
Activity‑driven network modeling 
and control of the spread of two concurrent 
epidemic strains
Daniel Alberto Burbano Lombana1,2,11, Lorenzo Zino3, Sachit Butail4, Emanuele Caroppo5,6, Zhong‑Ping Jiang7, 
Alessandro Rizzo8,9 and Maurizio Porfiri1,2,10* 

Introduction
During the spread of an infectious disease, viral mutations may weaken public health 
measures as new transmission dynamics emerge that lessen the effects of vaccination 
and cause unseen comorbidities. For instance, influenza exhibits a high mutation rate 
in the viral genome that can evolve into new virus strains  (Andreasen et  al. 1997). In 
addition, empirical evidence of monkeypox indicates that a single mutation  may pro-
duce genetic variation that can lead to the emergence of a new variant (Douglass et al. 
1994). In the ongoing COVID-19 pandemic, we have been experiencing a similar sce-
nario, with several SARS-CoV-2 variants propagating across the globe (Duong 2021). As 
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of July 2022, we are currently witnessing several Omicron sub-variants, such as the BA.1 
that emerged at the end of 2021 in Botswana and South Africa (Phan et al. 2022) and the 
BA.5 that is threatening vaccine-induced immunity in the USA  (Callaway 2021; Gru-
baugh and Cobey 2021).

Mathematical models of infectious diseases offer important insights into the spread-
ing process of diseases, transmitted by interactions between individuals while providing 
a framework to devise containment strategies. The literature on mathematical mod-
eling of disease spreading has proliferated during the COVID-19 pandemic and several 
approaches have been developed at different levels of resolution (Brauer 2017; Bertozzi 
et al. 2020). Low-resolution models typically partition the population into a finite num-
ber of compartments and describe their rate of change through a set of differential equa-
tions. While these models may have limited predictive value, they allow for a simple 
mathematical treatment that can shed light on the macroscopic epidemic behavior and 
highlight the role and criticality of model parameters.

Low-resolution models have been recently proposed to study the effect of multiple 
strains. For instance, in Fudolig and Howard (2020), an extension of the classical suscep-
tible–infected–removed (SIR) model with mutations, re-infection, and compartments 
accounting for vaccinated individuals has been proposed to model the spread of a virus 
with a nominal strain and an emergent one that is vaccine-resistant. The authors exam-
ined the local stability of four different equilibria, corresponding to the case in which 
both variants vanish, the cases in which one variant vanishes and the other persists, and 
the case in which both variants persist over time. In de León et al. (2022), the authors 
considered additional states, such as infected-but-asymptomatic and dead, to model the 
spread of COVID-19 with two variants. In Arruda et  al. (2021), the authors proposed 
a multi-strain epidemic model, along with an optimal control approach to contain the 
spread.

At the other end of the spectrum, agent-based models (ABMs) can reproduce the 
behavior of a population with great granularity  (Azizi et  al. 2021; Aleta et  al. 2020; 
Truszkowska et al. 2021; Kerr et al. 2021). For instance, in Azizi et al. (2021), the authors 
developed an ABM based on the SIR dynamics to investigate the role of human behav-
ior, in the form of self-regulated or mandated social distancing, on the spread of a virus 
with two strains. Likewise, in Truszkowska et al. (2021), an ABM at the resolution of a 
single individual was created to study the propagation of COVID-19 in a real town in the 
United States. A theoretical analysis of these high-resolution models is difficult, if not 
impossible, due to the complexity of the dynamics, the stochasticity of the spreading, 
and the large parameter space.

Network theory constitutes a modeling pathway at an intermediate resolution, which 
allows for some analytical treatment in the spirit of compartmental models, while grant-
ing some fineness in the description of spreading like ABMs (Paré et al. 2020; Zino and 
Cao 2021; Pastor-Satorras et al. 2015; Mei et al. 2017; Kiss et al. 2017). Through the lens 
of networks, individuals are modeled as the nodes of a graph who interact through the 
edges of the network of contacts. Such a network captures the interactions between indi-
viduals, through which most viral diseases spread, such as contact with infected body 
fluids (Grant et al. 2020; Azmat et al. 2021), respiratory droplets, or aerosol generated 
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when a person coughs, sneezes, or simply speaks (Killingley and Nguyen-Van-Tam 2013; 
Jayaweera et al. 2020; Netz and Eaton 2020).

Within the context of network epidemic models, some efforts have been made to study 
the spread of multiple viruses and variants. In Bansal and Meyers (2012), the authors 
developed a model to study consecutive outbreaks with partial immunity after recovery, 
using percolation theory. In Karrer and Newman (2011), a model of two concurrent dis-
eases spreading over the same static networks of contacts was established, detailing the 
transition between the dominance of each disease over the other and the presence of a 
regime in which both co-exist. In Prakash et al. (2012), it was shown that co-existence is 
a rare phenomenon in most real-world network structures, where one disease typically 
dominates the other. A similar study on metapopulation model helped clarify the role of 
the network structure on the transitions between different regimes (Poletto et al. 2013). 
This modeling framework was extended to account for diseases concurrently spreading 
on distinct networks of contacts (Sanz et al. 2014) or on multi-layer networks (Sahneh 
and Scoglio 2014). It has been shown that the network model paradigm can be utilized 
to study real-world scenarios  (Pinotti et  al. 2019) while allowing to establish rigorous 
analytical treatment, towards the designing techniques to contain the viral spread (Liu 
et al. 2019; Paré et al. 2021; Ye et al. 2022).

While early accounts considered static networks  (Mei et  al. 2017; Fall et  al. 2007), 
there is a general consensus that temporal networks should be preferred to capture the 
dynamic nature of human behavior and interactions (Zino and Cao 2021; Pastor-Sator-
ras et al. 2015; Prakash et al. 2010). Activity-driven networks (ADNs) (Perra et al. 2012) 
have emerged as an elegant framework to study spreading dynamics over temporal net-
works in which the network dynamics evolve at the same time scale of the unfolding dis-
ease spreading. This modeling approach allows for mathematical treatment and provides 
important insights on how the node and network dynamics both contribute to the over-
all spreading process (Perra et al. 2012; Liu et al. 2014; Rizzo et al. 2014, 2016; Zino et al. 
2016; Lei et al. 2016; Pozzana et al. 2017; Ogura et al. 2019; Behring et al. 2021).

Here, we extend the ADN paradigm to study the simultaneous propagation of two 
strains, building on the literature on bi-virus susceptible–infected–susceptible (SIS) 
models (Prakash et al. 2012; Sahneh and Scoglio 2014; Liu et al. 2019; Paré et al. 2021; 
Ye et al. 2022). In an effort to tackle realistic disease spreading, from COVID-19 to influ-
enza, dengue, and malaria  (Kucharski et  al. 2016), we formulate the problem within a 
susceptible–exposed–infected–removed (SEIR) model and consider re-infections with 
tunable parameters for virus-specific and cross immunity. Our modeling framework 
captures a rich behavioral repertoire where both strains can spread simultaneously or 
independently, also contemplating the scenario of an endemic state with coexisting vari-
ants. Specifically, we characterize three different types of behavior: (i) quick eradication 
of the disease, (ii) eradication of the disease after the occurrence of an epidemic out-
break, and (iii) emergence of an endemic disease. Through a mean-field approach (Van 
Mieghem et al. 2009; Perra et al. 2012), we establish simple algebraic conditions deter-
mining the stability of the disease-free equilibrium and endemic states.

To demonstrate the practical value of our modeling approach, we propose the imple-
mentation of a non-pharmaceutical intervention, in the form of an intermittent stay-at-
home strategy. Non-pharmaceutical interventions are key to limit transmission routes 
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between individuals (Markel et al. 2007; Flaxman et al. 2020; Di Domenico et al. 2020; 
Arenas et al. 2020; Perra 2021) before vaccines become available for mass use. In particu-
lar, intermittent strategies have been examined in Valdez et al. (2012), where the authors 
have studied the role of intermittent social distancing in a static network model with SIS 
dynamics. In this vein, individuals might interrupt interactions with those infected for 
a fixed period of time to then resume contact. In Meidan et al. (2021), a similar control 
strategy has been studied for potential implementation in the fight against COVID-19. 
Similarly, in Della Rossa et al. (2020), the authors have examined how an intermittent 
strategy at a regional level in Italy can mitigate the effects of the COVID-19 spread, and 
an equivalent analysis has been carried out in Bin et al. (2021) for fast-switching control.

The rest of the paper is organized as follows. In the “Model” section, we present the 
model and provide an example illustrating its  rich dynamic repertoire. In  the “Mean-
field analysis” section, we conduct a mean-field analysis to predict the regions in the 
parameter space where the system either converges to the disease-free equilibrium or 
the endemic state. We present the intermittent stay-at-home control strategy in  the 
“Intermittent stay-at-home containment strategy” section, while conclusions and future 
work are presented in the “Conclusions” section.

Model
We consider a set of N nodes, each associated with an individual, which interact through 
a temporal network represented by an undirected graph G(t) = (N , E(t)) , where 
N := {1, . . . ,N } is the node set and E(t) ⊆ N ×N  is the edge set—(i, j) ∈ E(t) means 
that individuals i and j are in contact at time t. Here, t denotes the discrete time variable 
t ∈ {0,�, 2�, 3�, . . .} , with � > 0 being the time step.

Consistent with the literature on bi- and multi-virus models (Prakash et al. 2012; Sah-
neh and Scoglio 2014; Liu et al. 2019; Paré et al. 2021; Ye et al. 2022), we assume that 
individuals can be exposed to or be infected with at most one of two different strains of 
the virus at the same time. As such, an individual cannot carry both strains at the same 
time. Upon recovery from an infection, individuals gain (partial) strain-specific (Stokel-
Walker 2021; Iwasaki 2021; Ren et al. 2022) and cross-strain immunity, so that they can 
still be re-infected, but with a reduced probability  (Andreasen et  al. 1997; Kaler et  al. 
2022).

Node dynamics

Taking into account these considerations, for each individual (represented by a node in 
the network) we consider the progression illustrated in Fig. 1—a bi-virus version of an 
SEIR model. The health state of each individual, denoted by xi(t) ∈ X  for all i ∈ N  , can 
take values in X := {S, E1, E2, I1, I2, R1, R2, E1, E2, I1, I2, R} . Here, S denotes the suscepti-
ble state, in which the individual is healthy and can potentially become infected, as they 
come in contact with infectious individuals.

Upon infection, the health state of an individual changes to exposed, denoted by 
Eℓ , where the index ℓ ∈ {1, 2} refers to the strain the individual has been exposed to. 
In this state, the virus within an individual is in an incubation phase, so that the indi-
vidual is infected, but cannot transmit the disease yet. The incubation phase lasts for 
a stochastic time interval. Specifically, at each time step, an individual who is exposed 
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to strain ℓ ∈ {1, 2} transitions to the infectious state ( Iℓ ) with probability (w.p.) σℓ� , 
independent of the other individuals and of the past. Infected individuals can trans-
mit the disease with a duration of the infection also governed by a stochastic mecha-
nism: at each time step, an individual who is infected with strain ℓ ∈ {1, 2} transitions 
to the recovered state Rℓ w.p. µℓ� , independent of the others and of the past.

After recovery, an individual acquires partial immunity, so that recovered indi-
viduals can still be infected by either of the two strains, albeit with reduced prob-
abilities compared to an individual in a susceptible state. We introduce two further 
pairs of progression states, marked with a tilde to model partial immunity to a strain 
with which an individual has been previously infected. If an individual in state Rℓ 
is re-infected with the same strain ℓ , they transition back to the same progression 
sequence; alternatively, they may be exposed to the other strain. This state is denoted 
by Ẽℓ̄ , introduced to keep track of the partial immunity previously gained through 
infection; here and in what follows, we use a superimposed bar to identify the virus 
strain other than ℓ . An individual who underwent an infection with both strains gains 
immunity against both of them, and transitions to the recovered state R.

The contagion mechanism acts as follows. At each time step t, a susceptible indi-
vidual ( S ) who has an interaction with an infected individual with strain ℓ ∈ {1, 2} ( Iℓ 
or Ĩℓ ) becomes exposed with per-contact infection probability equal to �ℓ , independ-
ent of other contacts that the susceptible individual might have had. We assume that 
recovery from strain ℓ ∈ {1, 2} ( Rℓ ) yields a partial strain-specific immunity against 
that strain and cross-strain immunity against the other strain ℓ̄ . The levels of immu-
nity are captured by the strain-specific re-infection probability ρℓℓ ∈ [0, 1] and the 
cross-strain re-infection probability ρℓℓ̄ ∈ [0, 1] , respectively. In particular, ρℓℓ = 1 
means that no immunity is present, while ρℓℓ = 0 models the ideal scenario of perfect 
immunity. Using these parameters, for individuals who have recovered from strain 
ℓ ∈ {1, 2} ( Rℓ ), the per-contact infection probabilities with strain ℓ and ℓ̄ are scaled 
to ρℓℓ�ℓ and ρℓℓ̄�ℓ̄ , respectively. Typically, strain-specific immunity is stronger than 
cross-strain immunity, so that we assume ρℓℓ ≤ ρℓ̄ℓ . Hence, for individuals who have 
recovered from both strains ( R ), we scale the infection probabilities using the strain-
specific re-infection probability ρℓℓ for both strains ℓ ∈ {1, 2}.

The mechanisms described above establish that the dynamics of individual i ∈ N  , 
with state xi(t +�) ∈ X  , are described by a Markov chain (Levin et al. 2017), with the 

Fig. 1  Progression of a virus spread with two strains. The diagram describes the transitions that each 
individual undergoes between health states. All parameters are constant and represent transition 
probabilities or rates
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following non-zero transition probabilities. With respect to transitions that do not 
involve interactions, we have

for ℓ ∈ {1, 2} . Transitions from S to E1 and E2 depend on interactions with neighboring 
individuals in the network of contacts G(t) , that is,

for ℓ ∈ {1, 2} . Here, the contagion probability for individual i at time t is defined as

where

is the number of neighbors of i at time t who are infectious with strain ℓ , and r ∈ [0, 1] 
is an auxiliary parameter that re-scales the per-contact infection probability to account 
for the possible presence of a level of immunity due to previous infections. In (2), such a 
parameter is set to r = 1 , since susceptible individuals have no partial immunity. In plain 
words, equation (3) indicates that each neighbor of i who is infected with strain ℓ has a 
probability r�ℓ of transmitting the disease to i, independent of others.

Finally, transitions due to re-infection from the recovered states R1 , R2 , and R to the 
exposed states E1 , E2 , Ẽ1 , and Ẽ2 follow a similar mechanism, with the re-scaling factor r 
in equation (3) that takes value equal to the corresponding re-infection probability. Spe-
cifically, we have

for ℓ, ℓ̄ ∈ {1, 2}.

Network dynamics

To model the temporal evolution of the network of contacts G(t) = (N , E(t)) , we adopt a 
discrete-time ADN (Perra et al. 2012). In this paradigm, each agent is associated with an 
activity potential ai , which captures the individual’s social activity and tendency to initi-
ate interactions with others within a single time step. The activity potential of individual 
i is a realization of a random variable from a distribution f (ai) , where the activities are 
bounded by the inverse of the time step ( ai ≤ �−1 ) to ensure that ai� is a probability.

At each time instant t, each individual i ∈ N  activates w.p. equal to ai� , independent 
of others. Each active individual will establish m undirected connections with others, 
generating the edge set E(t) . The overall network dynamics can be organized into five 
main steps, which begin at t = 1 : 

(1)xi(t +�) =





Iℓ, w.p. σℓ�, if xi(t) = Eℓ,
Rℓ, w.p. µℓ�, if xi(t) = Iℓ,
�Iℓ, w.p. σℓ�, if xi(t) = �Eℓ,
R, w.p. µℓ�, if xi(t) = �Iℓ,

(2)xi(t +�) = Eℓ, w.p. Pℓ(i, t, 1), if xi(t) = S,

(3)Pℓ(i, t, r) := 1− (1− r�ℓ)
Iℓ(i,t) ,

(4)Iℓ(i, t) := |{j ∈ N : (i, j) ∈ E(t) and xj(t) ∈ {Iℓ, Ĩℓ}}|

(5)xi(t +�) =





Eℓ, w.p. Pℓ(i, t, ρℓℓ), if xi(t) = Rℓ,
�Eℓ, w.p. Pℓ(i, t, ρℓ̄ℓ), if xi(t) = Rℓ̄,
�Eℓ, w.p. Pℓ(i, t, ρℓℓ), if xi(t) = R,



Page 7 of 27Burbano Lombana et al. Applied Network Science            (2022) 7:66 	

(i)	The edge set is initialized as the empty set E(t) = ∅;
(ii)	 Each individual i ∈ N  becomes active w.p. equal to ai� , independent of others;
(iii)	Each active individual i ∈ N  selects m other individuals uniformly at random 

among the other individuals and establishes an undirected link with each of them, 
thereby forming the edge set;

(iv)	Each individual i ∈ N  updates its state xi(t) according to the transition mecha-
nisms described in the “Node dynamics” sub-section and illustrated in Fig. 1; and

(v)	 The time step is updated to t + 1.

All the parameters of the model are summarized in Table 1.

Table 1  Notation used in the paper

Notation Meaning

n Number of individuals

N = {1, . . . , n} Population set

t Discrete time variable

� Time step

G(t) Time varying graph denoting the network of contacts

E(t) Node set (interaction links) at time t

xi(t) State of individual i at time t

X Discrete set of health states

S Susceptible to both strains

E1 Exposed to strain 1

E2 Exposed to strain 2

I1 Infectious with strain 1

I2 Infectious with strain 2

R1 Recovered from strain 1

R2 Recovered from strain 2

Ẽ1 Exposed to strain 1 after being recovered from an infection

Ẽ2 Exposed to strain 2 after being recovered from an infection

Ĩ1 Infectious with strain 1 after being recovered from an infection

Ĩ2 Infectious with strain 2 after being recovered from an infection

R Recovered from both strains

ℓ Index to denote a particular strain

�ℓ Per-contact infection probability of strain ℓ

σℓ Latency to become infectious of strain ℓ

µℓ Recovery rate for strain ℓ

ρℓℓ Strain-specific re-infection probability for strain ℓ

ρℓℓ̄ Cross-strain re-infection probability for strain ℓ̄

m Average number of contacts per individual

ai Activity potential of individual i

f (·) Probability distribution of the activity potentials

〈a〉 First order moment of the probability density function f (·)

〈a2〉 Second order moment of the probability density function f (·)

T Time period of the control strategy

D Duration of the home-isolation period

p Fractions of home-isolated individuals in the control strategy
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Example

We illustrate our framework on a case study, with parameters inspired by COVID-19, to 
illustrate the repertoire of behaviors that our model can capture and reproduce. We con-
sider a population of N = 10,000 individuals and a time step equal to � = 0.5 day. Fol-
lowing (Behring et al. 2021; Parino et al. 2021), the  transition probability from exposed 
to infectious and from infectious to recovered are set for both strains to σℓ = 0.5 day−1 
and µℓ = 0.2 day−1 , respectively. To improve readability of the graphical presentation, 
we set the re-infection probabilities to ρℓℓ̄ = 0.1 , for all ℓ, ℓ̄ ∈ {1, 2} , which is equivalent 
to a 90% reduction of the probability to be infected due to natural immunity. Regard-
ing the network dynamics, the value of the activity potential of each individual is drawn 
from a re-scaled power-law distribution f (a) = η a−y with exponent y = 2.1 , a cut-off 
ǫ = 10−3 , and re-scaling constant η = 10 . The number of connections per active indi-
vidual is set to m = 20 , based on literature (Mossong et al. 2008; Parino et al. 2021). As 
the initial condition, we consider one individual infected for each strain.

Figure 2 illustrates the time evolution of the epidemic process for different values of 
the remaining parameters. In Fig.  2a, we vary  the per-contact infection probability �1 

Fig. 2  Illustrative example of the time evolution of the epidemic spreading process. Evolution of the 
epidemic in terms of the total infection counts for strain 1 ( I1(t)+ Ĩ1(t) ) and 2 ( I2(t)+ Ĩ2(t) ), averaged over 
1000 independent Monte Carlo simulations for a different values of �1 with �2 = 2�1 being twice infectious 
than the first variant. Here �1 is varied from 0 to 0.2, thus representing cases where both variants are in the 
non-epidemic regime and transition to an epidemics as �1 increases. b Re-infection parameter of the second 
variant ρ22 with ρ21 = ρ22 and �1 = �2 = 0.2 . c �1 varies between 0 and 0.5, while �2 = 0.5− �1 . d Number of 
re-infected individuals varying the cross-strain re-infection probability ρ12 with �1 = �2 = 0.2
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from 0 to 0.2 while we consider the second strain to be two times more infectious than 
the first one, that is, �2 = 2�1 . Predictably, the second variant dominates the infection 
count. In fact, once a critical threshold is trespassed, both strains yield an epidemic out-
break, but the second variant consistently leads the infection count at much higher fig-
ures than the first one.

The second set of simulations illustrates the role of the re-infection probability ρ22 on 
the time evolution of the infection profile. In particular, in Fig.  2b, as the re-infection 
probability increases, the epidemic dynamics of the second variant exhibit a longer dura-
tion of the peak and a slower decay over time. Notably, for values of ρ22 ≥ 0.5 , the sec-
ond strain tends to settle into an endemic regime that does not extinguish within the 
time interval of observation.

In Fig. 2c, we study how the interplay between the infection probabilities of the two 
strains affects the epidemic outcome. Specifically, we vary �1 from 0 to 0.5, and set 
�2 = 0.5− �1 . All re-infection probabilities are set to ρℓℓ̄ = 0.1 . Predictably, the results 
indicate that for �1 − �2 < 0 the second variant is prevalent, for �1 − �2 = 0 the two var-
iants are equivalent, and for �1 − �2 > 0 the first variant is, instead, prevalent. We also 
identify a transition from a disease-free steady-state value to an endemic state for each 
variant.

Finally, in Fig. 2d, we investigate the role of cross-immunity. Specifically, we vary the 
re-infection probability ρ12 in [0, 1]. As expected, larger values of ρ12 (low cross-immu-
nity) lead to an increase in the number of infections from the second variant.

Mean‑field analysis
The example in Fig. 2 illustrates that our network epidemic model can exhibit three dif-
ferent types of emergent behaviors, namely, 

	(i)	 a non-epidemic regime, characterized by a quick convergence to a disease-free 
state, in which the infections monotonically decrease over time;

	(ii)	 an epidemic regime, in which the number of infections grow initially, but, after 
reaching a peak, they vanish, eventually reaching a disease-free state; and

	(iii)	 an endemic regime, where the disease persists over time and a disease-free state is 
never reached.

Here, we perform a theoretical analysis of the model to elucidate how model param-
eters determine the emerging behavior of the stochastic network system. Specifically, we 
derive two thresholds for the per-contact infection probability that characterize transi-
tion from the non-epidemic regime to the epidemic one, and from the epidemic regime 
to the endemic one, termed epidemic threshold and endemic threshold, respectively.

Following current practice in the study of ADNs  (Perra et  al. 2012; Liu et  al. 2014; 
Rizzo et al. 2014, 2016; Zino et al. 2016; Lei et al. 2016; Pozzana et al. 2017; Ogura et al. 
2019; Behring et al. 2021), we use a mean-field approach to approximate the time evo-
lution of the total number of exposed and infected individuals using a set of nonlinear 
ordinary differential equations, in the limit N → ∞ (Van Mieghem et al. 2009). In par-
ticular, we introduce the functions Iℓ(τ ) , Eℓ(τ ) , Rℓ(τ ) , as the continuous-time limit of 
the total number of individuals who are in the infected, exposed, and removed states 
of strain ℓ ∈ {1, 2} , when � → 0 (for clarity, we use τ for the continuous-time variable). 
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Likewise, we use S(τ ) and R(τ ) to denote the total number of individuals in the suscepti-
ble and removed state, respectively.

Through a series of manipulations, detailed in “Appendix  A”, we can establish that the 
dynamics of Iℓ(τ ) , Eℓ(τ ) are governed by 

 for ℓ ∈ {1, 2} , respectively. Here, the function of time �d
• (τ ) represents the dth order 

auxiliary variable that captures the dth moment of the activity of the individuals in the 
susceptible health state, up to the normalization constant N, 

The first and second summands in the right-hand side of equation (6a) denote the rate at 
which individuals leave and enter the infected state, respectively. Similarly, the first term in 
the right-hand side of equation (6b) identifies the rate at which individuals transition out 
from the exposed state to the infectious state. The second and third terms, instead, indicate 
the rate of transitions of susceptible individuals to the exposed state, after an interaction 
with individuals in Iℓ and Ĩℓ , respectively. The last two terms capture re-infections of indi-
viduals who have already recovered from the same strain, after an interaction with indi-
viduals infected with that strain or the other strain, respectively.

Analogously, the dynamics of the total number of individuals in the re-infected state Ĩℓ(τ ) 
and re-exposed state Ẽℓ(τ ) are governed by 

(6a)
dIℓ(τ )

dτ
= −µℓIℓ(τ )+ σℓEℓ(τ ) ,

(6b)

dEℓ(τ )

dτ
= −σℓEℓ(τ )+

m�ℓ

N

[
�1

S(τ )Iℓ(t)+ S(τ )�1
Iℓ
(τ )

]

+
m�ℓ

N

[
�1

S(τ )̃Iℓ(τ )+ S(τ )�1
Ĩℓ
(τ )

]

+
mρℓℓ�ℓ

N

[
�1

Rℓ
(τ )Iℓ(τ )+ Rℓ(τ )�

1
Iℓ
(τ )

]

+
mρℓℓ�ℓ

N

[
�1

Rℓ
(τ )̃Iℓ(τ )+ Rℓ(τ )�

1
Ĩℓ
(τ )

]
,

(7a)�d
S (τ ) :=

∑

i∈N :xi(τ )=S

adi ,

(7b)�d
Iℓ
(τ ) :=

∑

i∈N :xi(τ )=Iℓ

adi ,

(7c)
�d

Ĩℓ
(τ ) :=

∑

i∈N :xi(τ )=Ĩℓ

adi ,

(7d)�d
R(τ ) :=

∑

i∈N :xi(τ )=R

adi .

(8a)dĨℓ(τ )

dτ
= −µℓ Ĩℓ(τ )+ σℓẼℓ(τ ) ,
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The summands on the right-hand side of equation  (8a) represent individuals that 
leave and enter the re-infected state. The first term on the right-hand side of equa-
tion (8b) denotes the rate of individuals who leave the exposed state and become (re-)
infected. The second and third terms denote the rate of individuals who have already 
recovered from strain ℓ̄ , and become exposed to strain ℓ after an interaction with 
individuals in Iℓ and Ĩℓ , respectively. The fourth and fifth terms capture the rate at 
which individuals who have already recovered from both variants and become again 
exposed after an interaction with individuals in Iℓ and Ĩℓ , respectively.

Finally, the dynamics of the first-order auxiliary variable are 

 The dynamics of the auxiliary variables depend recursively on high-order auxiliary 
variables making the derivation of global results cumbersome. However, a local stabil-
ity analysis can be conducted to shed light on the three different regimes, namely, non-
epidemic, epidemic, and endemic, as articulated in what follows.

(8b)

dẼℓ(τ )

dτ
= −σℓẼℓ(τ )+

mρℓ̄ℓ�ℓ

N

[
�1

Rℓ̄
(τ )Iℓ(τ )+ Rℓ̄(τ )�

1
Iℓ
(τ )

]

+
mρℓ̄ℓ�ℓ

N

[
�1

Rℓ̄
(τ )̃Iℓ(τ )+ Rℓ̄(τ )�

1
Ĩℓ
(τ )

]

+
mρℓℓ�ℓ

N

[
�1

R(τ )Iℓ(τ )+ R(τ )�1
Iℓ
(τ )

]

+
mρℓℓ�ℓ

N

[
�1

R(τ )̃Iℓ(τ )+ R(τ )�1
Ĩℓ
(τ )

]
.

(9a)
d�1

Iℓ
(τ )

dτ
= −µℓ�

1
Iℓ
(τ )+ σℓ�

1
Eℓ
(τ ),

(9b)
d�1

Ĩℓ
(τ )

dτ
= −µℓ�

1
Ĩℓ
(τ )+ σℓ�

1
Ẽℓ
(τ ),

(9c)

d�1
Eℓ
(τ )

dτ
= −σℓ�

1
Eℓ
(τ )+

m�ℓ

N

[
�2

S(t)Iℓ(t)+�1
S(t)�

1
Iℓ
(t)

]

+
m�ℓ

N

[
�2

S(t )̃Iℓ(t)+�1
S(t)�

1
Ĩℓ
(t)

]

+
mρℓℓ�ℓ

N

[
�2

Rℓ
(t)Iℓ(t)+�1

Rℓ
(t)�1

Iℓ
(t)

]

+
mρℓℓ�ℓ

N

[
�2

Rℓ
(t )̃Iℓ(t)+�1

Rℓ
(t)�1

Ĩℓ
(t)

]
,

(9d)

d�1
Ẽℓ
(τ )

dτ
= −σℓ�

1
Ẽℓ
(τ )+

mρℓ̄ℓ�ℓ

N

[
�2

Rℓ̄
(τ )Iℓ(τ )+�1

Rℓ̄
(τ )�1

Iℓ
(τ )

]

+
mρℓ̄ℓ�ℓ

N

[
�2

Rℓ̄
(τ )̃Iℓ(τ )+�1

Rℓ̄
(τ )�1

Ĩℓ
(τ )

]

mρℓℓ�ℓ

N

[
�2

R(τ )Iℓ(τ )+�1
R(τ )�

1
Iℓ
(τ )

]

+
mρℓℓ�ℓ

N

[
�2

R(τ )̃Iℓ(τ )+�1
R(τ )�

1
Ĩℓ
(τ )

]
.
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Epidemic threshold

We start by analyzing the parameter conditions under which the non-epidemic 
behavior is observed. To this aim, we study the stability of the disease-free equilib-
rium of the stochastic network system in which all individuals are susceptible, that is, 
S = N  and all other variables are zero. The results of our analysis are summarized in 
the following claim.

Theorem  1  In the limit of large-scale networks N → ∞ , the non-epidemic behavior 
occurs when

for both ℓ ∈ {1, 2} , where 

 are the first- and second-order moments of the probability density function of the activity 
potentials.

Proof
By linearizing equations (6), (9a), and (9c) around the disease-free equilibrium S = N  , we 
obtain 

 for ℓ = {1, 2}.

The stability of the disease free-equilibrium is fully determined by the stability of the ori-
gin of equation set (12) (Rugh 1996), which is determined by the Jacobian

(10)
�ℓ

µℓ

<
1

m
(
�a� +

√
�a2�

) ,

(11a)�a� :=

∫ ∞

0
af (a) da ,

(11b)�a2� :=

∫ ∞

0
a2f (a) da ,

(12a)
dIℓ(τ )

dτ
= −µℓIℓ(τ )+ σℓEℓ(τ ),

(12b)
dEℓ(τ )

dτ
= −σℓEℓ(τ )+m�ℓ

[
�a�Iℓ(τ )+�1

Iℓ
(τ )

]
,

(12c)
d�1

Iℓ
(τ )

dτ
= −µℓ�

1
Iℓ
(τ )+ σℓ�

1
Eℓ
(τ ),

(12d)
d�1

Eℓ
(τ )

dτ
= −σℓ�

1
Eℓ
(τ )+m�ℓ

[
�a2�Iℓ(τ )+ �a��1

Iℓ
(τ )

]
,
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This 8× 8 matrix has a block-diagonal structure, so that its eight eigenvalues can be 
obtained by computing the eigenvalues of each of the 4 × 4 diagonal blocks. Moreover, 
the structure of each block allows for an explicit computation of its four eigenvalues. In 
fact, the four eigenvalues of each block�ℓ

1,2,3,4 are the solution of the following equation:

The solution of such an equation can be computed in closed-form, as

with ℓ = {1, 2} . An epidemic outbreak does not occur if all the eigenvalues have negative 
real part, yielding the following condition:

for both ℓ ∈ {1, 2} , which completes the proof. �

Such a condition corresponds to the well-known threshold of SIS, SIR, and SEIR mod-
els with a single variant  (Perra et  al. 2012; Liu et  al. 2014; Behring et  al. 2021). Thus, 
the stability of the disease-free equilibrium in the presence of two strains is governed 
by the strain ℓ with higher ratio �ℓ/µℓ , that is, the strain which, on average, is able to 
infect more individuals during the entire transmissibility period. In fact, each infection 
occurs with per-contact transmission probability equal to �ℓ , and the average duration of 
the transmissibility period is equal to 1/µℓ . This observation is in agreement with prior 
research on deterministic compartmental models (Fudolig and Howard 2020).

Endemic threshold

The simulations in Fig. 2 suggest that some combinations of parameters yield regimes 
where the infection dynamics does not spontaneously extinguish. These regimes, called 
endemic, are of particular interest for the epidemiological community, as they under-
line scenarios where the population is required to “live with the virus (New York Times 
2022).” Here, we determine a threshold, labeled as endemic, for the occurrence of this 
phenomenon.

Theorem 2  In the limit of large-scale networks N → ∞ , the endemic regime occurs if 
and only if

(13)




−µ1 σ1 0 0 0 0 0 0

m�1�a� − σ1 m�1 0 0 0 0 0

0 0 − µ1 σ1 0 0 0 0

m�1�a
2� 0 m�a��1 − σ1 0 0 0 0

0 0 0 0 − µ2 σ2 0 0

0 0 0 0 m�2�a� − σ2 m�2 0

0 0 0 0 0 0 − µ2 σ2
0 0 0 0 m�2�a

2� 0 m�a��2 − σ2




.

(14)
[
(µℓ +�ℓ)(σℓ −�ℓ)

]2
+ σℓm�ℓ�a�(µℓ +�ℓ)(σℓ −�ℓ)−m2σ 2

ℓ �
2
ℓ�a

2� = 0.

(15)�ℓ
1,2,3,4 := −

µℓ + σℓ

2
∓

1

2

√
(µℓ − σℓ)2 + 4σℓm�ℓ

(
�a� ∓

√
�a2�

)
,

(16)
�ℓ

µℓ

<
1

m
(
�a� +

√
�a2�

) ,
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for at least one ℓ ∈ {1, 2} , where 〈a〉 and 〈a2〉 are defined in equation (11).

Proof
The determination of the endemic threshold is equivalent to isolating the conditions under 
which the dynamics does not converge to a disease-free state. To this aim, we study the 
stability of the equilibrium R = N  for the stochastic network system. By linearizing equa-
tion set (6), along with equations (9b) and (9d) about R = N  , we obtain 

 Following a procedure similar to the one used in the proof of Theorem 1, we evaluate 
the Jacobian of the system of equations at R = N  , and we establish conditions for which 
one of the eigenvalues has a positive real part so that the equilibrium is unstable. Hence, 
we establish that

for at least one ℓ ∈ {1, 2} , which yields the claim. �

Remark 1
Both proofs in Theorems  1 and  2 rely on the block-diagonal structure of a Jacobian 
matrix, which begets two decoupled four-dimensional eigenvalue problems. Should one 
consider a multi-strain model (Paré et al. 2021; Fudolig and Howard 2020), with more 
than two strains, results would be equivalent.

We assess the validity of the epidemic thresholds in Theorems 1 and 2 through a series 
of simulations, in which we seek to map the parameter space into alternative behaviors 
of the stochastic network system. In particular, we create two-dimensional diagrams 
varying �1 = �2 = �s and ρ11 = ρ22 = ρs on the intervals [0,  0.5] and [0,  1], respec-
tively. All other simulation parameters are the same as in the example in the “Example” 

(17)
�ℓ

µℓ

>
1

mρℓℓ

(
�a� +

√
�a2�

) ,

(18a)dĨℓ(τ )

dτ
= −µℓ Ĩℓ(τ )+ σℓẼℓ(τ ) ,

(18b)dẼℓ(τ )

dτ
= −σℓẼℓ(τ )+mρℓℓ�ℓ

[
�a�̃Iℓ(τ )+�1

Ĩℓ
(τ )

]
,

(18c)
d�1

Ĩℓ
(τ )

dτ
= −µℓ�

1
Ĩℓ
(τ )+ σℓ�

1
Ẽℓ
(τ ) ,

(18d)
d�1

Ẽℓ
(τ )

dτ
= −σℓ�

1
Ẽℓ
(τ )+mρℓℓ�ℓ

[
�a2�Iℓ(τ )+ �a��1

Ĩℓ
(τ )

]
.

(19)
�ℓ

µℓ

>
1

mρℓℓ

(
�a� +

√
�a2�

) ,
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sub-section. For each parameter combination, a total of 100 simulations were per-
formed, each of 3600 time steps (see “Appendix B” for more details on the numerical 
simulations). Results are shown in Fig. 3a:  the blue region indicates the non-epidemic 
regime where the disease monotonically vanishes in time, the yellow region identifies 
the epidemic regime in which an outbreak occurs but it is eventually eradicated, and 
the red region marks the endemic regime where the disease will persist over time. Each 
point is indicative of the average behavior observed over the 100 simulations.

The dashed white curves show theoretical predictions of the epidemic threshold. The 
vertical lines denote the epidemic threshold  in (10) from Theorem 1, while the curves 
depict the endemic threshold in (17) from Theorem 2. Our results follow the intuition 
that highly infectious strains might enter the endemic region more easily, as they require 
lower values of the re-infection parameter ρs for crossing the threshold.

Our theoretical claims from Theorems 1 and 2 clarify whether the stochastic network 
system will alternatively exhibit a quick eradication of the disease, an epidemic outbreak, 
or an endemic state. However, they do not allow for disentangling the infection count 
of each single strain. In particular, the two interacting strains can exhibit nontrivial 
behaviors, in which one of them is dominant or in which both strains coexist—two cases 
that are indistinguishable from our theoretical predictions. The analysis of these com-
plex behaviors is nontrivial, and is still an open problem, even for models much simpler 
than ours (Liu et al. 2019; Paré et al. 2021; Doshi et al. 2021; Ye et al. 2022). Below, we 
conduct a numerical simulation campaign to provide insight into the complex spreading 
dynamics.

Through our simulations, we span different infection and re-infection parameter values: 
�1 and ρ11 are varied in the intervals [0, 0.5] and [0, 1], respectively, while the parameters of 
the second strain are determined as �2 = 0.5− �1 and ρ22 = 1− ρ11 . In all the simulations, 

Fig. 3  Two-dimensional diagram illustrating different types of behaviors of the stochastic network systems. 
In a, the two strains have equal infection and re-infection parameters. We vary the infection parameters 
�1 = �2 = �s on the interval [0, 0.5], while the re-infection parameters ρ11 = ρ22 = ρs are also varied on the 
interval [0, 1]. The blue region represents the non-epidemic regime, the orange the epidemic regime, and 
the red the endemic regime. Dashed lines indicate theoretical predictions. In b, we vary the infection and 
re-infection parameter values. Specifically, �1 and ρ11 are varied on the interval [0, 0.5] and [0, 1], respectively, 
while we set �2 = 0.5− �1 and ρ22 = 1− ρ11 . Seven regions are highlighted, depending on the behavior 
of the two strains. In Region I, strain 1 is non-epidemic and strain 2 is epidemic; in Region II, strain 1 is 
non-epidemic and strain 2 is endemic; In Region III, strain 2 is non-epidemic and strain 1 is epidemic; In 
Region IV, strain 2 is non-epidemic and strain 1 is endemic; in Region V, strain 1 is epidemic and strain 2 is 
endemic; in Region VI, strain 2 is epidemic and strain 1 is endemic; in Region VII, both strains are endemic
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µ1 = µ2 = 0.2 . Note that, under these assumptions, Theorem 1 guarantees that the non-
epidemic regime cannot occur, that is, at least one of the strains becomes epidemic (or 
endemic). To illustrate our findings, we color-code the behavior of the stochastic network 
system in a two-dimensional map, varying the infection parameters �1 − �2 and re-infec-
tion parameters ρ22 − ρ11 in the interval [−0.5, 0.5] and [−1, 1] , respectively, as shown 
in Fig. 3b. For each combination, we perform 100 simulations over 3600 time steps (see 
“Appendix B” for more details on the numerical simulations).

Our numerical results highlight the non-trivial interplay of model parameters, which 
shape complex behaviors associated with seven different regions in Fig.  3b. Specifically, 
in Region I, strain 1 remains non-epidemic, while strain 2 yields an epidemic outbreak. 
In Region II, strain 1 remains non-epidemic, while strain 2 becomes endemic. Regions III 
and IV are characterized by a behavior symmetric to regions I and II, respectively (Region 
III: strain 2 remains non-endemic  and strain 1 yields epidemic outbreak; Region V: 
strain 2 remains non-epidemic and strain 1 becomes endemic). In Region V, strain 1 exhib-
its an epidemic behavior, while strain 2 exhibits an endemic state, whereas the opposite 
occurs in Region VI. Finally, in Region VII, both strains exhibit an endemic state. Notably, 
regions I and III form the overall epidemic regime of the system, whereas the other regions 
pertain to the overall endemic regime. We should comment that two further regions may 
be possible, for other sets of parameters: a region in which the strains are non-epidemic, 
and a region in which both strains are epidemic—both regions are visible in Fig. 2a.

Intermittent stay‑at‑home containment strategy
Our modeling framework can be used to inform containment policies. Here, we demon-
strate its practical value by presenting the implementation of an intermittent stay-at-home 
strategy as a viable solution to mitigate the epidemic spread, while limiting the social 
and economic impact for the population. In particular, we analyze the effect of a stay-at-
home containment strategy that involves randomly selected portions of the population to 
be home-isolated for limited time periods. We assume that home-isolated individuals are 
healthy during the isolation time and that they will remain healthy throughout the isolation 
period. Hence, in our simulations, we assign the “removed” state to these individuals, who 
temporarily do not contribute to the epidemic dynamics. More formally, we will randomly 
select a fraction p ∈ [0, 1] of the population to be home-isolated for a period of D consecu-
tive time steps and we repeat this process every T > D time steps.

Note that the total number of individuals who take part into the network dynamics are 
N(t), a number that changes in time according to a periodic switching law given by

for k = {0, 1, . . .}.
By duplicating the mean-field analysis for this case, for each strain ℓ ∈ {1, 2} , we obtain a 

periodic, switched linear system of four coupled equations, 

(20)N (t) =

{
(1− p)N , kT ≤ t < kT + D,
N , kT + D ≤ t < (k + 1)T ,

(21a)
dIℓ(τ )

dτ
= −µℓIℓ(τ )+ σℓEℓ(τ ) ,
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 where ωℓ(τ) is a square wave,

for k = {1, . . .}.
To study the stability of the periodic, switched linear system (21), we use Floquet 

theory (Rugh 1996). The transition matrix �(τ , τ ′) of any periodic linear system can 
be decomposed into

where exp(·) is the matrix exponential. The matrix function P(τ ) is T�-periodic, con-
tinuously differentiable, and invertible for all τ , while M is a constant, possibly complex 
matrix that can be calculated from the monodromy matrix �(T�, 0) , as follows:

with log(·) being the matrix logarithm.
The Floquet decomposition can be used to transform the four-dimensional periodic 

system (22) into a time-invariant system, whose stability is dictated by the four eigen-
values of matrix M. For a switched system, the monodromy matrix takes the simple 
form of the product of matrix exponentials,

where δ = D/T  is the duty cycle and

To investigate when an epidemic outbreaks occur for the switched, stochastic network 
systems, we examine the eigenvalues of M. By monitoring when the real part of at least 
one of these eigenvalues become positive, we pinpoint at the epidemic threshold. The 
same analysis can be performed around the equilibrium in which all the in individuals 
are in the R state to identify the endemic threshold, following the same steps as in the 
“Mean-field analysis” section.

(21b)
dEℓ(τ )

dτ
= −σℓEℓ(τ )+ ωℓ(τ)

[
�a�Iℓ(τ )+�1

Iℓ
(τ )

]
,

(21c)
d�1

Iℓ
(τ )

dτ
= −µℓ�

1
Iℓ
(τ )+ σℓ�

1
Eℓ
(τ ) ,

(21d)
d�1

Eℓ
(τ )

dτ
= −σℓ�

1
Eℓ
(τ )+ ωℓ(τ)

[
�a2�Iℓ(τ )+ �a��1

Iℓ
(τ )

]
,

(22)ωℓ(τ) =

{
m�ℓ(1− p), kT� ≤ τ < kT�+ D�,
m�ℓ, kT�+ D� ≤ τ < (k + 1)T�,

(23)�(τ , τ ′) = P(τ ) exp
(
M(τ − τ ′)

)
P−1(τ ′) ,

(24)M :=
1

T�
log(�(T�, 0)) ,

(25)�(T�, 0) := exp
(
(1− δ)T� J0

)
exp(δT� Jp) ,

(26)Jp :=




−µℓ σℓ 0 0
(1− p)m�ℓ�a� − σℓ (1− p)m�ℓ 0

0 0 − µℓ σℓ
(1− p)m�ℓ�a

2� 0 (1− p)m�ℓ�a� − σℓ


 .
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The effect of the proposed intermittent stay-at-home containment strategy is illus-
trated in Fig.  4, through numerical simulations employing the same parameters as 
in the example in  the “Example” sub-section. We perform 100 simulations for each 
parameter combination, each of 1000 time steps (see “Appendix B” for more details 
on the numerical simulations). We vary the fraction of individuals to be removed 
in the network p, and set the period to be 1 week ( T� = 7 ), while the stay-at-home 
number of days is set to 5 days ( D� = 5).

Fig. 4  Two-dimensional diagrams illustrating the outcome of the intermittent stay-at-home containment 
strategy for three different values of the fraction of population: a, b p = 60% , c, d p = 50% , and e, f 
p = 30% . For each case, we report the peak count of infections (a, c, e) and the steady-state value (b, d, f), as 
determined from averaging the last 50 time steps. The white-dashed lines represent the stability thresholds 
computed from Floquet theory and the red dashed lines are stability threshold for p = 0% (absence of the 
containment strategy, corresponding to Theorems 1 and 2)
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The dashed white curves represent the stability thresholds computed from the eigen-
values of M for both the epidemic and the endemic regimes. As the fraction of controlled 
nodes p increases, the region of stability of the disease-free equilibrium widens, while 
the one corresponding to the endemic regime shrinks. This can be observed by com-
paring the dashed white curves with the dashed red ones, which represent the stability 
thresholds in the absence of any containment strategy. In agreement with one’s intui-
tion, both the peak count of infections and its steady-state value decrease for larger p. 
In fact, in the worst case scenario with �1 = �2 = 0.5 and ρ11 = ρ22 = 1 , both values are 
reduced from more than 1500 cases per 10,000 inhabitants, to less than 1000 as p goes 
from 30 to 60%. To summarize, our results indicate that the presence of an intermittent 
stay-at-home containment strategy has a beneficial effect on the epidemic spreading. 
Not only can this strategy be used to mitigate new strains that might be more infectious 
than existing ones, but can it also be used to replace strict lock-down measures with 
long isolation periods.

Conclusions
We developed and analyzed a two-strain epidemic model using the ADN paradigm. 
Building on state-of-the art models, we put forward a SEIR-based progression model 
that accounts for re-infections with the same strain or a different strain—scenarios that 
are presently unfolding during the COVID-19 pandemic as immunity is waning and new 
variants are emerging. The resulting model reveals rich dynamics through the stochastic 
network system that can experience different phenotypes, ranging from a disease-free 
equilibrium to epidemic outbreaks and endemic regimes in which the disease persists 
over time, through one of both its strains. Alongside computational insight, we establish 
closed-form expressions for the epidemic and endemic thresholds through a mean-field 
approach, which is valid in the thermodynamic limit of large networks. Predictably, the 
epidemic threshold is the same as the one corresponding to a classical SIS model over 
an ADN, when only the most infectious single strain  is considered. In agreement with 
one’s intuition, the endemic threshold is inversely proportional to the strain-specific re-
infection parameter.

We demonstrated the potential of the approach in the development of a stay-at-home 
containment strategy to mitigate the effects of the spread. Contrary to harsh lock-
down measures that we have seen during the COVID-19 pandemic, this approach only 
requires that a small fraction of the population (selected uniformly at random) isolates 
for a period of time. After the isolation ends, individuals can return to normal activities 
and others will isolate in their place. We leverage Floquet theory to obtain the epidemic 
thresholds of such an intermittent strategy. We found that the region in the parameter 
space of the disease-free equilibrium grows with the fraction of individuals selected for 
isolation, thereby reducing the epidemic and endemic regions; a two-fold increase in the 
fraction of home-isolated inhabitants causes an equivalent drop in both the peak count 
of infections and its steady-state value.

Our proposed approach is not free of limitations and raises important questions to be 
addressed in future endeavors. First and foremost, the activity potential is assumed to be 
time-invariant, which may not fully capture the complexity of human behavior; for exam-
ple, recent work from our group has demonstrated an extension of the ADN paradigm 
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to account for memory effects through Hawkes’ processes  (Zino et al. 2018) and for the 
inclusion of human behavior (Rizzo et al. 2014; Ye et al. 2021; Hota et al. 2022). Second, 
all individuals might not uniformly establish connections with others, rather, their inter-
actions may be based on nodes’ properties  (Pozzana et  al. 2017), strong ties and dyadic 
relations  (Sun et al. 2015; Nadini et al. 2020), or higher-order relations  (Petri and Barrat 
2018). Third, our containment strategy is open-loop, so it does not consider any feedback 
that could potentially enhance its mitigation, by anticipating outbreaks as reported in com-
partmental models  (Della Rossa et  al. 2020). Although there are several directions to be 
further explored, our results offer important insights into the dynamics and control of dis-
ease spreading processes with multiple strains over ADNs, an area which, to be best of our 
knowledge, was understudied till now.

Appendix A: Mean‑field dynamics
Mean-field theory (Van Mieghem et al. 2009) can be adapted to study the dynamics of the 
stochastic network system in (1)-(5). Consistent with Fig. 2, we utilize italic letters to quan-
tify the number of individuals in each state of the progression model in Fig. 1. In particular 
we define S(t) and R(t) as the number of agents in the susceptible and recovered states a 
time t, respectively. Variables E1(t) and E2(t) and R1(t) and R2(t) count the number of 
exposed and recovered individuals from strain 1 and 2, respectively. Similarly, variables 
Ẽ1(t) , Ẽ2(t) , Ĩ1(t) , and Ĩ2(t) count the agents in re-infected states, while R(t) is the total 
number of removed agents. Note that the total number of individuals N satisfies 

N = S(t)+E1(t)+E2(t)+ I1(t)+ I2(t)+R1(t)+R2(t)+ Ẽ1(t)+ Ẽ2(t)+ Ĩ1(t)+

Ĩ2(t)+ R(t)

.

Following (Perra et al. 2012), we consider a generic activity level a and we denote with 
a superscript a the number of individuals with activity level a in each state. For instance, 
Sa(t) is the number of susceptible individual with activity a at time t. All the variables of the 
stochastic network system can be rewritten in a form analogous to the following one for the 
susceptible state and the related auxiliary variable:

where, here and in what follows, integrals are all defined from 0 to ∞ . Furthermore, for 
individual i with activity level a, we have that the expected value of (4) reads

Within the mean-field approach, we substitute Pℓ(i, t, r) from (3) with its expected value, 
which is approximated by using (28), thereby obtaining

Such an expression is further simplified by considering a first-order McLaurin expansion 
in � , which yields

(27)S(t) =

∫
Sa(t)da , �d
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a
′

ℓ (t))

N
da

′ +

∫
a
′(Ia

′

ℓ (t)+ Ĩ
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Within a mean-field approach, for an infinitely large network N → ∞ , we can establish 
that the number of individuals exposed to strain ℓ ∈ {1, 2} and belonging to the activ-
ity level a at a time t +� is approximated for small � by its expected value. From the 
dynamics described in the main article and recalling the progression illustrated in Fig. 1, 
we conclude that the change in the average number of exposed individuals to strain 
ℓ ∈ {1, 2} belonging to the activity level a from time t to t +� is equal to the number of 
individuals who transition to Eℓ from S and Iℓ minus the number who transition from Eℓ 
to Iℓ . Hence, we approximate Ea

ℓ (t +�) as follows:

At this stage, from (1), we derive

while from (2), and using the approximation in (30) with r = 1 , we obtain

Similar, from (5) and using the approximation in (30) with r = ρℓℓ , we establish

Finally, by replacing (32)–(34) into (31), we obtain the following approximation:

(30)Pℓ(i, t, r) ≈ r�ℓ�m

(
a
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The first summand on right-hand side of equation (35) corresponds to the number of 
individuals who are in the exposed state at time t. The second summand is the aver-
age number of individuals who transition from the exposed state to the infectious state. 
The third and fourth summmands correspond to the average number of individuals who 
transition from the susceptible state to the exposed one. Specifically, the third summand 
accounts for susceptible individualswith activity a who activate and interact with infec-
tious individuals through the network of contacts G(t) = (N , E(t)) ; the fourth summand 
accounts instead for infected individuals who activate and interact with susceptible indi-
viduals with activity a. The fifth and sixth summands correspond to re-infection cases 
corresponding to the active and passive cases that transition in from the recovered state 
Ra
ℓ(t) . Similarly, the last four summands correspond to incoming transitions due to 

interactions with re-infected individuals Ĩ aℓ (t) . In addition, using equation (1), the num-
ber of infected individuals with strain ℓ and activity a at a time t +� is approximated by

Similar to equation (35), we approximate the number of re-exposed individuals at time 
t +� for small � with its expected value, computed following the same steps in (31)–
(34), obtaining
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In addition, similar to (36), we approximate the number of re-infected individuals as

Taking the limit � → 0 , equations (35)–(38) yield a set of ordinary differential equations 
for Ea

ℓ (τ ) , I
a
ℓ (τ ) , Ẽ

a
ℓ (τ ) , and Ĩ aℓ (τ ) . For instance, from equation (36), by collecting all the 

terms in � on the right-hand-side, dividing by � , and taking the limit, we find

A similar computation can be carried out for the other variables. Integrating across all 
the activity classes through (27) yields system of equations (6) and (8). To obtain the 
dynamics of the auxiliary variables, we multiply both sides of equations (35)–(38) by a, 
integrate across activity classes using (27), and take the limit � → 0 , which yield (9).

Appendix B: Numerical simulations
To create the two-dimensional diagrams in Fig.  3, we divided the parameter space of 
ρs ∈ [0, 1] and �s ∈ [0, 0.5] (or ρ11 ∈ [0, 1] and �1 ∈ [0, 0.5] ) in a 400× 400 grid. For each 
parameter combination in the grid, we ran 100 independent simulations of the stochas-
tic network system with one infected node per strain. The time window of each simula-
tion was between 0 and 1800 days with a time step of � = 0.5 day (3600 time steps). In 
all the simulations, we set σℓ = 0.5 day−1 and µℓ = 2 day−1 . To classify the behavior of 
each strain into the three possible regimes (non-epidemic, epidemic, and endemic), we 
follow the steps below.
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•	 First, we average the solution across all trials.
•	 Second, we compute the peak and steady-state values of the number of infected 

with the strain. The steady-state is obtained as the time average of the last 50 time 
steps.

•	 Third, we classify the behavior of each strain as (i) non-epidemic, if the peak of the 
infection count is equal to one and the steady-state is below a tolerance ε (that is, 
the infection count monotonically decays); (ii) epidemic, if the peak is above one 
and the steady-state below ε (that is, the infection count has a peak before decay-
ing toward the disease-free equilibrium); and iii) endemic if the peak is above one 
and the steady-state above ε . We heuristically selected ε = 0.1 to be the steady-
state tolerance.

To create the diagrams in Fig. 4, we utilized a coarser grid of 100× 100 and 500 days 
(1000 time steps). For each parameter combination in the grid, we ran 100 independ-
ent simulations of the stochastic network system with one infected node per strain. 
The diagrams report the peak count of infections and its steady-state value, consider-
ing both variants, averaged over the 100 independent simulations. The steady-state is 
obtained as the time average of the last 50 time steps.
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