-trivial/trivial
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To examine this issue, we distinguish between actual and random order. Actual order 
refers to the lists of words generated by real participants; random order refers to lists of 
words whose order is random.

Information about actual order is essential to the investigation of psychological phe-
nomena such as retrieval. A person who retrieves a list of words is not providing a ran-
dom sample from the distribution of word frequencies. Instead, the order of the words 
plays an essential role in free recall (Mandler and Dean 1969) and semantic models 
(Jones and Mewhort 2007). In our case, information about order is a fundamental fea-
ture in the semantic distance function, since the distances are determined by the amount 
of time it takes to pass from one word to another in an actual path. We expected the 
relationship between LDC and dt-from/dt-to to appear only in the participants’ actual 
lists of words and not in random lists; if the relationship appeared in random lists, too, it 
would reflect a trivial connection between LDC and dt-from/dt-to.

We began by estimating the correlations between LDC and dt-from/ dt-to for a ran-
dom order. Let T  be a set of paths and tS ∈ T  be a path of subject s , where tS contains 
sequence word tS1 to tSls and the length of tS is ls . First, let Tr be a set of trs  where trs  is a 
random order of the path t of subject s . Second, let Gr = (V ,E) , such that the distances 
between the vertices are defined by Tr . Third, based on Gr , Ĝr and Tr , calculate LWCr 
and dt-fromr /dt-tor. Fourth, let ρr denote the Spearman correlation between LDCr and 
dt-fromr or LDCr and dt-tor. The correlation ρr can be generated by repeating steps one 
through four N = 5000 times, and as a result Pr =

(
ρr
1, . . . , ρ

r
100

)
 denotes the set of cor-

relations obtained from the random orders. Finally, the distribution of Pr defines the null 
hypothesis, and the statistical significance is the probability of obtaining the real correla-
tion, obtained from the actual order, which is at most 5% at the null hypothesis.

The triviality was tested for any significant correlation between LDC and dt-from/
dt-to given the following range of parameters of the distance function: WS: [1, 2,…,9]and 
MS:[3,5,7,9,11,13,15,17,19,21]. In total, 27 out of 90 cases were significant and not triv-
ial; out of 34 significant correlations between LDC and dt-to, 79.4% were not trivial. For 
LDC and dt-from, out of 89/90 significant correlations between LDC and dt-to, 100% 
were not trivial (see Fig. 9).

Controlling for frequency and word location

Finally, we examined whether LDC predicts dt-from/dt-to even when controlling for the 
frequency of the word and the average location of the word in the lists that people pro-
duced. To this aim, we ran a robust linear regression for all cases (i.e., pair of parameters 
MS and WS) where the correlation between LDC and dt-from/dt-to was not trivial.

Many studies have shown that word frequency is a strong predictor for how quickly a 
word can be named (Forster and Chambers 1973) as well as for lexical decision-making 
(Scarborough et al. 1977), perceptual identification (Morton 1969), and recall (Brysbaert 
and New 2009). We found as well that for the set of words with a frequency higher than 
30 (N = 132), there is a consistent and significant correlation between log-frequency and 
df-from and between log-frequency and df-to (see Fig. 10).

In addition, we controlled the average location of the word, which maintains a posi-
tive correlation with dt-from and dt-to (see Fig. 10). As the participant progresses fur-
ther into the minute-long retrieval exercise, the transition time between consecutive 
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words increases, and as a result, words that tend to appear at the beginning of the list are 
characterized by a higher retrieval speed. By controlling word location, we can examine 
whether the effect of LDC on dt-from/dt-to exists even when the location is taken into 
account, and we can also see whether the effect of LDC with dt-from/dt-to is dependent 
on word location. In particular, we can examine whether a CD word facilitates retrieval 
even as the stream of associations progresses and the subject has difficulty retrieving 
additional words, or whether the effect of a CD word depends on the word’s location.

Using the statsmodels package in Python (Seabold and Perktold 2010), we analyzed the 
results with two robust linear regressions to assess the effect of LDC (continuous), log-
frequency (continuous), and word average location (continuous) on dt-to. To assess the 
effect on dt-from, we used a second model, as follows:yi = α + β1x1 ∗ β2x2 ∗ β3x3 + ε , 
where Yi is the independent variable dt-to or dt-from for word i, β1 represents the fixed 
effect LDC, β2 represents the fixed effect log-frequency,β3 represents the fixed effect 
mean location, and ε represents the residuals. All possible interactions were taken into 
account. Additionally, LDC, log-frequency, and average locations were standardized via 
Z-score. We ran each model for any significant correlation between LDC and dt-from/
dt-to given the following range of parameters of the distance function: WS:[1,2,…,9] and 
MS:[3,5,7,9,11,13,15,17,19,21].

As a first step, we tested multicollinearity by computing the variance inflation factor 
(VIF). Since log-frequency and average location are highly correlated, the mean VIF of 

Fig. 10  Spearman correlation between log-frequency, the average location of a word, dt-from, and dt-to
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log-frequency was above 2.5 (M = 3.56 25% = 2.72, 75% = 4.15), as was the mean VIF of 
average location (M = 3.85 25% = 2.59, 75% = 5.15). The average score of LDC was 2.19 
(25% = 1.49, 75% = 2.8). For more details, see Additional file 1: Fig. A1 in the Appendix. 
We therefore broke each model into two: in the first one, we removed log-frequency, and 
in the second one, we removed the average location. In total, we ran four models, two to 
predict dt-to and two to predict dt-from.

These are the results for the dt-to models. For the first model (independent variables: 
LDC and log-frequency), out of 27 non-trivial and significant correlations between LDC 
and dt-to, only two betas were significant. For the second model (independent variables: 
LDC and average location), out of 27 non-trivial and significant correlations between 
LDC and dt-to, only one beta was significant (see Fig. 12).

Next are the results from the dt-from models. For the first model (independent varia-
bles: LDC and log-frequency), out of 89 non-trivial and significant correlations between 
LDC and dt-from, 66 betas were significant. Naturally, the lower WS is, the lower is the 
number of vertices in the graph (see Fig.  1). When the cases in which WS = 1,2 were 
removed, 59 out of 70 were significant (see Fig. 12). For the second model (independ-
ent variables: LDC and log-frequency), 36 betas were significant. Note that the results 
are significant for the set of graphs with the highest number of vertices (see upper left 
corner of Fig. 11).

Regarding the effect of the interaction between LDC and the average location on dt-to, 
a significant interaction was found for 26 out of 90 cases. The effect of the interaction 
on dt-from was robust; out of 90 cases, 89 were significant (Fig. 12). In both cases—dt-
from and dt-to—the effect of LDC depends on the word’s location. In the first part of the 
stream of association (i.e., below the median location), LDC predicts dt-from/dt-to, and 
in the second part (i.e., above the median location), the relationship between LDC and 
dt-from/dt-to fades until it disappears (see Figs. 13 and 14). Additional file 1: Appendix 1 
presents the beta coefficients of log-frequency, mean location, and log-frequency inter-
action with LDC.

To identify the regions in the moderator measure (average location) where the condi-
tional effect of LDC on dt-from or dt-to were significant, we used the Johnson-Neyman 
floodlight analysis from the Python package PyProcessMacro (André 2021), a technique 
recommended by Spiller et al. (2013). We ran the floodlight analysis for every possible 
combination between WS and MS, a total of 90 cases. The direct effect of LDC on dt-to 
is on average significantly negative in 89 cases within the range of the interval values of 
the moderator average location, 4.93 (SD = 1.9) to 12.0 (SD = 2.36). The direct effect of 
LDC on dt-from is on average significantly negative in 90 cases within the range of the 
interval values of the moderator average location, 4.82 (SD = 0.62) to 14.08 (SD = 2.18).

Discussion and conclusion
LDC measures to what extent a vertex functions as a local intermediator, or, in other 
words, to what extent a vertex shortens possible paths between neighboring vertices. 
To arrive at this measure, we essentially subtract two matrices, one that includes the 
shortest paths given the set of vertices that are in the vicinity of v when it is pos-
sible to pass through v , and one that includes the shortest paths given the same set 
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of vertices when it is not possible to pass through v . The higher the value of v is, the 
more v binds unrelated words in its local environment.

From a general perspective, controlling the flow of information in the graph means 
systematically offering a faster way of moving from one vertex to another than is pos-
sible with alternative paths. In this broad context, further research might compare 
centrality measures in an undirected network or compare the performance of LDC to 
other betweenness centrality measures such as random-walk betweenness and cur-
rent flow betweenness.

LDC might also be extended to include non-geodesic paths as does flow between-
ness centrality. In this case, the comparison to alternative paths would be based not 
only on the shortest paths but on all paths passing through the vertex. In addition to 

Fig. 11  Beta coefficient between LDC and dt-to and between LDC and dt-from. The color highlights the 
sign and magnitude of the beta coefficients between LDC and dt-from/dt-to. The blue cell indicates a 
non-significant beta. By contrast, the redder the cell is, the greater the beta coefficient is. The number of stars 
indicates the level of significance. The a graphs reflect the model with the independent variables LDC and 
log-frequency; the b graphs reflect the model with the independent variables LDC and average location
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its use as a means of locating central vertices, LDC can also be applied as a way of 
detecting communities; this application would involve removing edges that are con-
nected to high betweenness centrality. Finally, an essential question that grows out of 
our work is the relationship between LDC and various notions of Ricci curvature for 
a network, such as Forman, Ollivier, Menger, and Haantjes. This question will need to 
constitute the subject of further research.

From the semantic perspective, this work is part of a study by Nachshon et al. (2022a), 
which attempts to  characterize the relationship between cognitive possesses such as 
retrieval patterns and the structure of the semantic network. Here we have focused on 

Fig. 12  Interactions between location and LDC on dt-to and between location and LDC on dt-from. The 
color highlights the sign and magnitude of the beta coefficients. A blue cell indicates a non-significant beta. 
By contrast, the redder the cell is, the greater the beta coefficient is. The number of stars indicates the level of 
significance

Fig. 13  Examples of interactions between LDC and average location on dt-to for WS: 2,4 and MS: 5,7,17. The 
x-axis denotes LDC, and the y-axis denotes dt-to
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the relationship between the psycholinguistic interpretation of our new measure as a 
means of capturing CD words, which is a network property, and accessibility to memory 
measured by df-from/df-to, which is a property of the cognitive process.

We have demonstrated that existing measures do not fully explain LDC because 
significant differences exist between LDC and other centrality-based relationships, 
namely out-degree, closeness, PageRank, and betweenness. While a centrality-based 
relationship such as degree maintains an almost perfect relationship with frequency, 
LDC’s relationship with frequency is weaker. These findings reinforce the claim that 
degree is not a good approximation for contextual diversity in a semantic graph.

Next, we offer a psychological validation of LDC by examining two ways in which a 
CD word affects retrieval processes in a serial semantic task. On the one hand, based 
on previous literature that shows high accessibility of CD words (Adelman et al. 2006; 
Brysbaert and New 2009; Johns et al. 2012; Baayen 2010; Caldwell‐Harris 2021; Steyvers 
and Malmberg 2003), we expected faster transitions to a high CD word in our study as 
well. On the other hand, a previous study suggested that the high accessibility found 
in non-serial tasks may not be generalizable to all retrieval tasks, and specifically that 
high accessibility is not observed in a serial recall, or episodic, task (Guitard et al. 2019). 
These latter findings weakened our expectation of finding significant results regarding 
the effect of LDC on dt-to. The results mostly indicate a non-significant and/or trivial 
relationship between LDC and dt-to when controlling for frequency or average loca-
tion. However, the interaction between LDC and average location yields better results 
in predicting dt-to than when LDC is considered alone. As demonstrated by floodlight 
analysis, the interaction between LDC and average location indicates that the negative 
relationship between CD and retrieval speed appears primarily at the beginning of a 
serial task. Therefore, although it is inconclusive on this subject, our study is consist-
ent with previous findings that significant results in a non-serial task do not necessarily 
appear in a serial task (Guitard et al. 2019).

Fig. 14  Examples of interactions between LDC and average location on dt-from for WS: 2,7 and MS: 7,11,15. 
The x-axis denotes LDC and the y-axis denotes dt-from
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On the question of whether CD words facilitate retrieval of the upcoming word, we 
found that the correlation between LDC and dt-from is significant and not trivial, par-
ticularly when we controlled for log-frequency. When we controlled for average loca-
tion, the result was weaker but significant for the set of graphs with the highest number 
of vertices. Additionally, the interaction between average location and LDC leads to a 
robust effect on dt-from. The effect of LDC on dt-from is apparent at the beginning of 
the stream of associations and weakens over time as approximated by average location. 
This finding highlights the difference between serial tasks, which involve an ongoing 
retrieval process, and non-serial tasks, which involve other forms of retrieval. In a serial 
task, word location as a mediating factor in the relationship between CD and retrieval 
speed may reflect the importance of the subject’s retrieval history. One possibility is that 
as the subject progresses in the task, the retrieval of the next word is conditioned by the 
retrieval history that preceded it, and the history masks the relation between CD and 
retrieval speed. Another factor may be the fatigue that is manifested in the difficulty of 
retrieving additional words as the task progresses; perhaps this fatigue masks the rela-
tionship between CD and retrieval speed as the subject progresses in the task. Further 
research may identify the factors that mediate the relationship between CD and declin-
ing retrieval speed as approximated by the average location.
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