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Introduction
Complex networks have a wide range of applications in biology, social science, and other 
fields. The role of a node involves the aggregation of structural features or functions in 
complex networks. In network topologies, the roles of nodes include star-center, star-
periphery, and clique-member (Rossi and Ahmed 2014). On the other hand, in directed 
three-node motifs, according to the direction of the link, a node can be simply assigned 
to the role of source or sink. Role discovery is the task of assigning role labels to nodes 
(Rossi and Ahmed 2014). Discovering the roles of nodes involves creating role labels 
on nodes, providing a more intuitive understanding of network structures, and eluci-
dating the mechanisms and hidden higher-order knowledge of large-scale complex sys-
tems. Role discovery is vital for graph mining and exploratory analysis, and it is helpful 
in many practical applications. For example, in the detection of anomalies in technical 
networks such as IP traces (Mahadevan et al. 2006; Rossi et al. 2013a), nodes that do not 
fit the normal role (i.e., the usual structural pattern) can be identified and removed by 
assigning them the role of anomaly (Rossi et al. 2013b). In online social networks, users 
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having the role of “star-center” can be regarded as influencers, and they are considered 
to be highly effective in delivering advertisements.

A single node may have multiple roles simultaneously in real-world networks, depend-
ing on the network construction strategy. In temporal networks, a node’s structure (or 
function) may change over time, which implies that its roles may thus change over time. 
Depending on the granularity of partitioning, multiple roles can be observed within a 
single time slice (Rossi and Ahmed 2014). For example, in a human-relationship network 
in which people are nodes, and the connections between those people are links, a node 
that plays the role of a team leader in a company during weekdays forms a local structure 
with a tree topology (reflecting the structure of the company). In contrast, that node 
could also have the role of clique-member on weekends in a family where the members 
may have dense interactions. In addition, in a lexical co-occurrence network, if the part 
of speech of a lexeme is used as a role label, a lexeme with multiple parts of speech will 
have multiple roles. The phenomenon of multiple roles of nodes exists in a broad range 
of domains, not exclusively in temporal networks. Essentially, this phenomenon is deter-
mined by the local structures of the network. Suppose one node appears in multiple 
local structures and plays different roles. In that case, multiple role phenomena can be 
observed on a global scale.

Although previous research has acknowledged the multiple-role phenomenon, few 
specific approaches to the estimation of multiple roles have been presented (Rossi and 
Ahmed 2014; Liu et al. 2021). In earlier work (Liu et al. 2021), we proposed a method to 
predict multiple roles with an adversarial learning approach by treating the multiple-role 
discovery task as a multi-label classification problem. Specifically, that method applies 
struc2vec (Ribeiro et al. 2017) to gain the structural embedding features of nodes from 
network structure and then feeds the embedding features to a domain adversarial learn-
ing framework to predict the multiple role labels. In this study, we aim to extend our 
previous method (Liu et al. 2021) to develop a versatile framework that can predict mul-
tiple roles within the scenario of real networks. First, to confirm the flexibility of our pre-
viously proposed method (Liu et al. 2021), we replaced struc2vec with two other popular 
structural embedding methods, GraphWave (Donnat et al. 2018) and role2vec (Ahmed 
et al. 2020). Second, we further tested the effectiveness of selecting the source networks 
and validation networks through the community extraction method as an alternative 
to random sampling. In this paper, we apply the proposed method to real-world net-
works (Wikipedia network and Blogcatalog network (Zhang et al. 2019)) to validate its 
accuracy.

Related work
Role discovery

Role discovery is the task of clustering nodes with a predefined equivalence into classes 
with different roles. Here, equivalence can be divided into two major types: structural 
equivalence, which is defined by the network structure, and feature equivalence, which is 
extracted from the features (or functions) of the nodes. Roles can be divided into graph-
based roles and feature-based roles based on the definition of each major equivalence. 
Methods aimed at role discovery obtain a vector representation of nodes from the net-
work structure, cluster nodes by specific similarity criteria, and assign role labels to each 
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cluster. In the task of role assignment, the conventional methods can be divided into 
three types: hard single-role discovery (assigning each node to one specific role), soft 
single-role discovery (assigning each node to one of a distribution of roles), and multi-
ple-role discovery (assigning each node to one or more roles) (Rossi and Ahmed 2014). 
A large number of works have attempted hard single-role discovery. The most famous 
approach is the block model (Arabie et al. 1978; Holland et al. 1983; Nowicki and Sni-
jders 2001; Batagelj et al. 2004). The block model is typically formulated as an optimiza-
tion problem using a well-formed objective function, where nodes with the same role are 
aggregated and represented as blocks (nodes), and the edges between the blocks con-
struct a role-interaction graph showing the interactions between the roles. Some models 
assign each node to one of several roles (or blocks). Other methods use a form of similar-
ity between the rows of the adjacency matrix to calculate the roles (Burt 1976; Brandes 
and Lerner 2010). The main flow of these methods is to first calculate the similarity (or 
distance) between each pair of rows of the adjacency matrix and then use the resulting 
similarity matrix to cluster the nodes. In addition, spectral methods use a subset of the 
eigenvectors of the adjacency matrix (or similarity matrix) to derive the roles (Brandes 
and Lerner 2010). These methods are unsupervised learning approaches, and thus they 
have the disadvantage of requiring subjective guesswork when assigning specific roles 
to individual clusters, making the roles less interpretable and the validity of the assigned 
roles more difficult to check. On the other hand, the supervised learning approach 
trains the learning model through predefined roles, role assignment criteria, and posi-
tive examples to predict the roles of the test data. Since the roles are defined as needed, 
interpretability is enhanced and the accuracy of the predicted results can be maintained 
at a certain level by learning from positive examples. Our previous work on node role 
discovery using transfer learning (Kikuta et al. 2020) is an example of a supervised learn-
ing approach, in which role knowledge from a pre-labeled network (source network) is 
transferred to a network whose roles are unknown (target network). In addition, previ-
ous research has taken the approach of using a network that validates the model’s accu-
racy (validation network) to select the optimal hyperparameters by grid search.

In contrast, as a soft single-role discovery method, Airoldi et  al. (2008) proposed a 
mixed membership stochastic block model that relaxes the assumption of nodes belong-
ing to only a single role. This model assigns each node a probability vector (where the 
sum of the vector elements equals 1) belonging to multiple roles instead of assigning 
it a single role label. Accordingly, this method is inadequate for multiple-role discovery 
because it can only provide a rough trend of the node’s multiple roles rather than the 
specific multiple roles.

To our best knowledge, we proposed the first method for multiple-role discovery (Liu 
et al. 2021), which was derived from the observation that nodes may have multiple roles 
simultaneously in real networks. We applied the multi-label classification used in neural 
networks to a previously proposed hard single-role discovery framework (STV method) 
(Kikuta et al. 2020).

Roles in real networks

In the context of network topology, the role of a node is defined as star-center, star-
periphery, or clique member. As mentioned above, the role is based on an aggregation of 



Page 4 of 23Liu et al. Applied Network Science            (2022) 7:67 

the structural features or functions of the nodes. In different contexts, roles have differ-
ent interpretations. From the perspective of information mining, it is necessary to define 
more suitable role types for specific real networks. For example, in a lexical network 
where words are nodes and co-occurrence phenomena are represented by edges, the 
structural features of words can be regarded as an aggregation of grammatical functions. 
One of the concepts defined by the grammatical criteria of a word is its part of speech 
(Baker and Croft 2017), so part of speech can be used as the word’s role in a lexical net-
work. However, a word can have more than one part-of-speech label, so predicting the 
word’s part of speech can be considered a task of multiple-role discovery.

Note that in information mining for real networks, the structural features always 
appear in functional labels. For instance, if a star graph is considered a local structure 
in human relationship networks, the person with the star-center role (in the structural 
sense) can be treated as a leader or influencer (in the functional sense). Therefore, it is 
crucial to pre-define the practical label set when given a target real network. Further-
more, it is evident that the suitable label set in one real network might differ from those 
in other real networks. Consequently, it is essential to select the appropriate training data 
(source network). When considering the problem of how to create training data (source 
network), a straightforward approach is to label randomly sampled data instances from 
the entire data. However, the following problems may arise regarding the roles of nodes 
in complex networks. 

1	 Due to the scale-free nature of complex networks, there is a phenomenon where a 
small number of nodes have a high degree. It is doubtful that random sampling can 
obtain nodes with such characteristics, which leads to missing important roles in the 
training data.

2	 Since role labeling is often based on the roles of surrounding nodes, it is necessary 
to check not only the randomly sampled nodes but also the nodes surrounding them 
up to several hops away. Due to the small-world nature of complex networks, it may 
be necessary to consider the entire network. To this end, the roles of most nodes in 
the entire network have to be labeled to build the training data, making random sam-
pling meaningless.

Thus, building training datasets for role discovery in real networks is challenging because 
(1) the roles themselves are diverse and need to be defined according to the meaning of 
the network and (2) the scale-free and small-world nature of complex networks make 
random sampling impractical.

Embedding methods for structural features

Learning node embedding is a crucial task in obtaining the representation vector 
for each node. Formally, given a network G = (V ,E) , the goal is to learn a function 
f : V → R

|V |×k , where k ≪ |V | , so that similar nodes (e.g., nodes near each other or 
with similar functions) lie close together in the low k-dimensional space. This makes it 
possible to apply vector-based machine learning methods in graph mining, such as link 
prediction (Lü and Zhou 2011; Kumar et al. 2020), node and link classification (Bhagat 
et al. 2011; Tang et al. 2016), and anomaly detection (Akoglu et al. 2015).



Page 5 of 23Liu et al. Applied Network Science            (2022) 7:67 	

Many works have attempted learning embedding (Goyal and Ferrara 2018; Cai et al. 
2018). Rossi et al. (2020) categorized those works into community-based and role-based 
embedding methods. The former type is based on proximity similarity, which embeds 
nodes near neighbors or nodes in the same community. DeepWalk (Perozzi et al. 2014) is 
a well-known method that applies random walk to generate sequences of nodes, employ-
ing a Skip-Gram model to create node embeddings. node2vec (Grover and Leskovec 
2016) further extended DeepWalk with a bias to leverage nodes’ homophily and struc-
tural equivalency. LINE (Tang et al. 2015) focuses on first- and second-order neighbors 
to learn the representation vectors. The latter type, role-based embedding methods, 
is based on structural equivalence, which embeds nodes near each other if they share 
similar connection patterns, even though these nodes may be far away in the network. 
On the other hand, struc2vec (Ribeiro et  al. 2017) calculates the similarities of the 
distribution for the neighbor’s degree in multiple scales, applies biased random walk, 
and generates embeddings via the Skip-Gram approach. role2vec (Ahmed et  al. 2020) 
extracts structural features (e.g., statistics of graphlets for all nodes), clusters nodes into 
role groups, applies random walk to generate sequences of roles for the node, learns the 
embeddings of roles via the Skip-Gram approach, and treats the roles’ embedding as the 
nodes’ embedding. GraphWave (Donnat et al. 2018) treats wavelets as probability distri-
butions and uses empirical characteristic functions of the distribution to form the struc-
tural embeddings of nodes.

Recent work (Jin et al. 2022) on evaluating the structural node embeddings maintains 
that different variables, such as choice of similarity measure, classifier, and label defini-
tions, lead to different results for the downstream graph mining tasks (e.g., node classi-
fication). This paper focuses on testing the proposed methods’ generalization capability 
and flexibility on different embeddings instead of choosing the winner of the embedding 
methods. Moreover, note that the definitions of the node label used in this research are 
not equivalent to the structure due to the lack of benchmark datasets.

Proposed framework
Notions

Given a network G = (V ,E) , where V = v1, . . . , vn represents the node set, 
E = e1, . . . , em denotes the edge set. The source network Gs and validation network Gv 
are separated from G by the community extraction method, and the remaining network 
G\{Gs,Gv} forms the target network Gt.

fe : Gs,Gt ,Gv → R
(|Vs|+|Vt |+|Vv |)×k denotes the embedding method that extracts the 

structural features θs = R
|Vs|×k , θt = R

|Vt |×k , and θv = R
|Vv |×k for each node in Gs , Gt , 

and Gv , respectively.
Let L = l1, . . . , lj be the role label set and P(L) represent the powerset of L for any 

possible label combination L ∈ P(L) . For single-role discovery tasks, the purpose is to 
find the optimal function fsrd : θt → {l1, . . . , lj}

|Vt | . θt is the target network’s structural 
features learned by the embedding method, and {l1, . . . , lj}|Vt | denotes the role vector of 
the target network, in which the elements denote the related single role. In contrast, the 
goal of multiple-role discovery tasks is to learn the optimal function fmrd : θt → L|Vt | . 
L ∈ P(L) denotes the multiple roles for the related node.
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Framework

An overview of the proposed framework for multiple-role discovery in real net-
works is shown in Figure 1. Since we previously proposed the fundamental idea of the 
framework (Liu et al. 2021), in this paper, we integrate and fortify it, test the validity 
of the framework, and evaluate the replaceability of the components in the frame-
work. Algorithm 1 shows the pseudo-code for the proposed framework.

Fig. 1  Overview of proposed framework
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Dataset building

Considering the challenges in building training datasets for role discovery in real net-
works (mentioned in section ), as shown in line 1 of Algorithm 1, we propose creating 
datasets by community extraction methods, such as the Louvain method (Blondel et al. 
2008) and the Leiden method (Traag et al. 2019). Community extraction is the task of 
splitting the network into several subnetworks with high modularity, namely, more links 
inside each subnetwork and fewer between subnetworks. Since the role is the aggrega-
tion of structural features, nodes may have the same role even if they belong to different 
communities. More precisely, the roles have no local position or distance limit within a 
network. In addition, some research has shown that the community structure is fractal, 
which means that smaller communities’ structural features can also be found in larger 
communities and vice versa (Tsugawa and Ohsaki 2014). Therefore, it is expected that 
different communities share similar role knowledge (roles’ structural features, role dis-
tribution, connection patterns between roles, etc.). We propose selecting and labeling 
the subnetworks with the proper size as the source network and validation network from 
the community extraction method, shown in line 3 of Algorithm 1. Note that the sizes 
of the source network and validation network reflect a trade-off between the accuracy 
of role discovery and the labeling cost and should be determined depending on the par-
ticular case. A larger size means more cost for labeling and a higher probability of better 
accuracy. The target network could be the remaining network or specified subnetworks. 
By learning the role knowledge in the source network, fmrd : θ → L could be trained to 
predict the role labels in the validation network and the target network. Here, we choose 
the optimal fmrd : θ → L by evaluating the accuracy of the predictions for the validation 
network.

Embedding

Many network embedding methods have been proposed for mapping nodes onto latent 
feature space while preserving structural identifications, such as the above-mentioned 
struc2vec, role2vec, and GraphWave. In our previous work, we applied struc2vec to 
learn the structural representation of nodes, shown in line 2 of Algorithm  1. While 
struc2vec (Ribeiro et al. 2017) can transform structurally similar nodes into similar vec-
tor representations, it does not support weighted or directed networks. Furthermore, as 
a heuristic method, the computation time and scalability remain issues. Note that our 
proposed framework is flexible in its ability to switch components with other possible 
methods. Therefore, in this work, we apply role2vec and GraphWave as network embed-
ding methods in addition to struc2vec. role2vec (Ahmed et al. 2020) maps nodes to roles 
based on the aggregation of their higher-order structural features. This suggests use of a 
biased random walk scenario to acquire the roles’ context sequence instead of the nodes’ 
sequence. Then, role2vec uses a Skip-Gram model to obtain a distributed representation 
of roles from the role sequence obtained by the random walk. The distributed represen-
tation of a node should be the same as the distributed representation of the mapped role. 
In other words, all nodes assigned to the same role have the same vector representation. 
Although role2vec cannot discover multiple roles directly because one node is assigned 
to one role and the mapped roles may not meet the needs of discovering a wide variety 
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of roles in a real network, it is possible to reduce the computational cost by mapping a 
large number of nodes to a small number of roles.

GraphWave (Donnat et al. 2018) treats the spectral graph wavelets as probability dis-
tributions, gains the empirical characteristic function of the distributions, samples 
evenly spaced points from the empirical characteristic function, and concatenates the 
values as the embedding vector of a node. Specifically, since the spectral graph wave-
lets analogize the Laplacian eigenvalues as temporal frequencies of a signal, GraphWave 
obtains a diffusion pattern for every node when a Dirac signal is centered around each 
node. GraphWave involves a scaling parameter s, since it is derived from the spectral 
graph wavelet. s controls the radius of the neighborhood of each node, so a smaller s 
constrains the neighborhood near the center node. In contrast, a larger s allows farther 
nodes to exist within the neighborhood. Namely, a smaller s leads to community-based 
embedding, while a larger s is suitable for role-based embedding. GraphWave provides a 
method to automatically find the appropriate range of values for s and a multiple-scaled 
algorithm to aggregate structural embedding.

The experiments described below were conducted using struc2vec, role2vec, and 
Graphwave to obtain distributed representations. We show that the proposed method is 
a flexible framework that allows component replacement.

Domain adversarial learning

Since selecting the training dataset (the source and validation networks) is an arbitrary 
process, it might cause selection bias. In addition, the structural features, the distribu-
tion of roles, and the co-occurrence of roles in the three networks might vary from one 
to the other, which increases the difficulty of multiple-role discovery. Therefore, fol-
lowing an earlier work (Kikuta et al. 2020; Liu et al. 2021), we use a domain adversarial 
learning strategy to discover the multiple roles of nodes with high accuracy. The domain 
adversarial learning strategy (line 12 to 22 in Algorithm 1) consists of two types of neural 
networks: role-model f θRmrd and discriminator f θDmrd , where θR and θD denote the weights 
of the role-mode and discriminator, respectively. The purpose of the discriminator is to 
determine whether a node belongs to the source or the target network. The goal of the 
role-model is to predict the role labels of a node and to fool the discriminator by making 
the node embedding representations of the three networks similar to a gradient reversal 
layer (Ganin et al. 2016). Following the domain adversarial learning strategy, a mini-max 
game is executed (line 21 in Algorithm 1). The adversarial learning is conducted on a 
mini-max game on the overall loss:

After converging, the node embedding of the target network is used as input to the role 
model to predict the corresponding role labels (line 24n Algorithm 1).

Role model for multiple-role discovery The role model is a three-layered neural network 
whose input is the embedding of the source network and whose output is the probabil-
ity of the role labels. We apply the multi-label classification scenario to the role model 
to predict the multiple roles of nodes. Specifically, we use the sigmoid function as the 
active function of the output layer in the role model. This maps the output of neurons 

(1)min
θR ,θs,v,t

max
θD

ER(Vs; θ
R, θs)− �J (V ; θD, θs, θv , θt) .
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to a range of (0, 1) representing the corresponding label’s probability. We select BP-MLL 
(Zhang and Zhou 2006) as the loss function of the role model.

where m is the number of data and Yi is the label set of the ith data. Ȳi is the complement 
of Yi , which is the set of labels not coupled with the ith data. cik is the output of the neu-
ron corresponding to the label k of the ith data. BP-MLL earns a penalty when the out-
put of neurons for positive labels is not larger than that of negative labels. Intuitively, not 
only the output of positive (negative) labels should be larger (smaller) than the thresh-
old, the classifier should be more confident with larger (smaller) output on the positive 
(negative) labels. In addition to BP-MLL, we also considered binary cross-entropy loss 
and i-BP-MLL (Grodzicki et al. 2008). Binary cross-entropy loss is a fundamental loss 
function for the multi-label classification tasks. i-BP-MLL is an extended loss function 
from BP-MLL. It focuses on determining the value for the threshold and produces a cus-
tom threshold for each neuron separately, instead of a global threshold in BP-MLL and 
binary cross-entropy loss. Consequently, the classifier needs to learn the threshold for 
each label coupled with the output of each label, which makes the neural network struc-
ture complicated and difficult to converge. From our evaluation experiments, the per-
formance of BP-MLL is better than both binary cross-entropy loss and i-BP-MLL. This 
might be because the binary cross-entropy loss is too simple to train a highly expressive 
model, while i-BP-MLL is difficult to converge under the domain adversarial learning 
strategy. Thus, we apply BP-MLL as the loss function of the role model. In Algorithm 1, 
line 18 to 20 resents the psuedo-code of the role model.

Discriminator variations The discriminator is a three-layered neural network whose 
input is the embedding of the networks, and whose output is the probability of the 
domain labels. The role model directly adjusts the embedding representation with a gra-
dient reversal layer according to the discriminator’s loss (line 21 in Algorithm 1).

Therefore, the design of the discriminator is exceptionally significant. In earlier work 
(Liu et  al. 2021), we proposed four variations of the discriminator: BPMLL, BPMLL_
SD2, BPMLL_SD3, and BPMLL_DD. In this work, we follow up that work (Liu et  al. 
2021) and present a final empirical conclusion regarding these four variations. 

1	 BPMLL: No discriminator assembled; namely, the domain adversarial learning strat-
egy is not used. The pseudo-code is shown in line 5 to 10 in Algorithm 1.

2	 BPMLL_SD2: One binary discriminator to determine whether the node is sampled 
from the source network; in this way, the discriminator does not distinguish between 
the validation network and the target network. The loss function is 

(2)E =

m
∑

i=1

Ei =

m
∑

i=1

1

|Yi||Ȳi|

∑

(k ,l)∈Yi×Ȳi

exp(−(cik − cIl )),

J (V ; θD, θs, θv , θt) =
1

|Vs|

�

k∈Vs

log f θ
D

mrd(θ
k
s )+

1

(|Vt | + |Vv|)





�

k∈Vt

log (1

−f θ
D

mrd(θ
k
t )

�

+
�

k∈Vv

log(1− f θ
D

mrd(θ
k
v ))



.



Page 10 of 23Liu et al. Applied Network Science            (2022) 7:67 

3	 BPMLL_SD3: One ternary discriminator to identify the domain label of the sampled 
node from the source, target, and validation networks. The loss function is 

f (·)s , f (·)t , and f (·)v indicate the output of neurons associated with the source, tar-
get, and validation networks, respectively.

4	 BPMLL_DD: Double binary discriminators (one identifies the node’s domain label 
between source network and target network, the other identifies the source network 
and validation network). The loss function is 

The pseudo-code of variations of the discriminator is given in line 12 to 22 in Algo-
rithm 1, and J (·) in line 16 indicates the above loss function of each variation. Differ-
ent variations represent different scenarios to reduce the selection bias discussed above. 
Specifically, BPMLL_SD2 treats the target and validation networks as a single integrated 
network, tries to reduce the distribution difference between the integrated network and 
the source network, and is expected to be effective for cases where the target network 
and validation network are highly similar; BPMLL_SD3 is derived naturally from the 
idea of taking the validation network into account; BPMLL_DD strengthens the leading 
position during the embedding adjustment by aligning the target/validation networks to 
the source network separately.

Overall, the input and latent layers of role model and discriminator apply the relu 
active function and dropout strategy, and the optimization function is adam with a 
weight decay of 0.0001. The hyperparameters of adversarial learning are grid searched: 
training epochs from (500, 1000, 5000), dropout rate from (0.25, 0.5), and learning rates 
from (0.01, 0.001, 0.0001, and 0.00001).

Computational complexity

The computational complexity of the proposed framework can be divided into three 
stages: the complexity of network embedding Oemb , the complexity of the role model 
Orole , and the complexity of the discriminator Odisc . According to one study (Ribeiro 
et al. 2017), the complexity of struc2vec is Ostruc2vec = O(k|V |3) , where k is the diameter 
of the input network and |V| represents the number of nodes. With these optimizations, 
the complexity can be reduced further to Ostruc2vec = O(|V |3) . In another work (Don-
nat et  al. 2018), the complexity of GraphWave is OGraphWave = O(K × |E|) = O(|E|) , 
where K denotes the Chebyshev polynomial approximation’s order and |E| repre-
sents the number of edges. Based on reported calculations (Ahmed et  al. 2020), the 

J (V ; θD, θs, θv , θt) =
1

|Vs|

∑

k∈Vs

log f θ
D

mrd(θ
k
s )s +

1

|Vt |

∑

k∈Vt

log f θ
D

mrd(θ
k
t )t

+
1

|Vv|

∑

k∈Vv

log f θ
D

mrd(θ
k
v )v .

J (V ; θD, θs, θv , θt) =
1

2





1

|Vs|
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complexity of role2vec is roughly Orole2vec = O(|V |3) . The complexity of the role model 
is Orole = O(|Vs| × t × s × (i × j + j × k + k × |L|)) , where |Vs| is the number of nodes 
in the source network, t is the number of training epochs, s is the number of hyper-
parameter’s combinations, i,  j,  k are the numbers of neurons in the corresponding 
layers, and |L| is the number of role labels. Normally i,  j,  k are set to 8× |L| , 4 × |L| , 
and 2× |L| , respectively. Thus, Orole = O(42× |Vs| × t × s × |L|2)) . Since t and s 
are constants and |L| ≪ |V | , then Orole = O(|V |3) . Similarly, the complexity of the 
discriminator is Odisc = O((|Vs| + |Vt | + |Vv|)× t × s × (i × j + j × k + k × 3)) , 
where |Vt | and |Vv| are the numbers of nodes in the target network and 
the validation network and i,  j,  k are the same as those in the role model. 
Odisc = O(40× (|Vs| + |Vt | + |Vv|)× t × s × |L|2)) = O(|V |3) . The total complexity of 
our proposed framework Oall = Oemb + Orole + Odisc = O(|V |3) theoretically. The total 
complexity could be further reduced by applying a Bayesian optimization method and 
successive halving search.

Experiment
Datasets of real networks

In order to make a fair comparison to our former work (Liu et al. 2021), we use the Wiki-
pedia1 and Blogcatalog datasets (Zhang et al. 2019) as experimental data. The Wikipedia 
network is a word co-occurrence network with 4777 nodes, 184,812 edges, and 40 dif-
ferent node role labels (part-of-speech labels for words). We treat the part of speech as 
the role of words under the supposition that the part of speech correlates to the network 
structure. Words with different parts of speech have different connection patterns. For 
example, nouns are more often co-occurrent with verbs, while transitive verbs are more 
co-occurrent with nouns, pronouns, and adverbs. The words ‘water’ and ‘fire’ have both 
noun and transitive verb labels. The connection patterns of the two words contain char-
acteristics of both nouns and transitive verbs. Thus, the local structure of ‘water’ and 
‘fire’ might be similar, even though the two words are located far away in the Wikipe-
dia network. For the entire network (Wiki_all), community extraction was performed, 
and three sub-networks (Wiki_c1, Wiki_c2, and Wiki_c3) were randomly selected from 
the results as the source network, target network, and validation network, respectively. 
The statistics for each network are shown in Table  1, and the experimental data for 
the six datasets are shown in Table 2. In addition, 18 role labels common to the three 

Table 1  Statistics of Wikipedia network and communities

Name # Nodes # Edges # Roles

Wiki_all 4777 184,812 40

Wiki_c1 958 7946 18

Wiki_c2 1633 8550 18

Wiki_c3 442 1982 18

1  http://​www.​mattm​ahoney.​net/​dc/​text.​html.

http://www.mattmahoney.net/dc/text.html
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subnetworks, such as abstract noun, concrete noun, pronoun, and adjective, were used 
for training and prediction.

The Blogcatalog network is an interaction network among bloggers in an online blog-
ging service with 10,312 nodes (bloggers), 333,983 edges (interactions between blog-
gers), and 39 role labels indicating the hobbies of the bloggers. Since that blogger may 
have multiple hobbies, the Blogcatalog dataset is multilabel. We assume that the hobbies 
correlate with the network structure, such as the bloggers who share the same hobby 
are not necessarily connected; this is proven by simply calculating the average num-
ber of connected components in the sub-network where the nodes share the specified 
label. For the Blogcatalog dataset, it is 30.8, which means that the nodes that share the 
specified label are separated into 30.8 components. Similar to the Wikipedia dataset, for 
the whole network (Blog_all), we extracted and randomly selected three sub-networks, 
Blog_c1, Blog_c2, and Blog_c3 (Table 3), and assigned them as the source, target, and 
validation network to form six datasets (Table 4.)

Baselines

We evaluated the effectiveness of our proposed framework by the accuracy of multiple-
role discovery using real-world networks. In a previous work (Liu et al. 2021), we already 

Table 2  Wikipedia datasets

No. Source Target Validation

Wiki-1 Wiki_c1 Wiki_c2 Wiki_c3

Wiki-2 Wiki_c1 Wiki_c3 Wiki_c2

Wiki-3 Wiki_c2 Wiki_c1 Wiki_c3

Wiki-4 Wiki_c2 Wiki_c3 Wiki_c1

Wiki-5 Wiki_c3 Wiki_c1 Wiki_c2

Wiki-6 Wiki_c3 Wiki_c2 Wiki_c1

Table 3  Statistics of Blogcatalog network and communities

Name # Nodes # Edges # Roles

Blog_all 10,312 333,983 39

Blog_c1 3271 69,105 38

Blog_c2 2941 42,480 38

Blog_c3 3302 66,807 38

Table 4  Blogcatalog datasets

No. Source Target Validation

Blog-1 Blog_c1 Blog_c2 Blog_c3

Blog-2 Blog_c1 Blog_c3 Blog_c2

Blog-3 Blog_c2 Blog_c1 Blog_c3

Blog-4 Blog_c2 Blog_c3 Blog_c1

Blog-5 Blog_c3 Blog_c1 Blog_c2

Blog-6 Blog_c3 Blog_c2 Blog_c1



Page 13 of 23Liu et al. Applied Network Science            (2022) 7:67 	

tested the feasibility of the domain adversarial learning method for multiple-role discov-
ery specified with struc2vec. The results show that the proposed method (Liu et al. 2021) 
could achieve higher accuracy in most cases.

In this paper, we mainly focus on evaluating the creation of the training dataset con-
structed by community extraction. We applied random sampling to create the training 
dataset (the equivalent of the source and validation network) as the comparison method. 
Specially, we first learned the embedding of all nodes in a real network, and then we 
sampled the same number of nodes randomly as the source (validation) network to form 
the source (validation) dataset. We used the same nodes in the target network as the tar-
get data to control the variables. Note that we split the whole real network into subnet-
works and selected two appropriate subnetworks as the source and validation networks; 
the target network could be the remaining network G(V \{Vs,Vv},E) or specified sub-
networks. If the target network were the remaining network G(V \{Vs,Vv},E) , random 
sampling would be impossible, since it degrades to a problem of dividing a set into two 
groups. Therefore, we selected one subnetwork as the target network in this experiment. 
Note that this is just for the evaluation experiment: In practical cases, the target network 
could be the remaining network.

After creating the training dataset, we feedforwarded it to three conventional multi-
label classification scenarios to predict the multiple roles: Binary Relevance (BR) (Zhang 
and Zhou 2013; Zhang et al. 2018), Label Powerset (LP) (Zhang and Zhou 2013; Her-
rera et al. 2016), and MLkNN (Zhang and Zhou 2007). Specifically, in the BR scenario, 
several binary SVM classifiers (Vapnik 1997) for each label were trained, and grid search 
was applied for hyperparameter tuning between radial basis function kernel and linear 
kernel. In the LP scenario, a Random Forest multi-class classifier (Breiman 2001) cor-
responding to the label’s combination pattern was trained, and grid search was applied 
for hyperparameter tuning in the same way as with the BR scenario. The hyperparam-
eters for the Random Forest multi-class classifier were searched as follows: the number 
of trees from (20, 30, 50) and the quality measuring function from Gini and entropy. 
Since MLkNN is a multi-label classification method, accuracy verification was per-
formed directly on each dataset. In the datasets constructed by random sampling, only 
the roles present in the training and validation data could be predicted, so the range of 
roles could not be fully controlled. The size of the role set varied from 16 to 20 in differ-
ent samplings.

Justification confirmation of community extraction

We propose using community extraction methods to separate a real network into sub-
networks for the source and validation networks. To confirm its justification, we inves-
tigated the difference between community extraction and random sampling from the 
viewpoints of node coverage and label powerset coverage. Node coverage is a criterion to 
evaluate the labeling cost for the source and validation networks. Since, in most cases, it 
is necessary to check a node’s neighbors to label its roles, the node coverage is the num-
ber of nodes that must be checked when labeling the roles of the nodes in a subnetwork. 
For example, coverage of k-hop nodes is possible, namely, the nodes in a subnetwork 
and their k-hop neighbors. Here, we investigate 1-hop node coverage between the sub-
network selected through community extraction and random sampling. For community 
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extraction, we applied the Louvain method to the Wikipedia dataset (Wiki_all) using dif-
ferent resolutions ranging from 0.1 to 1, and we selected the four largest subnetworks 
to calculate the average 1-hop node coverage. Resolution represents time as described 
previously (Lambiotte et al. 2008), leveraging the community’s size: the higher resolution 
for a larger size. Then for random sampling, we randomly sampled the same number 
of nodes as the four subnetworks selected from community extraction and calculated 
the average of their 1-hop node coverage. For each resolution, we conducted ten experi-
ments and plotted the average and standard deviation in Fig. 2a.

The horizontal axis is the resolution of the community extraction method, and the 
vertical axis is the 1-hop node coverage. At all of the resolutions, the node coverage of 
community extraction is lower than that of random sampling, indicating community 
extraction’s validity in reducing the labeling cost. A possible reason for the decrease in 
the difference between community extraction and random sampling as the resolution 
increases is the dense structure of the original real network.

Moreover, it is worth confirming the labels’ diversity in the selected subnetworks 
because this is related to the quality of the training data. Therefore, to evaluate the labels’ 
diversity, we use the powerset coverage of labels, which is the number of label combi-
nations for all nodes in the selected subnetworks. Like node coverage, we compare the 
average powerset coverage of the four largest communities at different resolutions and 
those of the randomly sampled nodes of the same sizes. The result is shown in Fig. 2a, 
which demonstrates that both community extraction and random sampling have the 
same level of diversity in the labels’ combinations. Overall, creating the training datasets 
by using community extraction methods can reduce the labeling cost without harming 
the quality of label diversity.

Case study on toy dataset

We conducted a case study on a toy dataset in Fig. 3 to confirm whether the proposed 
framework can discover multiple roles for a single node. We used three types of net-
work topologies (mesh, ring, and star) and connected them with each other by nodes 
randomly selected to generate networks as shown in Fig. 3a–c.

The roles for each node are from their original network topologies, i.e., star-center, star-
periphery, mesh, and ring; nodes contained in different topologies have multiple roles. 
Nodes are colored based on their combinations of roles. We created three different-sized 

Fig. 2  Node coverage and powerset coverage between community extraction and random sampling



Page 15 of 23Liu et al. Applied Network Science            (2022) 7:67 	

networks and assigned them as source, target, and validation networks. We used the 
struc2vec embeddings and BPMLL_SD2 to predict the role labels in the target network, 
and the result is shown in Fig. 3d, e.

The histograms of the ground truth for the role combinations and that of prediction are 
shown in Fig. 3d. The horizontal axis shows the combinations of the four roles, colored the 
same as the nodes’ colors in Fig. 3b, and the label is a set of four binary numbers associ-
ated with star-center, star-periphery, mesh, and ring. For instance, the label of the bars on 
the leftmost side (0, 0, 0, 1) represents the nodes with the role of ring; (1, 0, 1, 1) on the 
rightmost side indicates the multiple roles of star-center, mesh, and ring. The vertical axis is 
the number of nodes. The ground truth value is plotted on the left side for each combina-
tion, and the prediction is on the right side. The prediction results show that the proposed 
framework was able to approximate the tendency of the ground truth and could predict 
the multiple roles for single nodes, even for under-represented combinations such as star-
periphery, mesh, ring, and purple bars denoted by the (0, 1, 1, 1) combination. Moreover, by 
comparing the nodes’ colors in Fig. 3b (truth labels) and Fig. 3e (prediction labels), we find 
that 80% of the nodes with single roles (such as star-periphery for node 14, mesh for node 
46, and ring for node 69) were predicted correctly; 55% of nodes with double roles (such as 
star-periphery and ring for node 4, star-periphery and mesh for node 20, star-center and 
mesh for node 33, mesh and ring for node 65) were predicted exactly; node 3 with three 
roles (star-periphery, mesh, and ring) was classified appropriately.

Experiments on real networks

Comparison between the previous (STV) and the proposed methods

We conducted experiments to evaluate the performance of the previous method (STV) 
on the Wikipedia dataset (Wiki-1 in Table 2). As mentioned above, the STV method was 

Fig. 3  Toy dataset and results
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proposed for single role discovery. Thus, we applied the binary relevance strategy to the 
STV method by (1) training an STV model for each role, (2) assembling the results of 
the best performances to form an 18× |Vt | matrix, and (3) evaluating the matrix using 
F-measure through comparison with that of the proposed framework. The results are 
shown in Table 5. Note that the purpose of this experiment is to confirm the validity of 
the proposed method apart from the STV method; considering the calculation cost, we 
only show the average F-measure of two trials on GraphWave embeddings.

The result show that the proposed framework’s performance was superior to that of 
the STV method with binary relevance in all criteria, indicating the proposed frame-
work’s necessity. Moreover, we observed that the STV method tends to predict the 
under-represented labels as non-existent in all nodes, which may be caused by neglect-
ing the relationships between roles.

Comparision between proposed framework and baselines on different embeddings

We conducted experiments on both the proposed framework and baselines of dif-
ferent embeddings of Wiki-1 to Wiki-6 and Blog-1 to Blog-6. For each method, ten 
experiments were conducted, and the average F-measures are shown in Fig.  4 for the 
Wikipedia datasets and Fig.  5 for the Blogcatalog datasets on embeddings learned by 
struc2vec, GraphWave, and role2vec. In each figure, the three columns from left to right 
are the comparison methods (random sampling): BR, MLkNN, and LP; the four col-
umns on the right side are the variations of the proposed method in “Domain adversarial 
learning” @@section: BPMLL (BPMLL_S2V, BPMLL_GW, and BPMLL_R2V in figures), 
BPMLL_SD2 (SD2_S2V, SD2_GW, and SD2_R2V in figures), BPMLL_SD3 (SD3_S2V, 
SD3_GW, and SD3_R2V in figures), and BPMLL_DD (DD_S2V, DD_GW, and DD_R2V 
in figures). The average F-measures of the method on each embedding are shown in 
the related cell. The p*, p**, and p*** below the numbers represent the p-values’ ranges 
( p > 0.05 , 0.05 ≥ p > 0.01 , and p ≤ 0.01 , respectively) of the independent samples’ 
t-tests between the proposed and the comparison methods. For the proposed methods 
BPMLL, BPMLL_SD2, BPMLL_SD3, and BPMLL_DD, the t-test is conducted with the 
comparison method having the highest average F-measure; for the comparison methods 
BR(GS), MLkNN, and LP(GS), vice versa. The p-value range is shown only if the t-statis-
tic is over zero.

The results of the F-measure from the experiment using the Wikipedia dataset embed-
dings obtained with struc2vec are shown in Fig. 4a. All four proposed method variations 
achieved higher accuracy than the comparison methods; 21 out of 24 cases had a p-value 
≤ 0.01 in the t-test and showed significant differences from all of the comparison meth-
ods. Among them, variations with discriminators achieved higher accuracy than BPMLL 
(without any discriminator), which shows that domain adversarial learning alleviates 
the bias brought by community selection. BPMLL_SD2 and BPMLL_SD3 achieved the 

Table 5  Results on Wiki-1 with GraphWave embeddings

Method Accuracy Precision Recall F-measure

STV method 0.180 0.206 0.460 0.276

Proposed method 0.380 0.444 0.586 0.503
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Fig. 4  Results of Wikipedia datasets
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highest accuracy; the mean, variance, and the number of outliers varied with each data-
set; however, no significant trends were found overall. The highest performance from 
all of the methods ranges from 0.3 to 0.51 (precisely, 0.51 for Wiki-1 and Wiki-6, 0.4 for 
Wiki-2 and Wiki-4, and 0.31 for Wiki-3 and Wiki-5). From Table 2, it could be inferred 

Fig. 5  Results of Blogcatalog datasets
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that the best performance of one dataset has a very strong co-relationship with the tar-
get network; for instance, Wiki-1 and Wiki-6 share the same target network Wiki_c2. 
However, for the same target network, the exchange of the source and validation net-
work doesn’t change the accuracy, indicating that the accuracy rarely has a relationship 
with the difference between the source and validation network.

Figure 4b shows the experiment’s results using the embeddings obtained with Graph-
Wave. The proposed methods with discriminator achieved the highest accuracy in Wiki-
2, Wiki-3, Wiki-4, and Wiki-5 with a significant difference, while LP(GS) achieved the 
highest accuracy in Wiki-1 and Wiki-6. The possible reason for LP(GS)’s performance on 
Wiki-1 and Wiki-6 might be that GraphWave is not associated with a random walk and 
can create embeddings without fluctuations, which leads to an easier prediction task. 
BPMLL’s results were lower than those of the other proposed methods with discrimina-
tors in all cases, indicating that the adversarial learning framework helped to increase 
the accuracy of this embedding. Overall, BPMLL_SD3 performed the best among all 
methods. The pattern of the same target network getting the same level of accuracy 
could also be found in these results.

Figure 4c shows the results on role2vec embeddings. Like the results of struc2vec in 
Fig. 4a, the four proposed method variations achieved higher accuracy than the com-
parison methods in 21 out of 24 cases; 14 cases had a p-value of ≤ 0.01 in the t-test. 
The proposed methods achieved the highest accuracy in all datasets. BPMLL_SD2 and 
BPMLL_SD3 achieved the highest accuracy except on Wiki-1; BPMLL_DD had the 
highest but not significantly different F-measure to LP(GS) on Wiki-1, indicating that 
the result of BPMLL_DD fluctuating among the ten experiments, showing that the two 
discriminators in BPMLL_DD increased the potential of the method’s predictive ability 
and added coverage difficulties in training. Moreover, the tendency of the highest accu-
racy on different datasets is similar to the results on struc2vec and GraphWave.

The results of the F-measure from the experiment using the Blogcatalog dataset 
embeddings are shown in Fig. 5. This figure should be read in the same way as Fig. 4. The 
overall result pattern of the Blogcatalog dataset is similar to that of the Wikipedia data-
set. However, the F-measures are generally low, up to 0.16, indicating the difficulty of 
prediction, which might be caused by a large number of labels (38 labels against 18 labels 
in the Wikipedia dataset) and the sparseness of labels (density of 0.036 against 0.080 in 
the Wikipedia dataset).

The results of experiments on struc2vec embeddings in Fig. 5a show that, unlike the 
Wikipedia datasets, BPMLL achieved the highest accuracy in Blog-4 and Blog-6. This 
might be explained by how the increased prediction complexity for more labels in Blog-
catalog datasets also made it more challenging for the discriminators and role models 
to converge. Moreover, the tendency of the highest accuracy on different datasets being 
related to their target networks could be observed for Blog-3 and Blog-5, which share 
the same target network (i.e., Blog_c1). Figure 5b shows the F-measure results on Graph-
Wave embeddings. The proposed methods reached higher accuracy than the comparison 
methods, with a significant difference in 15 out of 24 cases, while LP(GS) achieved the 
highest accuracy in Blog-3 and Blog-5. Reflecting the results of GraphWave embeddings 
on the Wikipedia datasets in Fig.  4b, LP(GS) achieved the highest accuracy in Wiki-1 
and Wiki-6, which share the same target network of Wiki_c2, similar to the results on 
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the Blogcatalog datasets. This phenomenon supports the assumption that GraphWave 
creates embeddings without fluctuations, which leads to an easier prediction task. Thus, 
more straightforward methods such as LP(GS) and BPMLL can achieve higher accuracy. 
Figure 5c shows the experiment results on role2vec embeddings. Again, the results sup-
port the hypothesis that the highest accuracy on different datasets tend to be related to 
the target network. Overall, the results of role2vec are similar to those of struc2vec in 
the performances of the proposed methods, patterns of different target network combi-
nations, and highest accuracy on each dataset, demonstrating that embeddings obtained 
by role2vec and struc2vec have a similar affect on the downstream task, which might be 
caused by the use of random walk.

Discussion
In the three experiments with various embeddings, the performance of the proposed 
methods ranged from 0.3 to 0.55 on the Wikipedia datasets and 0.12 to 0.18 on the Blog-
catalog datasets. The numbers of labels are around 18 for the Wikipedia datasets and 38 
for the Blogcatalog datasets, as mentioned in Tables  1 and 3. This difference between 
the two datasets indicates the difficulty of multi-label classification, thus leading to the 
difference in accuracy. Furthermore, the F-measure results of the two datasets are rela-
tively low, which may be restricted by the co-relationship between the network structure 
features (words’ co-occurrence network structure for Wikipedia and blogger’s interac-
tion network structure for Blogcatalog) and the roles’ information (part-of-speech labels 
for words in Wikipedia and blogger’s hobbies in Blogcatalog), which indicates that pre-
dicting functional role labels only from structure features has limitations. We believe 
multiple functional role discovery would achieve better performance coupled with the 
additional attribute information of nodes or edges. In addition, for each dataset (Wiki-1 
to Wiki-6 and Blog-1 to Blog-6), the best performances with three embeddings were at 
the same level but with slight fluctuations, indicating the role distribution bias and struc-
tural bias for different subnetworks. Among the Wikipedia datasets, Wiki-3 and Wiki-5 
achieved the lowest F-measure values; according to Table 2, both combinations have the 
same target network Wiki_c1. In contrast, in the Blogcatalog datasets, the highest accu-
racy was achieved by Blog-3 and Blog-5, which share the same target network (Blog_c1). 
We analyzed the low (high) performance as the gap between Wiki_c1 (Blog_c1) and 
the other two subnetworks. The result indicates that the selection of the subnetworks 
(especially the target network) does affect the prediction performance significantly, even 
though the proposed framework outperforms random sampling. Optimizing the subnet-
works’ selection remains a future task.

For two real networks, in the experiments with struc2vec embeddings and role2vec 
embeddings, the proposed variations with a discriminator (BPMLL_SD2, BPMLL_SD3, 
or BPMLL_DD) achieved the highest accuracy. In the experiments with GraphWave 
embeddings, the proposed variations (especially BPMLL_SD2 and BPMLL) outper-
formed others in half of the cases. Thus, overall, the proposed method (BPMLL_SD2, 
BPMLL_SD3, and BPMLL_DD) showed its superiority over various embedding meth-
ods. These results indicate that the proposed framework is flexible for discovering mul-
tiple roles in real networks in different embedding scenarios. For different embedding 
methods and datasets, BPMLL_SD2, BPMLL_SD3, and BPMLL_DD show different 
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tendencies of accuracy in mean, variance, and number of outliers. Generally, BPMLL_
SD2 performed best in more cases, which shows its stability. In contrast, BPMLL_DD 
produced unstable results with a wide range of accuracy in repetitions, which might be 
caused by the high expressive ability and considerable convergence difficulty of using 
two discriminators. Note that in the datasets constructed by random sampling, only 
the roles present in the training and validation data could be predicted, so the range of 
roles could not be fully controlled, which is a critical limitation of the random sampling 
approach. To sum up, the results indicate that one can create training datasets by the 
community extraction method, choose the appropriate embedding method, and select 
the BPMLL_SD2 or BPMLL_SD3 variation in a practical role discovery task.

In this work, although selecting the embedding method is not our research purpose, 
we did find some tendencies of multiple-role discovery results with different embedding 
methods. Compared with struc2vec, role2vec’s role discovery results show minor vari-
ance in almost all cases. This might be due to multiple nodes sharing the same embed-
ding if they belong to the same role category. Thus, the input for classifiers is consistent 
and less biased, leading to a stable prediction result. GraphWave further shrank the 
range of variance, especially for the LP (random sampling) method. A possible reason 
might be that GraphWave is the only embedding method without any random walk pro-
cess and thus could produce solid embeddings.

We found that the highest accuracy for each dataset with different embedding meth-
ods reached the same level within two real networks. This phenomenon implies that the 
highest accuracy indicates the maximum mutual information between the structural 
features and the multiple roles. Note that the role is defined by the aggregation of struc-
tural features or functions. Moreover, for practical use in real networks, one might be 
more interested in the nodes’ functions rather than the structural features. This work 
shows that mining the structural features is a promising way to discover the functional 
role labels.

Overall, this work proposed a flexible framework for multiple role discovery of real 
networks. Using community extraction to create the training dataset is proven to be 
valid and feasible for real networks. Compared with the STV method and other multi-
class classification strategies, the adversarial learning scenario and the loss function of 
the role model make the proposed framework robust against the biases of role distribu-
tion and network structure.

Conclusion
This study proposed a flexible framework for discovering multiple roles in real networks. 
We conducted intensive experiments on two real networks, one a lexical co-occurrence 
network and the other a social network, to check the generalization capability of the pro-
posed framework. We tested three embedding methods and showed the proposed frame-
work’s feasibility for various embedding components. We also proposed an approach for 
constructing training data by community extraction for the role discovery task in real net-
works, evaluated the approach against the straightforward approach (random sampling), 
and demonstrated its superiority in most cases. Through experiments on the Wikipedia 
network and the Blogcatalog network, we demonstrated that it is promising to predict 
functional role labels from structural features. We also confirmed that domain adversarial 
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learning could provide stable learning and prediction when constructing source networks 
with community extraction, even when selection bias exists, thus further demonstrating 
the potential of the proposed framework for real-world applications.

Future tasks for this study include optimizing the domain adversarial learning frame-
work and achieving more efficient hyperparameter tuning. Specifically, the compu-
tational complexity of our proposed framework is relatively high, which limits its 
scalability. Improving the efficiency of the hyperparameter tuning (such as a Bayesian 
optimization method or successive halving search) could be expected to reduce the 
computational complexity. Furthermore, we are considering updating domain adver-
sarial learning with state-of-the-art strategies to enhance prediction performance and 
scalability. Furthermore, it would be worthwhile to investigate the influence of the com-
munity extraction algorithms and to optimize the subnetworks’ selection for stable pre-
diction results.
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